Measurement Error Prediction of Power Metering Equipment Using Improved Local Outlier Factor and Kernel Support Vector Regression

The measurement error evaluation of power metering equipment (PME) is significant for the instrument design and accurate metering of electric energy, especially under extreme environmental stresses. However, actual measurement error assessment is often disturbed by the environmental noise and insuff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) Jg. 69; H. 9; S. 9575 - 9585
Hauptverfasser: Ma, Jun, Teng, Zhaosheng, Tang, Qiu, Qiu, Wei, Yang, Yingying, Duan, Junfeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0046, 1557-9948
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The measurement error evaluation of power metering equipment (PME) is significant for the instrument design and accurate metering of electric energy, especially under extreme environmental stresses. However, actual measurement error assessment is often disturbed by the environmental noise and insufficient input information. To address this problem, an improved local outlier factor (ILOF) method is first presented to detect potential outliers. And an optimized distance function and adaptive threshold constraint method based on box plot are used to improve the outlier detection performance of ILOF. Next, an error prediction method, namely kernel support vector regression (KSVR), is presented to fuse measurement error and multiple extreme environmental stresses by using the proposed kernel approach. Integrating the ILOF and KSVR, examples from the extreme environmental region demonstrate that the proposed evaluation framework has a higher assessment performance. Compared with several state-of-art prediction methods, our framework has profound outlier identification and error prediction performance under small sample conditions.
AbstractList The measurement error evaluation of power metering equipment (PME) is significant for the instrument design and accurate metering of electric energy, especially under extreme environmental stresses. However, actual measurement error assessment is often disturbed by the environmental noise and insufficient input information. To address this problem, an improved local outlier factor (ILOF) method is first presented to detect potential outliers. And an optimized distance function and adaptive threshold constraint method based on box plot are used to improve the outlier detection performance of ILOF. Next, an error prediction method, namely kernel support vector regression (KSVR), is presented to fuse measurement error and multiple extreme environmental stresses by using the proposed kernel approach. Integrating the ILOF and KSVR, examples from the extreme environmental region demonstrate that the proposed evaluation framework has a higher assessment performance. Compared with several state-of-art prediction methods, our framework has profound outlier identification and error prediction performance under small sample conditions.
Author Teng, Zhaosheng
Tang, Qiu
Yang, Yingying
Ma, Jun
Qiu, Wei
Duan, Junfeng
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-2753-6767
  surname: Ma
  fullname: Ma, Jun
  email: 19090277@hnu.edu.cn
  organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Zhaosheng
  orcidid: 0000-0001-8293-9086
  surname: Teng
  fullname: Teng, Zhaosheng
  email: tengzs@hnu.edu.cn
  organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Qiu
  orcidid: 0000-0001-9935-712X
  surname: Tang
  fullname: Tang, Qiu
  email: tangqiu@hnu.edu.cn
  organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-3348-1659
  surname: Qiu
  fullname: Qiu, Wei
  email: qiuwei@hnu.edu.cn
  organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China
– sequence: 5
  givenname: Yingying
  orcidid: 0000-0003-1813-6574
  surname: Yang
  fullname: Yang, Yingying
  email: yangyingying@hnu.edu.cn
  organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China
– sequence: 6
  givenname: Junfeng
  orcidid: 0000-0003-0521-9872
  surname: Duan
  fullname: Duan, Junfeng
  email: duanjunfeng@hnu.edu.cn
  organization: College of Electrical, and Information Engineering, Hunan University, Changsha, China
BookMark eNp9kEFP3DAQhS1EpS7b3itxscQ523Fir5MjQgtdsQjUQq-RNx4jo2wcxg5Vj_3neFnUQw89jUbz3ryZ74QdD2FAxr4IWAgBzdf79WpRQikWlRBSSzhiM6GULppG1sdsBqWuCwC5_MhOYnwCEFIJNWN_btDEiXCHQ-IrokD8jtD6Lvkw8OD4XfiFxG8wIfnhka-eJz--iR_ivl_vRgovaPkmdKbnt1PqfdZfmi7lVWaw_BppwJ7_mMYxUOI_8W3yHR8JY8whn9gHZ_qIn9_rnD1cru4vvhWb26v1xfmm6CqlU2EVito51SBC_suCdlVdamdBOKkUdrKR4EqxRYE2N7aqrdoqJ922atDoas7ODnvzwc8TxtQ-hYmGHNmWy0yslFpDVsFB1VGIkdC1I_mdod-tgHYPus2g2z3o9h10tiz_sXQ-mT2_RMb3_zOeHoweEf_mNEqVSxDVK4C9juM
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3372012
crossref_primary_10_1109_TII_2023_3306934
crossref_primary_10_1016_j_measurement_2023_113410
crossref_primary_10_1109_JSEN_2023_3307623
crossref_primary_10_1109_TII_2024_3423483
crossref_primary_10_1109_JSEN_2023_3292347
crossref_primary_10_1016_j_cose_2023_103205
crossref_primary_10_1109_ACCESS_2023_3296533
crossref_primary_10_1109_TSG_2025_3542786
crossref_primary_10_1109_TASE_2025_3529881
crossref_primary_10_1002_cjce_24940
crossref_primary_10_3390_agriengineering7030075
crossref_primary_10_1109_TNNLS_2025_3548439
crossref_primary_10_1088_1742_6596_2914_1_012012
crossref_primary_10_1016_j_geoen_2023_212187
crossref_primary_10_1109_JSEN_2024_3485116
crossref_primary_10_1109_TASE_2023_3299185
crossref_primary_10_1088_1361_6501_ac42e6
crossref_primary_10_1007_s11036_023_02212_9
crossref_primary_10_3390_pr11072036
crossref_primary_10_1109_TII_2023_3275699
crossref_primary_10_1016_j_apenergy_2024_124798
crossref_primary_10_1002_ese3_1633
crossref_primary_10_1002_int_22876
crossref_primary_10_1016_j_measurement_2024_114481
crossref_primary_10_1016_j_cie_2025_110985
crossref_primary_10_1177_07316844251353397
crossref_primary_10_1177_01423312241255991
crossref_primary_10_1080_23307706_2024_2394978
Cites_doi 10.1109/TIE.2019.2959492
10.1109/TSG.2018.2818167
10.1109/TIE.2019.2892675
10.1109/CPEM.2016.7540560
10.1109/TPWRS.2017.2767105
10.1109/TII.2019.2915536
10.1145/3381028
10.1109/ICIEA.2019.8834306
10.1109/TII.2020.2981382
10.1109/TII.2015.2414355
10.1109/TII.2020.3025314
10.1109/JBHI.2018.2832599
10.1016/j.jclepro.2019.01.229
10.1016/j.ijepes.2013.11.023
10.1109/TR.2010.2048736
10.1109/TR.2015.2513050
10.1109/TTE.2019.2956350
10.14257/ijca.2015.8.8.17
10.1109/TSG.2018.2805723
10.1109/TIE.2017.2782224
10.1109/TII.2019.2899465
10.1109/TIM.2019.2939932
10.1109/PHM-Chongqing.2018.00089
10.1109/TIE.2016.2623260
10.1109/TR.2017.2785978
10.1016/j.measurement.2019.04.062
10.1109/ACCESS.2019.2932769
10.1109/TSG.2021.3077693
10.1109/TIM.2018.2890052
10.1109/TPWRS.2021.3078770
10.1109/JIOT.2015.2512325
10.1109/SDPC.2017.146
10.1109/TVT.2019.2932605
10.1088/1757-899x/366/1/012065
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2021.3114740
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 9585
ExternalDocumentID 10_1109_TIE_2021_3114740
9552601
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52077067
  funderid: 10.13039/501100001809
– fundername: National Key R, and D Program of China
  grantid: 2019YFF0216800
– fundername: State Grid Corporation of China
  grantid: SGXJYX00ZJJS2100048; 5230HQ19000F
  funderid: 10.13039/501100010880
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c357t-d5e18ff59ee0557d07f3827fd01f455ec4940f21be1edc49d38d5b5f4fb39ea73
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778988400093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:17:36 EDT 2025
Sat Nov 29 01:31:53 EST 2025
Tue Nov 18 22:21:56 EST 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-d5e18ff59ee0557d07f3827fd01f455ec4940f21be1edc49d38d5b5f4fb39ea73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3348-1659
0000-0003-0521-9872
0000-0002-2753-6767
0000-0001-9935-712X
0000-0001-8293-9086
0000-0003-1813-6574
PQID 2647424770
PQPubID 85464
PageCount 11
ParticipantIDs proquest_journals_2647424770
ieee_primary_9552601
crossref_citationtrail_10_1109_TIE_2021_3114740
crossref_primary_10_1109_TIE_2021_3114740
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.1109/TIE.2019.2959492
– ident: ref1
  doi: 10.1109/TSG.2018.2818167
– ident: ref7
  doi: 10.1109/TIE.2019.2892675
– ident: ref16
  doi: 10.1109/CPEM.2016.7540560
– ident: ref19
  doi: 10.1109/TPWRS.2017.2767105
– ident: ref23
  doi: 10.1109/TII.2019.2915536
– ident: ref29
  doi: 10.1145/3381028
– ident: ref12
  doi: 10.1109/ICIEA.2019.8834306
– ident: ref30
  doi: 10.1109/TII.2020.2981382
– ident: ref5
  doi: 10.1109/TII.2015.2414355
– ident: ref31
  doi: 10.1109/TII.2020.3025314
– ident: ref34
  doi: 10.1109/JBHI.2018.2832599
– ident: ref6
  doi: 10.1016/j.jclepro.2019.01.229
– ident: ref32
  doi: 10.1016/j.ijepes.2013.11.023
– ident: ref13
  doi: 10.1109/TR.2010.2048736
– ident: ref8
  doi: 10.1109/TR.2015.2513050
– ident: ref14
  doi: 10.1109/TTE.2019.2956350
– ident: ref28
  doi: 10.14257/ijca.2015.8.8.17
– ident: ref3
  doi: 10.1109/TSG.2018.2805723
– ident: ref25
  doi: 10.1109/TIE.2017.2782224
– ident: ref9
  doi: 10.1109/TII.2019.2899465
– ident: ref18
  doi: 10.1109/TIM.2019.2939932
– ident: ref15
  doi: 10.1109/PHM-Chongqing.2018.00089
– ident: ref20
  doi: 10.1109/TIE.2016.2623260
– ident: ref11
  doi: 10.1109/TR.2017.2785978
– ident: ref10
  doi: 10.1016/j.measurement.2019.04.062
– ident: ref27
  doi: 10.1109/ACCESS.2019.2932769
– ident: ref22
  doi: 10.1109/TSG.2021.3077693
– ident: ref33
  doi: 10.1109/TIM.2018.2890052
– ident: ref4
  doi: 10.1109/TPWRS.2021.3078770
– ident: ref2
  doi: 10.1109/JIOT.2015.2512325
– ident: ref26
  doi: 10.1109/SDPC.2017.146
– ident: ref17
  doi: 10.1109/TVT.2019.2932605
– ident: ref21
  doi: 10.1088/1757-899x/366/1/012065
SSID ssj0014515
Score 2.5385113
Snippet The measurement error evaluation of power metering equipment (PME) is significant for the instrument design and accurate metering of electric energy,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9575
SubjectTerms Background noise
Companies
Data analysis
Degradation
Error analysis
Extreme environmental stresses
improved kernel support vector regression (ILOF)
Kernel
kernel support vector regression (KSVR)
Kernels
Measurement
measurement error assessment
Measurement errors
Metering
Outliers (statistics)
power metering equipment (PME)
Reliability
Stress
Stresses
Support vector machines
Temperature measurement
Title Measurement Error Prediction of Power Metering Equipment Using Improved Local Outlier Factor and Kernel Support Vector Regression
URI https://ieeexplore.ieee.org/document/9552601
https://www.proquest.com/docview/2647424770
Volume 69
WOSCitedRecordID wos000778988400093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9NAFB5q8aAHd7WK3e0u7-BFMHYmmcl0jsvSoqytRarsLaQzb5aFkmra7t3_3HmTtBYUwVsC74XAN8n7_T7G3nja6qVUnqSO-0QKXCYmkyoptTROlmUqShvJJvRsNrq9NfMOe3eYhUHE2HyG7-ky1vLd2u4oVTY04cE5DWs90lo3s1qHioFUDVtBShtjQ9C3L0lyM1x8HIdAMBUhPhVSU5rjyARFTpU_fsTRukxO_u-9Ttmz1ouEqwb256yD1Qv29Gi3YI_9nP7O_sG4rtc1zGuqyhASsPYwJ340mFI7TFCA8Y_dfewdgthFAE22AR18ImsHn3fb4K3WMIn8PFBWDm6wrnAFxAsafHj4FvP_8AXvmtba6iX7Ohkvrj8kLd9CYjOlt4lTKEbeK4NIm7kc1z4bpdo7LrxUCq00kvtULFGgCzcuGzm1VF76ZWaw1Nkr1q3WFb5mYL3iQYh7qUtZCjS5EhqFza3wIYCSfTbcQ1DYdhk5cWKsihiUcFME0AoCrWhB67O3B43vzSKOf8j2CKSDXItPnw32KBftl7opgkOoZSq15md_1zpnT1IaeYh9ZQPW3dY7vGCP7cP2flNfxkP4Cxbg218
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH6UtrDtsHbryrJ27TvsMpgXSZai6FhKQkuTLIxs9GYc6akUitO5ye77zyfJTlrYGOxmw3vG8Ml-v98H8MHHrV5K9TLhmM8kp3lmcqmyUkvjZFkKXtpENqEnk_71tZluwafNLAwRpeYz-hwvUy3fLewqpsq6Jjy4F4e1dpSUgjfTWpuagVQNX4GIO2ND2LcuSjLTnV0OQigoeIhQudQx0fHECCVWlT9-xcm-DPf-78324WXrR-JZA_wr2KLqNbx4sl3wAH6NH_N_OKjrRY3TOtZlIha48DiNDGk4jg0xQQEHP1a3qXsIUx8BNvkGcjiK9g6_rJbBX61xmBh6sKwcXlFd0R1GZtDgxeP3VAHAr3TTNNdWb-DbcDA7v8haxoXM5kovM6eI971Xhiju5nJM-7wvtHeMe6kUWWkk84LPiZMLNy7vOzVXXvp5bqjU-SFsV4uK3gJar1gQYl7qUpacTE9xTdz2LPchhJId6K4hKGy7jjyyYtwVKSxhpgigFRG0ogWtAx83GvfNKo5_yB5EkDZyLT4dOF6jXLTf6kMRXEIthdSavfu71ik8u5iNR8XocnJ1BM9FHIBIXWbHsL2sV_Qedu3P5e1DfZIO5G-j9N6m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+Error+Prediction+of+Power+Metering+Equipment+Using+Improved+Local+Outlier+Factor+and+Kernel+Support+Vector+Regression&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Ma%2C+Jun&rft.au=Teng%2C+Zhaosheng&rft.au=Tang%2C+Qiu&rft.au=Qiu%2C+Wei&rft.date=2022-09-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=69&rft.issue=9&rft.spage=9575&rft.epage=9585&rft_id=info:doi/10.1109%2FTIE.2021.3114740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2021_3114740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon