Measurement Error Prediction of Power Metering Equipment Using Improved Local Outlier Factor and Kernel Support Vector Regression
The measurement error evaluation of power metering equipment (PME) is significant for the instrument design and accurate metering of electric energy, especially under extreme environmental stresses. However, actual measurement error assessment is often disturbed by the environmental noise and insuff...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on industrial electronics (1982) Jg. 69; H. 9; S. 9575 - 9585 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0046, 1557-9948 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The measurement error evaluation of power metering equipment (PME) is significant for the instrument design and accurate metering of electric energy, especially under extreme environmental stresses. However, actual measurement error assessment is often disturbed by the environmental noise and insufficient input information. To address this problem, an improved local outlier factor (ILOF) method is first presented to detect potential outliers. And an optimized distance function and adaptive threshold constraint method based on box plot are used to improve the outlier detection performance of ILOF. Next, an error prediction method, namely kernel support vector regression (KSVR), is presented to fuse measurement error and multiple extreme environmental stresses by using the proposed kernel approach. Integrating the ILOF and KSVR, examples from the extreme environmental region demonstrate that the proposed evaluation framework has a higher assessment performance. Compared with several state-of-art prediction methods, our framework has profound outlier identification and error prediction performance under small sample conditions. |
|---|---|
| AbstractList | The measurement error evaluation of power metering equipment (PME) is significant for the instrument design and accurate metering of electric energy, especially under extreme environmental stresses. However, actual measurement error assessment is often disturbed by the environmental noise and insufficient input information. To address this problem, an improved local outlier factor (ILOF) method is first presented to detect potential outliers. And an optimized distance function and adaptive threshold constraint method based on box plot are used to improve the outlier detection performance of ILOF. Next, an error prediction method, namely kernel support vector regression (KSVR), is presented to fuse measurement error and multiple extreme environmental stresses by using the proposed kernel approach. Integrating the ILOF and KSVR, examples from the extreme environmental region demonstrate that the proposed evaluation framework has a higher assessment performance. Compared with several state-of-art prediction methods, our framework has profound outlier identification and error prediction performance under small sample conditions. |
| Author | Teng, Zhaosheng Tang, Qiu Yang, Yingying Ma, Jun Qiu, Wei Duan, Junfeng |
| Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-2753-6767 surname: Ma fullname: Ma, Jun email: 19090277@hnu.edu.cn organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Zhaosheng orcidid: 0000-0001-8293-9086 surname: Teng fullname: Teng, Zhaosheng email: tengzs@hnu.edu.cn organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Qiu orcidid: 0000-0001-9935-712X surname: Tang fullname: Tang, Qiu email: tangqiu@hnu.edu.cn organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China – sequence: 4 givenname: Wei orcidid: 0000-0003-3348-1659 surname: Qiu fullname: Qiu, Wei email: qiuwei@hnu.edu.cn organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China – sequence: 5 givenname: Yingying orcidid: 0000-0003-1813-6574 surname: Yang fullname: Yang, Yingying email: yangyingying@hnu.edu.cn organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China – sequence: 6 givenname: Junfeng orcidid: 0000-0003-0521-9872 surname: Duan fullname: Duan, Junfeng email: duanjunfeng@hnu.edu.cn organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China |
| BookMark | eNp9kEFP3DAQhS1EpS7b3itxscQ523Fir5MjQgtdsQjUQq-RNx4jo2wcxg5Vj_3neFnUQw89jUbz3ryZ74QdD2FAxr4IWAgBzdf79WpRQikWlRBSSzhiM6GULppG1sdsBqWuCwC5_MhOYnwCEFIJNWN_btDEiXCHQ-IrokD8jtD6Lvkw8OD4XfiFxG8wIfnhka-eJz--iR_ivl_vRgovaPkmdKbnt1PqfdZfmi7lVWaw_BppwJ7_mMYxUOI_8W3yHR8JY8whn9gHZ_qIn9_rnD1cru4vvhWb26v1xfmm6CqlU2EVito51SBC_suCdlVdamdBOKkUdrKR4EqxRYE2N7aqrdoqJ922atDoas7ODnvzwc8TxtQ-hYmGHNmWy0yslFpDVsFB1VGIkdC1I_mdod-tgHYPus2g2z3o9h10tiz_sXQ-mT2_RMb3_zOeHoweEf_mNEqVSxDVK4C9juM |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3372012 crossref_primary_10_1109_TII_2023_3306934 crossref_primary_10_1016_j_measurement_2023_113410 crossref_primary_10_1109_JSEN_2023_3307623 crossref_primary_10_1109_TII_2024_3423483 crossref_primary_10_1109_JSEN_2023_3292347 crossref_primary_10_1016_j_cose_2023_103205 crossref_primary_10_1109_ACCESS_2023_3296533 crossref_primary_10_1109_TSG_2025_3542786 crossref_primary_10_1109_TASE_2025_3529881 crossref_primary_10_1002_cjce_24940 crossref_primary_10_3390_agriengineering7030075 crossref_primary_10_1109_TNNLS_2025_3548439 crossref_primary_10_1088_1742_6596_2914_1_012012 crossref_primary_10_1016_j_geoen_2023_212187 crossref_primary_10_1109_JSEN_2024_3485116 crossref_primary_10_1109_TASE_2023_3299185 crossref_primary_10_1088_1361_6501_ac42e6 crossref_primary_10_1007_s11036_023_02212_9 crossref_primary_10_3390_pr11072036 crossref_primary_10_1109_TII_2023_3275699 crossref_primary_10_1016_j_apenergy_2024_124798 crossref_primary_10_1002_ese3_1633 crossref_primary_10_1002_int_22876 crossref_primary_10_1016_j_measurement_2024_114481 crossref_primary_10_1016_j_cie_2025_110985 crossref_primary_10_1177_07316844251353397 crossref_primary_10_1177_01423312241255991 crossref_primary_10_1080_23307706_2024_2394978 |
| Cites_doi | 10.1109/TIE.2019.2959492 10.1109/TSG.2018.2818167 10.1109/TIE.2019.2892675 10.1109/CPEM.2016.7540560 10.1109/TPWRS.2017.2767105 10.1109/TII.2019.2915536 10.1145/3381028 10.1109/ICIEA.2019.8834306 10.1109/TII.2020.2981382 10.1109/TII.2015.2414355 10.1109/TII.2020.3025314 10.1109/JBHI.2018.2832599 10.1016/j.jclepro.2019.01.229 10.1016/j.ijepes.2013.11.023 10.1109/TR.2010.2048736 10.1109/TR.2015.2513050 10.1109/TTE.2019.2956350 10.14257/ijca.2015.8.8.17 10.1109/TSG.2018.2805723 10.1109/TIE.2017.2782224 10.1109/TII.2019.2899465 10.1109/TIM.2019.2939932 10.1109/PHM-Chongqing.2018.00089 10.1109/TIE.2016.2623260 10.1109/TR.2017.2785978 10.1016/j.measurement.2019.04.062 10.1109/ACCESS.2019.2932769 10.1109/TSG.2021.3077693 10.1109/TIM.2018.2890052 10.1109/TPWRS.2021.3078770 10.1109/JIOT.2015.2512325 10.1109/SDPC.2017.146 10.1109/TVT.2019.2932605 10.1088/1757-899x/366/1/012065 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2021.3114740 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 9585 |
| ExternalDocumentID | 10_1109_TIE_2021_3114740 9552601 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52077067 funderid: 10.13039/501100001809 – fundername: National Key R, and D Program of China grantid: 2019YFF0216800 – fundername: State Grid Corporation of China grantid: SGXJYX00ZJJS2100048; 5230HQ19000F funderid: 10.13039/501100010880 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c357t-d5e18ff59ee0557d07f3827fd01f455ec4940f21be1edc49d38d5b5f4fb39ea73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778988400093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:17:36 EDT 2025 Sat Nov 29 01:31:53 EST 2025 Tue Nov 18 22:21:56 EST 2025 Wed Aug 27 02:40:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-d5e18ff59ee0557d07f3827fd01f455ec4940f21be1edc49d38d5b5f4fb39ea73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3348-1659 0000-0003-0521-9872 0000-0002-2753-6767 0000-0001-9935-712X 0000-0001-8293-9086 0000-0003-1813-6574 |
| PQID | 2647424770 |
| PQPubID | 85464 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2647424770 ieee_primary_9552601 crossref_citationtrail_10_1109_TIE_2021_3114740 crossref_primary_10_1109_TIE_2021_3114740 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref24 doi: 10.1109/TIE.2019.2959492 – ident: ref1 doi: 10.1109/TSG.2018.2818167 – ident: ref7 doi: 10.1109/TIE.2019.2892675 – ident: ref16 doi: 10.1109/CPEM.2016.7540560 – ident: ref19 doi: 10.1109/TPWRS.2017.2767105 – ident: ref23 doi: 10.1109/TII.2019.2915536 – ident: ref29 doi: 10.1145/3381028 – ident: ref12 doi: 10.1109/ICIEA.2019.8834306 – ident: ref30 doi: 10.1109/TII.2020.2981382 – ident: ref5 doi: 10.1109/TII.2015.2414355 – ident: ref31 doi: 10.1109/TII.2020.3025314 – ident: ref34 doi: 10.1109/JBHI.2018.2832599 – ident: ref6 doi: 10.1016/j.jclepro.2019.01.229 – ident: ref32 doi: 10.1016/j.ijepes.2013.11.023 – ident: ref13 doi: 10.1109/TR.2010.2048736 – ident: ref8 doi: 10.1109/TR.2015.2513050 – ident: ref14 doi: 10.1109/TTE.2019.2956350 – ident: ref28 doi: 10.14257/ijca.2015.8.8.17 – ident: ref3 doi: 10.1109/TSG.2018.2805723 – ident: ref25 doi: 10.1109/TIE.2017.2782224 – ident: ref9 doi: 10.1109/TII.2019.2899465 – ident: ref18 doi: 10.1109/TIM.2019.2939932 – ident: ref15 doi: 10.1109/PHM-Chongqing.2018.00089 – ident: ref20 doi: 10.1109/TIE.2016.2623260 – ident: ref11 doi: 10.1109/TR.2017.2785978 – ident: ref10 doi: 10.1016/j.measurement.2019.04.062 – ident: ref27 doi: 10.1109/ACCESS.2019.2932769 – ident: ref22 doi: 10.1109/TSG.2021.3077693 – ident: ref33 doi: 10.1109/TIM.2018.2890052 – ident: ref4 doi: 10.1109/TPWRS.2021.3078770 – ident: ref2 doi: 10.1109/JIOT.2015.2512325 – ident: ref26 doi: 10.1109/SDPC.2017.146 – ident: ref17 doi: 10.1109/TVT.2019.2932605 – ident: ref21 doi: 10.1088/1757-899x/366/1/012065 |
| SSID | ssj0014515 |
| Score | 2.5385113 |
| Snippet | The measurement error evaluation of power metering equipment (PME) is significant for the instrument design and accurate metering of electric energy,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9575 |
| SubjectTerms | Background noise Companies Data analysis Degradation Error analysis Extreme environmental stresses improved kernel support vector regression (ILOF) Kernel kernel support vector regression (KSVR) Kernels Measurement measurement error assessment Measurement errors Metering Outliers (statistics) power metering equipment (PME) Reliability Stress Stresses Support vector machines Temperature measurement |
| Title | Measurement Error Prediction of Power Metering Equipment Using Improved Local Outlier Factor and Kernel Support Vector Regression |
| URI | https://ieeexplore.ieee.org/document/9552601 https://www.proquest.com/docview/2647424770 |
| Volume | 69 |
| WOSCitedRecordID | wos000778988400093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9NAFB5q8aAHd7WK3e0u7-BFMHYmmcl0jsvSoqytRarsLaQzb5aFkmra7t3_3HmTtBYUwVsC74XAN8n7_T7G3nja6qVUnqSO-0QKXCYmkyoptTROlmUqShvJJvRsNrq9NfMOe3eYhUHE2HyG7-ky1vLd2u4oVTY04cE5DWs90lo3s1qHioFUDVtBShtjQ9C3L0lyM1x8HIdAMBUhPhVSU5rjyARFTpU_fsTRukxO_u-9Ttmz1ouEqwb256yD1Qv29Gi3YI_9nP7O_sG4rtc1zGuqyhASsPYwJ340mFI7TFCA8Y_dfewdgthFAE22AR18ImsHn3fb4K3WMIn8PFBWDm6wrnAFxAsafHj4FvP_8AXvmtba6iX7Ohkvrj8kLd9CYjOlt4lTKEbeK4NIm7kc1z4bpdo7LrxUCq00kvtULFGgCzcuGzm1VF76ZWaw1Nkr1q3WFb5mYL3iQYh7qUtZCjS5EhqFza3wIYCSfTbcQ1DYdhk5cWKsihiUcFME0AoCrWhB67O3B43vzSKOf8j2CKSDXItPnw32KBftl7opgkOoZSq15md_1zpnT1IaeYh9ZQPW3dY7vGCP7cP2flNfxkP4Cxbg218 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH6UtrDtsHbryrJ27TvsMpgXSZai6FhKQkuTLIxs9GYc6akUitO5ye77zyfJTlrYGOxmw3vG8Ml-v98H8MHHrV5K9TLhmM8kp3lmcqmyUkvjZFkKXtpENqEnk_71tZluwafNLAwRpeYz-hwvUy3fLewqpsq6Jjy4F4e1dpSUgjfTWpuagVQNX4GIO2ND2LcuSjLTnV0OQigoeIhQudQx0fHECCVWlT9-xcm-DPf-78324WXrR-JZA_wr2KLqNbx4sl3wAH6NH_N_OKjrRY3TOtZlIha48DiNDGk4jg0xQQEHP1a3qXsIUx8BNvkGcjiK9g6_rJbBX61xmBh6sKwcXlFd0R1GZtDgxeP3VAHAr3TTNNdWb-DbcDA7v8haxoXM5kovM6eI971Xhiju5nJM-7wvtHeMe6kUWWkk84LPiZMLNy7vOzVXXvp5bqjU-SFsV4uK3gJar1gQYl7qUpacTE9xTdz2LPchhJId6K4hKGy7jjyyYtwVKSxhpgigFRG0ogWtAx83GvfNKo5_yB5EkDZyLT4dOF6jXLTf6kMRXEIthdSavfu71ik8u5iNR8XocnJ1BM9FHIBIXWbHsL2sV_Qedu3P5e1DfZIO5G-j9N6m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+Error+Prediction+of+Power+Metering+Equipment+Using+Improved+Local+Outlier+Factor+and+Kernel+Support+Vector+Regression&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Ma%2C+Jun&rft.au=Teng%2C+Zhaosheng&rft.au=Tang%2C+Qiu&rft.au=Qiu%2C+Wei&rft.date=2022-09-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=9&rft.spage=9575&rft.epage=9585&rft_id=info:doi/10.1109%2FTIE.2021.3114740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2021_3114740 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |