Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming
Certifying the safety or robustness of neural networks against input uncertainties and adversarial attacks is an emerging challenge in the area of safe machine learning and control. To provide such a guarantee, one must be able to bound the output of neural networks when their input changes within a...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 67; číslo 1; s. 1 - 15 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!