Efficient approximate dynamic programming based on design and analysis of computer experiments for infinite-horizon optimization

•A sequential sampling algorithm for the infinite-horizon approximate dynamic programming is proposed.•A new stopping criterion to effectively identify an optimally equivalent value function is given.•The extrapolation issue of approximate value function built by MARS is explored and discussed. The...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 124; p. 105032
Main Authors: Chen, Ying, Liu, Feng, Rosenberger, Jay M., Chen, Victoria C.P., Kulvanitchaiyanunt, Asama, Zhou, Yuan
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.12.2020
Pergamon Press Inc
Subjects:
ISSN:0305-0548, 0305-0548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A sequential sampling algorithm for the infinite-horizon approximate dynamic programming is proposed.•A new stopping criterion to effectively identify an optimally equivalent value function is given.•The extrapolation issue of approximate value function built by MARS is explored and discussed. The approximate dynamic programming (ADP) method based on the design and analysis of computer experiments (DACE) approach has been demonstrated as an effective method to solve multistage decision-making problems in the literature. However, this method is still not efficient for infinite-horizon optimization considering the required large volume of sampling in the state space and high-quality value function identification. Therefore, we propose a sequential sampling algorithm and embed it into a DACE-based ADP method to obtain a high-quality value function approximation. Considering the limitations of the traditional stopping criterion (Bellman error bound), we further propose a 45-degree line stopping criterion to terminate value iteration early by identifying an optimally equivalent value function. A comparison of the computational results with those of other three existing policies indicates that the proposed sampling algorithm and stopping criterion can determine a high-quality ADP policy. Finally, we discuss the extrapolation issue of the value function approximated by multivariate adaptive regression splines, the results of which further demonstrate the quality of the ADP policy generated in this study.
AbstractList The approximate dynamic programming (ADP) method based on the design and analysis of computer experiments (DACE) approach has been demonstrated as an effective method to solve multistage decision-making problems in the literature. However, this method is still not efficient for infinite-horizon optimization considering the required large volume of sampling in the state space and high-quality value function identification. Therefore, we propose a sequential sampling algorithm and embed it into a DACE-based ADP method to obtain a high-quality value function approximation. Considering the limitations of the traditional stopping criterion (Bellman error bound), we further propose a 45-degree line stopping criterion to terminate value iteration early by identifying an optimally equivalent value function. A comparison of the computational results with those of other three existing policies indicates that the proposed sampling algorithm and stopping criterion can determine a high-quality ADP policy. Finally, we discuss the extrapolation issue of the value function approximated by multivariate adaptive regression splines, the results of which further demonstrate the quality of the ADP policy generated in this study.
•A sequential sampling algorithm for the infinite-horizon approximate dynamic programming is proposed.•A new stopping criterion to effectively identify an optimally equivalent value function is given.•The extrapolation issue of approximate value function built by MARS is explored and discussed. The approximate dynamic programming (ADP) method based on the design and analysis of computer experiments (DACE) approach has been demonstrated as an effective method to solve multistage decision-making problems in the literature. However, this method is still not efficient for infinite-horizon optimization considering the required large volume of sampling in the state space and high-quality value function identification. Therefore, we propose a sequential sampling algorithm and embed it into a DACE-based ADP method to obtain a high-quality value function approximation. Considering the limitations of the traditional stopping criterion (Bellman error bound), we further propose a 45-degree line stopping criterion to terminate value iteration early by identifying an optimally equivalent value function. A comparison of the computational results with those of other three existing policies indicates that the proposed sampling algorithm and stopping criterion can determine a high-quality ADP policy. Finally, we discuss the extrapolation issue of the value function approximated by multivariate adaptive regression splines, the results of which further demonstrate the quality of the ADP policy generated in this study.
ArticleNumber 105032
Author Kulvanitchaiyanunt, Asama
Liu, Feng
Rosenberger, Jay M.
Zhou, Yuan
Chen, Victoria C.P.
Chen, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  email: yingchen@hit.edu.cn
  organization: Department of Management Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
– sequence: 2
  givenname: Feng
  orcidid: 0000-0002-5225-8199
  surname: Liu
  fullname: Liu, Feng
  email: fliu0@mgh.harvard.edu
  organization: School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA
– sequence: 3
  givenname: Jay M.
  orcidid: 0000-0003-4038-1402
  surname: Rosenberger
  fullname: Rosenberger, Jay M.
  email: jrosenbe@uta.edu
  organization: Department of Industrial, Manufacturing & Systems Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
– sequence: 4
  givenname: Victoria C.P.
  surname: Chen
  fullname: Chen, Victoria C.P.
  email: vchen@uta.edu
  organization: Department of Industrial, Manufacturing & Systems Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
– sequence: 5
  givenname: Asama
  surname: Kulvanitchaiyanunt
  fullname: Kulvanitchaiyanunt, Asama
  email: asama.kulvanitchaiyanunt@mavs.uta.edu
  organization: Coraline Co., Ltd, Bangkok, Thailand
– sequence: 6
  givenname: Yuan
  surname: Zhou
  fullname: Zhou, Yuan
  email: yuan.zhou@uta.edu
  organization: Department of Industrial, Manufacturing & Systems Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
BookMark eNp9kU1LRCEUhiUKqqkf0E5ofafj_Y5WEX1B0KbW4uhxOsNcvakTTat-ek7TIlokiEc974vv4yHbdd4hYycCpgJEe7aYah-mJZSbfQNVucMOoIKmgKbud3_V--wwxgXk0ZXigH1eW0ua0CWuxjH4dxpUQm7WTg2keT6ZBzUM5OZ8piIa7h03GGnuuHImT7VcR4rcW679MK4SBo7vIwYasmfk1gdOzpKjhMWLD_SRDfyYaKAPlci7I7Zn1TLi8c86Yc83109Xd8XD4-391eVDoaumS4VpEYStbA9YW9AzPWtLBW3foTBgDWrRV5jvOttqjeeqaZu67s_rWkBfQjerJux065sjva4wJrnwq5CfH2XZQJNhVJXIXWLbpYOPMaCVY06iwloKkBvQciEzaLkBLbegs6b7o9GUvrOloGj5r_Jiq8Qc_I0wyLj5Co2GAuokjad_1F-E0p0m
CitedBy_id crossref_primary_10_1016_j_fmre_2021_09_011
crossref_primary_10_1007_s10479_025_06561_4
crossref_primary_10_1016_j_fmre_2021_06_010
crossref_primary_10_1109_TASE_2021_3119930
crossref_primary_10_1016_j_ejor_2023_01_049
crossref_primary_10_1016_j_ejco_2024_100089
crossref_primary_10_1007_s12555_021_0120_2
crossref_primary_10_1016_j_ress_2023_109594
Cites_doi 10.1029/2008WR007024
10.1016/j.ejor.2005.01.022
10.1080/07408170500232495
10.1287/opre.1080.0576
10.1007/s10589-007-9054-8
10.1287/opre.2013.1174
10.1016/j.ejor.2017.03.050
10.1007/s10589-013-9614-z
10.1007/s10287-015-0242-1
10.1080/07408179408966604
10.1145/2897824.2925881
10.1145/352958.352982
10.1016/j.cor.2005.02.043
10.1109/TNN.2004.824413
10.1111/j.1442-9993.1993.tb00438.x
10.1007/BF01386213
10.1029/93WR02277
10.1109/TCYB.2017.2660533
10.1287/opre.47.1.38
10.1109/ACC.2009.5160611
10.1287/msom.2017.0681
10.1145/1273496.1273589
10.1016/0041-5553(67)90144-9
10.1016/j.csda.2014.07.015
10.1016/j.cor.2012.11.016
10.1109/TIA.2017.2766230
10.1016/j.cor.2013.09.006
10.1109/TCYB.2015.2492242
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Pergamon Press Inc. Dec 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Dec 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2020.105032
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 0305-0548
ExternalDocumentID 10_1016_j_cor_2020_105032
S0305054820301490
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-d6e01f3f80e4f0cbcb62a0687e1d0fdec183e0e47f6cce9a565448944108207b3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571468600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Wed Aug 13 11:34:45 EDT 2025
Sat Nov 29 07:20:22 EST 2025
Tue Nov 18 22:04:17 EST 2025
Tue Dec 03 03:45:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Extrapolation
Approximate dynamic programming
State space sampling
Stopping criterion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-d6e01f3f80e4f0cbcb62a0687e1d0fdec183e0e47f6cce9a565448944108207b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5225-8199
0000-0003-4038-1402
PQID 2505721331
PQPubID 45870
ParticipantIDs proquest_journals_2505721331
crossref_primary_10_1016_j_cor_2020_105032
crossref_citationtrail_10_1016_j_cor_2020_105032
elsevier_sciencedirect_doi_10_1016_j_cor_2020_105032
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2020
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Peng, Berseth, van de Panne (b0155) 2016; 35
Chen, Ruppert, Shoemaker (b0045) 1999; 47
Halton (b0095) 1960; 2
Sarikprueck, Lee, Kulvanitchaiyanunt, Chen, Rosenberger (b0175) 2017; 54
Fan, Tarun, Chen (b0065) 2013; 40
Cervellera, Muselli (b0025) 2007; 38
Kossmann, Stocker (b0110) 2000; 25
Birge, Louveaux (b0015) 1997
Farahmand, A. M., Ghavamzadeh, M., Szepesvari, C., Mannor, S. (2009) Regularized Fitted Q-Iteration for planning in continuous-space Markovian decision problems. 2009 American Control Conference, 10–12, June, St, Louis, MO, USA.
Powell (b0160) 2011
Tilmant, Pinte, Goor (b0190) 2008; 44
Martinez, Shih, Chen, Kim (b0130) 2015; 81
Cervellara, Gaggero, Maccio (b0020) 2014; 43
Parr, R., Painter-Wakefield, C., Li, L., Littman, M., 2007. Analyzing feature generation for value-function approximation. In: Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR.
Sobol (b0180) 1967; 7
Zéphyr, Lang, Lamond, Cote (b0210) 2017; 262
Niederreiter (b0140) 1992
Papavasiliou, Shmuel (b0145) 2013; 61
Ernst, Geurts, Wehenkel (b0060) 2005; 6
Yang, Chen, Chang, Sattler, Wen (b0200) 2009; 57
Cervellera, Chen, Wen (b0030) 2006; 171
Cervellera, Maccio (b8000) 2017; 47
Cervellera, Muselli (b0035) 2004; 15
Zéphyr, Pascal, Lamond (b0205) 2015; 12
Bellman (b0005) 1957
Gnecco, Sanguineti (b0085) 2016; 1
Zoppoli, Sanguineti, Gnecco, Parisini (b0215) 2019
Munos, Szepesvari (b0135) 2008; 9
Friedman (b0075) 1991; 19
Bertsekas (b8010) 2017
Kutner, Nachtshim, Neter, Li (b0115) 2004
Heath, Jackson (b0100) 1994; 26
Bertsekas, Tsitsiklis (b0010) 1996
Chen, Tsui, Barton, Meckesheimer (b0050) 2006; 38
Clarke (b0055) 1993; 18
Gaggero, Gnecco, Sanguineti (b0080) 2014; 58
Tejada-Guibert, Johnson, Stedinger (b0185) 1993; 29
Hadley, Whitin (b0090) 1963
Lee, Lee (b0120) 2004; 2
Wei, Liu, Liu (b0195) 2016; 46
Cervellera, Wen, Chen (b0040) 2007; 34
Long, Nohdurft, Spinler (b0125) 2018; 20
Sacks, Welch, Mitchell, Wynn (b0165) 1989; 4
Niederreiter (10.1016/j.cor.2020.105032_b0140) 1992
Yang (10.1016/j.cor.2020.105032_b0200) 2009; 57
Sacks (10.1016/j.cor.2020.105032_b0165) 1989; 4
Tejada-Guibert (10.1016/j.cor.2020.105032_b0185) 1993; 29
Cervellera (10.1016/j.cor.2020.105032_b0035) 2004; 15
Papavasiliou (10.1016/j.cor.2020.105032_b0145) 2013; 61
Sobol (10.1016/j.cor.2020.105032_b0180) 1967; 7
Zéphyr (10.1016/j.cor.2020.105032_b0210) 2017; 262
Cervellera (10.1016/j.cor.2020.105032_b0040) 2007; 34
Munos (10.1016/j.cor.2020.105032_b0135) 2008; 9
Bellman (10.1016/j.cor.2020.105032_b0005) 1957
Ernst (10.1016/j.cor.2020.105032_b0060) 2005; 6
Tilmant (10.1016/j.cor.2020.105032_b0190) 2008; 44
Zoppoli (10.1016/j.cor.2020.105032_b0215) 2019
Wei (10.1016/j.cor.2020.105032_b0195) 2016; 46
Zéphyr (10.1016/j.cor.2020.105032_b0205) 2015; 12
Chen (10.1016/j.cor.2020.105032_b0050) 2006; 38
Bertsekas (10.1016/j.cor.2020.105032_b8010) 2017
10.1016/j.cor.2020.105032_b0070
Cervellara (10.1016/j.cor.2020.105032_b0020) 2014; 43
Chen (10.1016/j.cor.2020.105032_b0045) 1999; 47
Fan (10.1016/j.cor.2020.105032_b0065) 2013; 40
Powell (10.1016/j.cor.2020.105032_b0160) 2011
Peng (10.1016/j.cor.2020.105032_b0155) 2016; 35
Kossmann (10.1016/j.cor.2020.105032_b0110) 2000; 25
Hadley (10.1016/j.cor.2020.105032_b0090) 1963
Martinez (10.1016/j.cor.2020.105032_b0130) 2015; 81
10.1016/j.cor.2020.105032_b0150
Cervellera (10.1016/j.cor.2020.105032_b8000) 2017; 47
Gaggero (10.1016/j.cor.2020.105032_b0080) 2014; 58
Lee (10.1016/j.cor.2020.105032_b0120) 2004; 2
Sarikprueck (10.1016/j.cor.2020.105032_b0175) 2017; 54
Birge (10.1016/j.cor.2020.105032_b0015) 1997
Cervellera (10.1016/j.cor.2020.105032_b0030) 2006; 171
Heath (10.1016/j.cor.2020.105032_b0100) 1994; 26
Kutner (10.1016/j.cor.2020.105032_b0115) 2004
Cervellera (10.1016/j.cor.2020.105032_b0025) 2007; 38
Friedman (10.1016/j.cor.2020.105032_b0075) 1991; 19
Halton (10.1016/j.cor.2020.105032_b0095) 1960; 2
Bertsekas (10.1016/j.cor.2020.105032_b0010) 1996
Clarke (10.1016/j.cor.2020.105032_b0055) 1993; 18
Gnecco (10.1016/j.cor.2020.105032_b0085) 2016; 1
Long (10.1016/j.cor.2020.105032_b0125) 2018; 20
References_xml – volume: 58
  start-page: 31
  year: 2014
  end-page: 85
  ident: b0080
  article-title: Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty
  publication-title: Comput. Optim. Appl.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0085
  article-title: Neural approximations of the solutions to a class of stochastic optimal control problems
  publication-title: J. NeuroTechnol.
– year: 1997
  ident: b0015
  article-title: Introduction to Stochastic Programming
– volume: 171
  start-page: 1139
  year: 2006
  end-page: 1151
  ident: b0030
  article-title: Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization
  publication-title: Euro. J. Oper. Res.
– volume: 46
  start-page: 840
  year: 2016
  end-page: 853
  ident: b0195
  article-title: Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems
  publication-title: IEEE Trans. Cybern.
– volume: 47
  start-page: 3355
  year: 2017
  end-page: 3366
  ident: b8000
  article-title: A novel approach for sampling in approximate dynamic programming based on F-discrepancy
  publication-title: IEEE Transactions on Cybernetics
– year: 2004
  ident: b0115
  article-title: Applied Linear Regression Models
– volume: 12
  start-page: 539
  year: 2015
  end-page: 557
  ident: b0205
  article-title: Controlled approximation of the value function in stochastic dynamic programming for multi-reservoir systems
  publication-title: CMS
– volume: 43
  start-page: 108
  year: 2014
  end-page: 115
  ident: b0020
  article-title: Low-discrepancy sampling for approximate dynamic programming with local approximators
  publication-title: Comput. Oper. Res.
– volume: 26
  start-page: 17
  year: 1994
  end-page: 30
  ident: b0100
  article-title: Modelling the evolution of demand forecasts with application to safety stock analysis in production/distribution systems
  publication-title: IIE Trans.
– volume: 81
  start-page: 89
  year: 2015
  end-page: 106
  ident: b0130
  article-title: A Convex version of multivariate adaptive regression splines
  publication-title: Comput. Stat. Data Anal.
– volume: 57
  start-page: 484
  year: 2009
  end-page: 498
  ident: b0200
  article-title: A decision-making framework for ozone pollution control
  publication-title: Oper. Res.
– volume: 19
  start-page: 1
  year: 1991
  end-page: 67
  ident: b0075
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 34
  start-page: 70
  year: 2007
  end-page: 90
  ident: b0040
  article-title: Neural network and regression spline value function approximations for stochastic dynamic programming
  publication-title: Comp. Oper. Res.
– volume: 2
  start-page: 84
  year: 1960
  end-page: 90
  ident: b0095
  article-title: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals
  publication-title: Numer. Math.
– volume: 61
  start-page: 578
  year: 2013
  end-page: 592
  ident: b0145
  article-title: Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network
  publication-title: Oper. Res.
– volume: 7
  start-page: 784
  year: 1967
  end-page: 802
  ident: b0180
  article-title: The distribution of points in a cube and the approximate evaluation of integrals
  publication-title: USSR Comput. Math. Math. Phys.
– year: 1957
  ident: b0005
  article-title: Dynamic Programming
– volume: 15
  start-page: 533
  year: 2004
  end-page: 543
  ident: b0035
  article-title: Deterministic design for neural network learning: an approach based on discrepancy
  publication-title: IEEE Trans. Neural Networks
– volume: 40
  start-page: 1076
  year: 2013
  end-page: 1084
  ident: b0065
  article-title: Adaptive value function approximation for continuous-state stochastic dynamic programming
  publication-title: Comput. Oper. Res.
– volume: 25
  start-page: 43
  year: 2000
  end-page: 82
  ident: b0110
  article-title: Iterative dynamic programming: a new class of query optimization algorithms
  publication-title: ACM Trans. Database Syst..
– volume: 29
  start-page: 3969
  year: 1993
  end-page: 3980
  ident: b0185
  article-title: Comparison of two approaches for implementing multi-reservoir operating policies derived using dynamic programming
  publication-title: Water Resour. Res.
– year: 1996
  ident: b0010
  article-title: Neuro-dynamic Programming
– year: 2017
  ident: b8010
  article-title: Dynamic programming and optimal control
– volume: 35
  start-page: 81
  year: 2016
  ident: b0155
  article-title: Terrain-adaptive locomotion skills using deep reinforcement learning
  publication-title: ACM Trans. Graphics (TOG)
– volume: 38
  start-page: 417
  year: 2007
  end-page: 443
  ident: b0025
  article-title: Efficient sampling in approximate dynamic programming algorithms
  publication-title: Comput. Optim. Appl.
– reference: Farahmand, A. M., Ghavamzadeh, M., Szepesvari, C., Mannor, S. (2009) Regularized Fitted Q-Iteration for planning in continuous-space Markovian decision problems. 2009 American Control Conference, 10–12, June, St, Louis, MO, USA.
– volume: 2
  start-page: 263
  year: 2004
  end-page: 278
  ident: b0120
  article-title: Approximate dynamic programming strategies and their applicability for process control: a review and future directions
  publication-title: Int. J. Control Autom. Syst.
– year: 2011
  ident: b0160
  article-title: Approximate Dynamic Programming: Solving the Curses of Dimensionality
– volume: 18
  start-page: 117
  year: 1993
  end-page: 143
  ident: b0055
  article-title: Non-parametric multivariate analyses of changes in community structure
  publication-title: Austral Ecol.
– year: 2019
  ident: b0215
  article-title: Neural Approximations for Optimal Control and Decision, Communications and Control Engineering
– volume: 6
  start-page: 503
  year: 2005
  end-page: 556
  ident: b0060
  article-title: Tree-based batch mode reinforcement learning
  publication-title: J. Mach. Learn. Res.
– reference: Parr, R., Painter-Wakefield, C., Li, L., Littman, M., 2007. Analyzing feature generation for value-function approximation. In: Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR.
– volume: 44
  start-page: W12431
  year: 2008
  ident: b0190
  article-title: Assessing marginal water values in multipurpose multireservoir systems via stochastic programming
  publication-title: Water Resour. Res.
– volume: 262
  start-page: 586
  year: 2017
  end-page: 601
  ident: b0210
  article-title: Approximate stochastic dynamic programming for hydroelectric production planning
  publication-title: Eur. J. Oper. Res.
– volume: 54
  start-page: 977
  year: 2017
  end-page: 986
  ident: b0175
  article-title: Bounds for optimal control of a regional plug-In electric vehicle charging station system
  publication-title: IEEE Trans. Ind. Appl.
– volume: 20
  start-page: 181
  year: 2018
  end-page: 198
  ident: b0125
  article-title: Spatial resource allocation for emerging epidemics: a comparison of greedy, myopic, and dynamic policies
  publication-title: Manuf. Serv. Oper. Manage.
– year: 1963
  ident: b0090
  article-title: Analysis of Inventory Systems
– volume: 47
  start-page: 38
  year: 1999
  end-page: 53
  ident: b0045
  article-title: Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming
  publication-title: Oper. Res.
– volume: 9
  start-page: 815
  year: 2008
  end-page: 857
  ident: b0135
  article-title: Finite-time bounds for fitted value iteration
  publication-title: J. Mach. Learn. Res.
– year: 1992
  ident: b0140
  article-title: Random Number Generation and Quasi-Monte Carlo Methods
– volume: 4
  start-page: 409
  year: 1989
  end-page: 423
  ident: b0165
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
– volume: 38
  start-page: 273
  year: 2006
  end-page: 291
  ident: b0050
  article-title: A review on design, modeling, and applications of computer experiments
  publication-title: IIE Trans.
– volume: 44
  start-page: W12431
  year: 2008
  ident: 10.1016/j.cor.2020.105032_b0190
  article-title: Assessing marginal water values in multipurpose multireservoir systems via stochastic programming
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007024
– year: 2011
  ident: 10.1016/j.cor.2020.105032_b0160
– year: 1957
  ident: 10.1016/j.cor.2020.105032_b0005
– volume: 171
  start-page: 1139
  year: 2006
  ident: 10.1016/j.cor.2020.105032_b0030
  article-title: Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization
  publication-title: Euro. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.01.022
– volume: 2
  start-page: 263
  issue: 3
  year: 2004
  ident: 10.1016/j.cor.2020.105032_b0120
  article-title: Approximate dynamic programming strategies and their applicability for process control: a review and future directions
  publication-title: Int. J. Control Autom. Syst.
– volume: 38
  start-page: 273
  year: 2006
  ident: 10.1016/j.cor.2020.105032_b0050
  article-title: A review on design, modeling, and applications of computer experiments
  publication-title: IIE Trans.
  doi: 10.1080/07408170500232495
– volume: 57
  start-page: 484
  year: 2009
  ident: 10.1016/j.cor.2020.105032_b0200
  article-title: A decision-making framework for ozone pollution control
  publication-title: Oper. Res.
  doi: 10.1287/opre.1080.0576
– volume: 38
  start-page: 417
  year: 2007
  ident: 10.1016/j.cor.2020.105032_b0025
  article-title: Efficient sampling in approximate dynamic programming algorithms
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-007-9054-8
– volume: 61
  start-page: 578
  issue: 3
  year: 2013
  ident: 10.1016/j.cor.2020.105032_b0145
  article-title: Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network
  publication-title: Oper. Res.
  doi: 10.1287/opre.2013.1174
– volume: 262
  start-page: 586
  issue: 2
  year: 2017
  ident: 10.1016/j.cor.2020.105032_b0210
  article-title: Approximate stochastic dynamic programming for hydroelectric production planning
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.03.050
– volume: 58
  start-page: 31
  year: 2014
  ident: 10.1016/j.cor.2020.105032_b0080
  article-title: Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9614-z
– volume: 12
  start-page: 539
  issue: 4
  year: 2015
  ident: 10.1016/j.cor.2020.105032_b0205
  article-title: Controlled approximation of the value function in stochastic dynamic programming for multi-reservoir systems
  publication-title: CMS
  doi: 10.1007/s10287-015-0242-1
– year: 2019
  ident: 10.1016/j.cor.2020.105032_b0215
– volume: 26
  start-page: 17
  issue: 3
  year: 1994
  ident: 10.1016/j.cor.2020.105032_b0100
  article-title: Modelling the evolution of demand forecasts with application to safety stock analysis in production/distribution systems
  publication-title: IIE Trans.
  doi: 10.1080/07408179408966604
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 10.1016/j.cor.2020.105032_b0165
  article-title: Design and analysis of computer experiments
  publication-title: Stat. Sci.
– volume: 35
  start-page: 81
  issue: 4
  year: 2016
  ident: 10.1016/j.cor.2020.105032_b0155
  article-title: Terrain-adaptive locomotion skills using deep reinforcement learning
  publication-title: ACM Trans. Graphics (TOG)
  doi: 10.1145/2897824.2925881
– volume: 25
  start-page: 43
  issue: 1
  year: 2000
  ident: 10.1016/j.cor.2020.105032_b0110
  article-title: Iterative dynamic programming: a new class of query optimization algorithms
  publication-title: ACM Trans. Database Syst..
  doi: 10.1145/352958.352982
– year: 1992
  ident: 10.1016/j.cor.2020.105032_b0140
– volume: 34
  start-page: 70
  year: 2007
  ident: 10.1016/j.cor.2020.105032_b0040
  article-title: Neural network and regression spline value function approximations for stochastic dynamic programming
  publication-title: Comp. Oper. Res.
  doi: 10.1016/j.cor.2005.02.043
– volume: 15
  start-page: 533
  year: 2004
  ident: 10.1016/j.cor.2020.105032_b0035
  article-title: Deterministic design for neural network learning: an approach based on discrepancy
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2004.824413
– volume: 18
  start-page: 117
  issue: 1
  year: 1993
  ident: 10.1016/j.cor.2020.105032_b0055
  article-title: Non-parametric multivariate analyses of changes in community structure
  publication-title: Austral Ecol.
  doi: 10.1111/j.1442-9993.1993.tb00438.x
– volume: 2
  start-page: 84
  year: 1960
  ident: 10.1016/j.cor.2020.105032_b0095
  article-title: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals
  publication-title: Numer. Math.
  doi: 10.1007/BF01386213
– volume: 29
  start-page: 3969
  year: 1993
  ident: 10.1016/j.cor.2020.105032_b0185
  article-title: Comparison of two approaches for implementing multi-reservoir operating policies derived using dynamic programming
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR02277
– volume: 47
  start-page: 3355
  issue: 10
  year: 2017
  ident: 10.1016/j.cor.2020.105032_b8000
  article-title: A novel approach for sampling in approximate dynamic programming based on F-discrepancy
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2660533
– volume: 47
  start-page: 38
  year: 1999
  ident: 10.1016/j.cor.2020.105032_b0045
  article-title: Applying experimental design and regression splines to high-dimensional continuous-state stochastic dynamic programming
  publication-title: Oper. Res.
  doi: 10.1287/opre.47.1.38
– ident: 10.1016/j.cor.2020.105032_b0070
  doi: 10.1109/ACC.2009.5160611
– volume: 20
  start-page: 181
  issue: 2
  year: 2018
  ident: 10.1016/j.cor.2020.105032_b0125
  article-title: Spatial resource allocation for emerging epidemics: a comparison of greedy, myopic, and dynamic policies
  publication-title: Manuf. Serv. Oper. Manage.
  doi: 10.1287/msom.2017.0681
– ident: 10.1016/j.cor.2020.105032_b0150
  doi: 10.1145/1273496.1273589
– volume: 6
  start-page: 503
  year: 2005
  ident: 10.1016/j.cor.2020.105032_b0060
  article-title: Tree-based batch mode reinforcement learning
  publication-title: J. Mach. Learn. Res.
– year: 1963
  ident: 10.1016/j.cor.2020.105032_b0090
– volume: 7
  start-page: 784
  issue: 4
  year: 1967
  ident: 10.1016/j.cor.2020.105032_b0180
  article-title: The distribution of points in a cube and the approximate evaluation of integrals
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90144-9
– volume: 81
  start-page: 89
  year: 2015
  ident: 10.1016/j.cor.2020.105032_b0130
  article-title: A Convex version of multivariate adaptive regression splines
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2014.07.015
– volume: 40
  start-page: 1076
  issue: 4
  year: 2013
  ident: 10.1016/j.cor.2020.105032_b0065
  article-title: Adaptive value function approximation for continuous-state stochastic dynamic programming
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.11.016
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.cor.2020.105032_b0085
  article-title: Neural approximations of the solutions to a class of stochastic optimal control problems
  publication-title: J. NeuroTechnol.
– volume: 54
  start-page: 977
  issue: 2
  year: 2017
  ident: 10.1016/j.cor.2020.105032_b0175
  article-title: Bounds for optimal control of a regional plug-In electric vehicle charging station system
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2017.2766230
– volume: 43
  start-page: 108
  year: 2014
  ident: 10.1016/j.cor.2020.105032_b0020
  article-title: Low-discrepancy sampling for approximate dynamic programming with local approximators
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.09.006
– year: 2017
  ident: 10.1016/j.cor.2020.105032_b8010
– year: 2004
  ident: 10.1016/j.cor.2020.105032_b0115
– year: 1996
  ident: 10.1016/j.cor.2020.105032_b0010
– volume: 19
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.cor.2020.105032_b0075
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 46
  start-page: 840
  issue: 3
  year: 2016
  ident: 10.1016/j.cor.2020.105032_b0195
  article-title: Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2492242
– volume: 9
  start-page: 815
  issue: May
  year: 2008
  ident: 10.1016/j.cor.2020.105032_b0135
  article-title: Finite-time bounds for fitted value iteration
  publication-title: J. Mach. Learn. Res.
– year: 1997
  ident: 10.1016/j.cor.2020.105032_b0015
SSID ssj0000721
Score 2.3921785
Snippet •A sequential sampling algorithm for the infinite-horizon approximate dynamic programming is proposed.•A new stopping criterion to effectively identify an...
The approximate dynamic programming (ADP) method based on the design and analysis of computer experiments (DACE) approach has been demonstrated as an effective...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105032
SubjectTerms Algorithms
Approximate dynamic programming
Approximation
Criteria
Decision making
Design analysis
Dynamic programming
Extrapolation
Horizon
Iterative methods
Operations research
Optimization
Regression analysis
Sequential sampling
Spline functions
State space sampling
Stopping criterion
Title Efficient approximate dynamic programming based on design and analysis of computer experiments for infinite-horizon optimization
URI https://dx.doi.org/10.1016/j.cor.2020.105032
https://www.proquest.com/docview/2505721331
Volume 124
WOSCitedRecordID wos000571468600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 0305-0548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FFiFY8CggCgXNgm6ILDke22Mvq5AIqhKySFFYjfy4o7pqnZCkVWDFr_Fn3HklblQiWLCxonFsRznH956ZuQ9C3gJkUcp830sDCR6-idzLmIxwlhJHOUsgCYNcN5vgg0EyHqfDVuuXy4W5vuB1nSyX6fS_Qo1jCLZKnf0HuFc3xQH8jKDjEWHH418B39NFIXTouKoXvqxQk0K7NJ3nXTzWpVohUB6sVLsFpQ7jsHVb10VKCtvxodEGQFdvUBFcldKq3tlkVv1QihMNz6XN6GzKXdczYq4ZNpnCzEbe2RpDq7Xork0S-eo8qYoRqq60tIb1kOoDqSPSDNGOs-_tT5u3-FKpfYgqa3eHzSWNYDM8ZIi3Ua2WTBTKzYBQZZ88lJnGZsMtY86qB2HDLndu9RZm4eIcwVaVYQPd9Ni3y603KnMPPov-6cmJGPXGo0PWn37zVNsytb1_yN4bCt0huwGPUvQNu0cfe-PjtRzgOvlv9SPd1roOMtx48p_E0YZM0Npn9Jg8tJMWemTI9oS0oN4j91zOxB555HCm1lXskQeNQpdPyc8VKWmDlNSSkjZISTUp6aSmhpQUSUkdKelEUkdK2iAlRVLSTVLSJimfkdN-b9T94NneH17BIr7wyhj8jmQy8SGUfpEXeRxkfpxw6JS-LKFAVwR4jsu4KCDNcF4ShkmK4l5pWp6z52SnntTwgtCAQyBjVsa8zEOeQ5bERQoS0EZlMgqyfeK7P10UtjC-6s9yIVwE5LlAnITCSRic9sm71SVTUxVm25dDh6SwstbIVYE83HbZgUNdWPMyF2rCgnxirPNy--lX5P76zTogO4vZFbwmd4vrRTWfvbEc_Q0GxNE3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+approximate+dynamic+programming+based+on+design+and+analysis+of+computer+experiments+for+infinite-horizon+optimization&rft.jtitle=Computers+%26+operations+research&rft.au=Chen%2C+Ying&rft.au=Liu%2C+Feng&rft.au=Rosenberger%2C+Jay+M&rft.au=Chen%2C+Victoria+CP&rft.date=2020-12-01&rft.pub=Pergamon+Press+Inc&rft.issn=0305-0548&rft.eissn=0305-0548&rft.volume=124&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cor.2020.105032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon