A Motion Planning and Tracking Framework for Autonomous Vehicles Based on Artificial Potential Field Elaborated Resistance Network Approach
This paper presents a novel motion planning and tracking framework for automated vehicles based on artificial potential field (APF) elaborated resistance approach. Motion planning is one of the key parts of autonomous driving, which plans a sequence of movement states to help vehicles drive safely,...
Uloženo v:
| Vydáno v: | IEEE transactions on industrial electronics (1982) Ročník 67; číslo 2; s. 1376 - 1386 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0278-0046, 1557-9948 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a novel motion planning and tracking framework for automated vehicles based on artificial potential field (APF) elaborated resistance approach. Motion planning is one of the key parts of autonomous driving, which plans a sequence of movement states to help vehicles drive safely, comfortably, economically, human-like, etc. In this paper, the APF method is used to assign different potential functions to different obstacles and road boundaries; while the drivable area is meshed and assigned resistance values in each edge based on the potential functions. A local current comparison method is employed to find a collision-free path. As opposed to a path, the vehicle motion or trajectory should be planned spatiotemporally. Therefore, the entire planning process is divided into two spaces, namely the virtual and actual. In the virtual space, the vehicle trajectory is predicted and executed step by step over a short horizon with the current vehicle speed. Then, the predicted trajectory is evaluated to decide if the speed should be kept or changed. Finally, it will be sent to the actual space, where an experimentally validated Carsim model controlled by a model predictive controller is used to track the planned trajectory. Several case studies are presented to demonstrate the effectiveness of the proposed framework. |
|---|---|
| AbstractList | This paper presents a novel motion planning and tracking framework for automated vehicles based on artificial potential field (APF) elaborated resistance approach. Motion planning is one of the key parts of autonomous driving, which plans a sequence of movement states to help vehicles drive safely, comfortably, economically, human-like, etc. In this paper, the APF method is used to assign different potential functions to different obstacles and road boundaries; while the drivable area is meshed and assigned resistance values in each edge based on the potential functions. A local current comparison method is employed to find a collision-free path. As opposed to a path, the vehicle motion or trajectory should be planned spatiotemporally. Therefore, the entire planning process is divided into two spaces, namely the virtual and actual. In the virtual space, the vehicle trajectory is predicted and executed step by step over a short horizon with the current vehicle speed. Then, the predicted trajectory is evaluated to decide if the speed should be kept or changed. Finally, it will be sent to the actual space, where an experimentally validated Carsim model controlled by a model predictive controller is used to track the planned trajectory. Several case studies are presented to demonstrate the effectiveness of the proposed framework. |
| Author | Huang, Yanjun Ding, Haitao Cao, Dongpu Zhang, Yubiao Wang, Hong Hu, Chuan Xu, Nan |
| Author_xml | – sequence: 1 givenname: Yanjun orcidid: 0000-0003-3133-8031 surname: Huang fullname: Huang, Yanjun email: huangyanjun404@gmail.com organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China – sequence: 2 givenname: Haitao orcidid: 0000-0003-2729-2907 surname: Ding fullname: Ding, Haitao email: dinght@jlu.edu.cn organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China – sequence: 3 givenname: Yubiao orcidid: 0000-0002-3843-3384 surname: Zhang fullname: Zhang, Yubiao email: gary.zhang@uwaterloo.ca organization: Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 4 givenname: Hong orcidid: 0000-0002-0279-3767 surname: Wang fullname: Wang, Hong email: wanghongbit@gmail.com organization: Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 5 givenname: Dongpu surname: Cao fullname: Cao, Dongpu email: dongpu.cao@uwaterloo.ca organization: Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 6 givenname: Nan surname: Xu fullname: Xu, Nan email: xu.nan0612@gmail.com organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China – sequence: 7 givenname: Chuan orcidid: 0000-0001-5379-1561 surname: Hu fullname: Hu, Chuan email: chuan.hu.2013@gmail.com organization: Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA |
| BookMark | eNp9kE1vEzEQhq2qSKSBO1IvlnredLze3djHpUqgUoEKBa6riXfcut3Yqe0I8Rv4090lVQ8cOM2M9H5onjN26oMnxj4IWAgB-nJzvVqUIPSiVFrVWp-wmajrZaF1pU7ZDMqlKgCq5i07S-kBQFS1qGfsT8u_hOyC57cDeu_8HUff801E8zgd64g7-hXiI7ch8vaQgw-7cEj8J907M1DiHzFRz8eANmZnnXE48NuQyedpWzsaer4acBsi5lH4nZJLGb0h_pXy3-R2v48Bzf079sbikOj9y5yzH-vV5upzcfPt0_VVe1MYWS9zYYgIjVqClX2loBLC2saStlKrRtpeWmu3TdU3FkvckqJtD9YSINQlViTlnF0cc8fapwOl3D2EQ_RjZVdKACmVrsWoao4qE0NKkWxnXMYJVY7ohk5AN4HvRvDdBL57AT8a4R_jProdxt__s5wfLW787VWumkqCbuQzt7STvw |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_115228 crossref_primary_10_3390_pr12050984 crossref_primary_10_3390_electronics14030494 crossref_primary_10_1109_TITS_2023_3349198 crossref_primary_10_1109_TITS_2023_3277015 crossref_primary_10_1109_TIV_2019_2955901 crossref_primary_10_1016_j_oceaneng_2022_112591 crossref_primary_10_1002_aisy_202300269 crossref_primary_10_1016_j_comcom_2022_08_017 crossref_primary_10_1049_itr2_12460 crossref_primary_10_1109_TITS_2023_3285430 crossref_primary_10_3390_pr10091675 crossref_primary_10_3390_s20133638 crossref_primary_10_1109_ACCESS_2025_3551453 crossref_primary_10_1109_TVT_2023_3270174 crossref_primary_10_1109_TIV_2024_3392895 crossref_primary_10_1109_TMECH_2022_3165845 crossref_primary_10_1109_TSMC_2019_2950468 crossref_primary_10_1109_ACCESS_2021_3062557 crossref_primary_10_1109_TIV_2024_3406908 crossref_primary_10_1177_00202940221106570 crossref_primary_10_1109_TIE_2023_3306405 crossref_primary_10_1109_TVT_2022_3216486 crossref_primary_10_3390_machines10080707 crossref_primary_10_1109_TII_2023_3274224 crossref_primary_10_1007_s10458_021_09499_6 crossref_primary_10_3390_jmse10060827 crossref_primary_10_1007_s42154_022_00187_z crossref_primary_10_1109_TIE_2021_3128885 crossref_primary_10_1007_s13278_025_01487_y crossref_primary_10_1177_09544070231185803 crossref_primary_10_3390_act13090370 crossref_primary_10_3390_s24227292 crossref_primary_10_1109_TIE_2022_3177788 crossref_primary_10_1109_TITS_2022_3230680 crossref_primary_10_3390_su152115377 crossref_primary_10_1002_adc2_125 crossref_primary_10_1049_iet_its_2019_0446 crossref_primary_10_1109_ACCESS_2023_3347399 crossref_primary_10_1016_j_autcon_2025_106334 crossref_primary_10_1017_S0263574721000709 crossref_primary_10_1109_TITS_2022_3152032 crossref_primary_10_1109_TIV_2021_3117840 crossref_primary_10_1109_TIV_2022_3227921 crossref_primary_10_1109_TIV_2023_3274536 crossref_primary_10_3390_electronics9071173 crossref_primary_10_1109_LRA_2022_3152693 crossref_primary_10_1109_TVT_2024_3389054 crossref_primary_10_3390_pr11082473 crossref_primary_10_4271_02_14_02_0013 crossref_primary_10_1002_adc2_137 crossref_primary_10_1109_LRA_2022_3161710 crossref_primary_10_1007_s12239_022_0081_3 crossref_primary_10_3390_app122311982 crossref_primary_10_3390_machines12030173 crossref_primary_10_3390_machines13090800 crossref_primary_10_1007_s11227_022_04395_6 crossref_primary_10_1177_09544070211014319 crossref_primary_10_3390_s25041206 crossref_primary_10_1177_00375497211063380 crossref_primary_10_1109_TITS_2020_3030087 crossref_primary_10_1016_j_rcim_2023_102570 crossref_primary_10_1109_TITS_2022_3226493 crossref_primary_10_1049_itr2_12231 crossref_primary_10_3390_app15094946 crossref_primary_10_1109_ACCESS_2020_3020075 crossref_primary_10_3390_act11040109 crossref_primary_10_1109_TITS_2021_3105518 crossref_primary_10_1177_0142331220979946 crossref_primary_10_1109_TVT_2025_3532643 crossref_primary_10_1109_TITS_2022_3190521 crossref_primary_10_3390_electronics9020233 crossref_primary_10_1109_JSEN_2022_3150073 crossref_primary_10_1109_TIV_2023_3340668 crossref_primary_10_1177_09544070231174652 crossref_primary_10_1016_j_rineng_2025_105936 crossref_primary_10_1049_itr2_12014 crossref_primary_10_3390_s23229180 crossref_primary_10_1049_iet_cta_2020_0122 crossref_primary_10_1109_JIOT_2022_3155697 crossref_primary_10_1109_TNNLS_2025_3556438 crossref_primary_10_2478_pomr_2023_0004 crossref_primary_10_3390_app11219887 crossref_primary_10_1109_ACCESS_2020_3023071 crossref_primary_10_1016_j_trc_2021_103452 crossref_primary_10_1109_ACCESS_2021_3050005 crossref_primary_10_1109_TIV_2024_3391007 crossref_primary_10_1109_TITS_2022_3165155 crossref_primary_10_1080_00423114_2020_1864419 crossref_primary_10_1016_j_isatra_2022_10_020 crossref_primary_10_1016_j_physa_2025_130793 crossref_primary_10_3390_wevj12040192 crossref_primary_10_1049_itr2_12246 crossref_primary_10_1109_TIV_2023_3327715 crossref_primary_10_1016_j_trc_2024_104554 crossref_primary_10_1109_JIOT_2024_3446664 crossref_primary_10_1177_09544070221130553 crossref_primary_10_1007_s11431_022_2179_9 crossref_primary_10_3390_en15051769 crossref_primary_10_3390_electronics13081442 crossref_primary_10_1186_s10033_023_00968_5 crossref_primary_10_1177_09544070221109027 crossref_primary_10_1016_j_robot_2022_104049 crossref_primary_10_1109_TITS_2021_3126876 crossref_primary_10_1038_s41598_022_14255_1 crossref_primary_10_1109_ACCESS_2020_2990199 crossref_primary_10_1049_iet_its_2020_0471 crossref_primary_10_2478_amns_2025_0063 crossref_primary_10_1109_TVT_2020_2976958 crossref_primary_10_1109_LRA_2023_3284354 crossref_primary_10_1109_TSMC_2023_3283021 crossref_primary_10_1002_rnc_6690 crossref_primary_10_1007_s12239_022_0109_8 crossref_primary_10_1109_TASE_2024_3361990 crossref_primary_10_1049_itr2_12161 crossref_primary_10_3390_s25103143 crossref_primary_10_1080_19439962_2024_2329121 crossref_primary_10_1177_09544070221149278 crossref_primary_10_26599_JICV_2023_9210006 crossref_primary_10_1109_TVT_2022_3212982 crossref_primary_10_1109_TVT_2021_3131314 crossref_primary_10_1109_ACCESS_2020_3044909 crossref_primary_10_1016_j_ymssp_2020_106798 crossref_primary_10_1109_LRA_2022_3155239 crossref_primary_10_1109_TSMC_2025_3578828 crossref_primary_10_1186_s10033_021_00590_3 crossref_primary_10_1109_TASE_2020_3010887 crossref_primary_10_1016_j_trc_2024_104899 crossref_primary_10_3390_drones6120402 crossref_primary_10_1049_iet_its_2020_0357 crossref_primary_10_1002_asjc_2778 crossref_primary_10_1016_j_trc_2023_104470 crossref_primary_10_3390_electronics12204296 crossref_primary_10_3390_robotics12030086 crossref_primary_10_1080_23249935_2023_2182143 crossref_primary_10_32604_cmc_2024_055883 crossref_primary_10_1109_TVT_2021_3097203 crossref_primary_10_1016_j_energy_2022_124690 crossref_primary_10_1109_TVT_2020_3034800 crossref_primary_10_1016_j_arcontrol_2022_11_001 crossref_primary_10_1016_j_asoc_2021_108086 crossref_primary_10_1109_ACCESS_2024_3443196 crossref_primary_10_1049_itr2_12180 crossref_primary_10_1109_TITS_2024_3518915 crossref_primary_10_1109_TVT_2020_3031661 crossref_primary_10_1007_s00521_024_10680_7 crossref_primary_10_1007_s12239_024_00076_w crossref_primary_10_1109_TIE_2024_3390738 crossref_primary_10_1177_01423312221141591 crossref_primary_10_3390_jmse11071408 crossref_primary_10_1016_j_eswa_2024_125870 crossref_primary_10_1109_ACCESS_2024_3373695 crossref_primary_10_1186_s10033_024_00991_0 crossref_primary_10_3390_electronics11071110 crossref_primary_10_1109_TIE_2021_3073301 crossref_primary_10_1051_itmconf_20235701002 crossref_primary_10_1109_TIM_2025_3577816 crossref_primary_10_1016_j_dt_2022_04_002 crossref_primary_10_3390_wevj13060097 crossref_primary_10_1109_LRA_2023_3290819 crossref_primary_10_3390_jmse10091266 crossref_primary_10_1007_s11431_022_2273_5 crossref_primary_10_1049_iet_its_2019_0826 crossref_primary_10_1109_TIV_2024_3389640 crossref_primary_10_1109_TVT_2022_3159994 crossref_primary_10_1109_TITS_2023_3298110 crossref_primary_10_1007_s11432_022_3904_9 crossref_primary_10_1109_TIE_2022_3220876 crossref_primary_10_3390_s24010221 crossref_primary_10_1016_j_physa_2024_130323 crossref_primary_10_1016_j_measurement_2024_114844 crossref_primary_10_1109_TIE_2023_3265048 crossref_primary_10_1109_TVT_2022_3152542 crossref_primary_10_3390_su14074020 crossref_primary_10_1109_TIE_2024_3429620 crossref_primary_10_1109_TVT_2024_3368700 crossref_primary_10_1109_TMECH_2022_3224606 crossref_primary_10_1093_tse_tdac068 crossref_primary_10_1109_TITS_2022_3150365 crossref_primary_10_1109_ACCESS_2020_3047385 crossref_primary_10_1177_0361198120933271 crossref_primary_10_3389_fnbot_2023_1234962 crossref_primary_10_1016_j_neucom_2022_06_102 crossref_primary_10_1109_TIV_2024_3444595 crossref_primary_10_1016_j_rcim_2024_102903 crossref_primary_10_3390_wevj15120547 crossref_primary_10_1007_s40815_025_02020_1 crossref_primary_10_1049_itr2_12501 crossref_primary_10_1109_TITS_2023_3320583 crossref_primary_10_1109_MITS_2022_3181172 crossref_primary_10_1109_TITS_2021_3107310 crossref_primary_10_1007_s10586_024_04287_9 crossref_primary_10_3390_jmse11122283 crossref_primary_10_1016_j_eswa_2023_122510 crossref_primary_10_1109_ACCESS_2022_3203451 crossref_primary_10_1002_rob_22057 crossref_primary_10_3390_wevj15030099 crossref_primary_10_1109_TVT_2022_3203083 crossref_primary_10_1109_ACCESS_2023_3294713 crossref_primary_10_1016_j_ymssp_2021_107993 crossref_primary_10_1109_ACCESS_2020_3044055 crossref_primary_10_1007_s11432_019_2983_0 crossref_primary_10_1007_s42154_024_00333_9 crossref_primary_10_1109_TIV_2020_3047858 crossref_primary_10_1109_TIV_2022_3146972 crossref_primary_10_1109_TIV_2023_3337417 crossref_primary_10_1007_s12204_025_2814_8 crossref_primary_10_1016_j_oceaneng_2022_112421 crossref_primary_10_3390_electronics12051236 crossref_primary_10_1007_s40866_023_00190_1 crossref_primary_10_1007_s11465_023_0753_3 crossref_primary_10_1016_j_engappai_2025_111522 crossref_primary_10_1109_TIE_2021_3066943 crossref_primary_10_3390_s25010191 crossref_primary_10_1016_j_trc_2025_105186 crossref_primary_10_3390_app10093180 crossref_primary_10_1016_j_apm_2025_116264 crossref_primary_10_1049_iet_its_2020_0297 crossref_primary_10_1109_LCSYS_2024_3399102 crossref_primary_10_1109_TVT_2020_3046052 crossref_primary_10_1109_TITS_2022_3229699 crossref_primary_10_1088_1742_6596_2383_1_012091 crossref_primary_10_1177_0954407020938490 crossref_primary_10_1007_s10409_023_23304_x crossref_primary_10_1177_09544070241264366 crossref_primary_10_1016_j_apm_2023_09_012 crossref_primary_10_1109_TIE_2022_3148753 crossref_primary_10_1016_j_aap_2025_107961 crossref_primary_10_1109_TVT_2022_3170440 crossref_primary_10_1177_09544070241239992 crossref_primary_10_1109_TVT_2024_3521508 crossref_primary_10_1007_s12239_023_0102_x crossref_primary_10_1109_TIE_2023_3322016 crossref_primary_10_1016_j_oceaneng_2023_116627 crossref_primary_10_1109_TSMC_2024_3412172 crossref_primary_10_1016_j_apm_2023_05_035 crossref_primary_10_1109_ACCESS_2024_3443869 crossref_primary_10_1109_TIV_2021_3123341 crossref_primary_10_1145_3469086 crossref_primary_10_3390_s25113447 crossref_primary_10_1109_TII_2020_3024946 crossref_primary_10_3390_jmse9121324 crossref_primary_10_1109_TVT_2024_3490617 crossref_primary_10_1109_TIE_2025_3528507 crossref_primary_10_1109_TCYB_2021_3070385 crossref_primary_10_1109_TIE_2023_3269462 crossref_primary_10_1109_TMECH_2023_3327785 crossref_primary_10_1109_TTE_2023_3269602 crossref_primary_10_1016_j_oceaneng_2020_108102 crossref_primary_10_1177_0954407020969992 crossref_primary_10_3390_machines10080600 |
| Cites_doi | 10.1109/TIE.2016.2573240 10.1109/IVS.2017.7995713 10.1109/TITS.2016.2604240 10.1016/j.conengprac.2016.06.005 10.1109/TITS.2015.2426211 10.1016/j.conengprac.2011.01.008 10.1109/ICRA.2011.5980223 10.1109/TIV.2016.2578706 10.1016/j.jpowsour.2016.11.106 10.1109/TVT.2012.2186991 10.1109/TITS.2015.2389215 10.1109/TMECH.2016.2631897 10.1016/j.conengprac.2013.11.012 10.1109/MWSCAS.1991.252085 10.1016/j.ymssp.2017.07.019 10.1109/IROS.2009.5354448 10.1016/j.mechatronics.2017.04.001 10.1177/0278364909340445 10.1109/CICT.2015.145 10.1049/ip-vis:19941325 10.1080/00423114.2017.1420205 10.1007/978-1-4614-1433-9 10.1016/j.ymssp.2018.06.024 10.1016/j.ymssp.2015.10.021 10.1007/BF01212361 10.1109/TTE.2016.2538183 10.1609/aimag.v30i2.2238 10.1504/IJVAS.2005.008237 10.1109/ICCSN.2011.6014330 10.1080/00423114.2017.1387277 10.1109/TITS.2015.2498841 10.1109/IVS.2013.6629524 10.1002/rnc.1245 10.1098/rsta.2010.0110 10.1109/TMECH.2016.2612689 10.1109/TVT.2016.2555853 10.1109/TCST.2018.2789440 10.1109/TMECH.2018.2812220 10.1109/TCST.2013.2278237 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2019.2898599 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 1386 |
| ExternalDocumentID | 10_1109_TIE_2019_2898599 8643096 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1864206 funderid: 10.13039/501100001809 – fundername: Foundation of State Key Laboratory of Automotive Simulation and Control grantid: 20170103 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c357t-ceeeac870f3d480411ff6fe9f39863fd3fffb64d6fa2abe8ebd0ffe0a052a4e33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 309 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490873600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:19:00 EDT 2025 Sat Nov 29 01:31:43 EST 2025 Tue Nov 18 22:26:23 EST 2025 Wed Aug 27 02:40:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-ceeeac870f3d480411ff6fe9f39863fd3fffb64d6fa2abe8ebd0ffe0a052a4e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3133-8031 0000-0002-0279-3767 0000-0002-3843-3384 0000-0003-2729-2907 0000-0001-5379-1561 |
| PQID | 2300338951 |
| PQPubID | 85464 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIE_2019_2898599 ieee_primary_8643096 proquest_journals_2300338951 crossref_primary_10_1109_TIE_2019_2898599 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 xu (ref23) 0 ref10 ref2 (ref7) 2014 ref1 ref39 ref17 ref38 lemos (ref32) 2016; 21 ref16 ref19 ref18 rossiter (ref46) 2003 liu (ref33) 0; 2 ref24 ref45 ref26 ref47 ref25 ref20 ref42 ref41 ref22 ref44 (ref43) 2017 (ref13) 0 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 ref40 bojarski (ref21) 2016 |
| References_xml | – start-page: 445 year: 0 ident: ref13 article-title: Local path planning in a complex environment for self-driving car publication-title: Proc 4th Annu IEEE Int Conf Cyber Technol Autom Control Intell – ident: ref31 doi: 10.1109/TIE.2016.2573240 – ident: ref22 doi: 10.1109/IVS.2017.7995713 – ident: ref24 doi: 10.1109/TITS.2016.2604240 – ident: ref41 doi: 10.1016/j.conengprac.2016.06.005 – ident: ref28 doi: 10.1109/TITS.2015.2426211 – ident: ref29 doi: 10.1016/j.conengprac.2011.01.008 – volume: 21 start-page: 188 year: 2016 ident: ref32 article-title: Local and global path generation for autonomous vehicles using splines publication-title: Ingeniería – ident: ref17 doi: 10.1109/ICRA.2011.5980223 – ident: ref6 doi: 10.1109/TIV.2016.2578706 – ident: ref44 doi: 10.1016/j.jpowsour.2016.11.106 – year: 2017 ident: ref43 publication-title: Predictive Control for Linear and Hybrid Systems – ident: ref25 doi: 10.1109/TVT.2012.2186991 – ident: ref15 doi: 10.1109/TITS.2015.2389215 – ident: ref45 doi: 10.1109/TMECH.2016.2631897 – volume: 2 start-page: 9109 year: 0 ident: ref33 article-title: Robot path planning in impedance networks publication-title: Proc 6th World Congr Intell Control Autom – ident: ref9 doi: 10.1016/j.conengprac.2013.11.012 – ident: ref35 doi: 10.1109/MWSCAS.1991.252085 – ident: ref12 doi: 10.1016/j.ymssp.2017.07.019 – ident: ref16 doi: 10.1109/IROS.2009.5354448 – ident: ref47 doi: 10.1016/j.mechatronics.2017.04.001 – ident: ref14 doi: 10.1177/0278364909340445 – ident: ref19 doi: 10.1109/CICT.2015.145 – ident: ref34 doi: 10.1049/ip-vis:19941325 – year: 2016 ident: ref21 article-title: End to end learning for self-driving cars – ident: ref40 doi: 10.1080/00423114.2017.1420205 – start-page: 2061 year: 0 ident: ref23 article-title: A real-time motion planner with trajectory optimization for autonomous vehicles publication-title: Proc IEEE Int Conf Robot Autom – year: 2003 ident: ref46 publication-title: Model-Based Predictive Control A Practical Approach – ident: ref36 doi: 10.1007/978-1-4614-1433-9 – ident: ref37 doi: 10.1016/j.ymssp.2018.06.024 – ident: ref11 doi: 10.1016/j.ymssp.2015.10.021 – ident: ref1 doi: 10.1007/BF01212361 – ident: ref30 doi: 10.1109/TTE.2016.2538183 – ident: ref5 doi: 10.1609/aimag.v30i2.2238 – ident: ref42 doi: 10.1504/IJVAS.2005.008237 – ident: ref20 doi: 10.1109/ICCSN.2011.6014330 – ident: ref39 doi: 10.1080/00423114.2017.1387277 – ident: ref10 doi: 10.1109/TITS.2015.2498841 – ident: ref18 doi: 10.1109/IVS.2013.6629524 – ident: ref26 doi: 10.1002/rnc.1245 – ident: ref4 doi: 10.1098/rsta.2010.0110 – ident: ref3 doi: 10.1109/TMECH.2016.2612689 – ident: ref27 doi: 10.1109/TVT.2016.2555853 – ident: ref2 doi: 10.1109/TCST.2018.2789440 – ident: ref38 doi: 10.1109/TMECH.2018.2812220 – ident: ref8 doi: 10.1109/TCST.2013.2278237 – year: 2014 ident: ref7 |
| SSID | ssj0014515 |
| Score | 2.6852744 |
| Snippet | This paper presents a novel motion planning and tracking framework for automated vehicles based on artificial potential field (APF) elaborated resistance... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1376 |
| SubjectTerms | Automotive parts Autonomous vehicle Autonomous vehicles Collision avoidance Heuristic algorithms Human motion Local current model predictive controller Motion planning Motional resistance obstacle avoidance Planning Potential fields Predictive control Resistance resistance network Roads Tracking Traffic speed Trajectory Trajectory analysis Vehicles |
| Title | A Motion Planning and Tracking Framework for Autonomous Vehicles Based on Artificial Potential Field Elaborated Resistance Network Approach |
| URI | https://ieeexplore.ieee.org/document/8643096 https://www.proquest.com/docview/2300338951 |
| Volume | 67 |
| WOSCitedRecordID | wos000490873600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3H9IgcvgnXTNm2S4yq76MFlkVW8lW4zQUF2Zbfrn_BPO0nbVVAEbzkkTeFNMjPJyxuAM_IBIhRhHozcahKGi0ArrgOMbIIhV6iV9cUmZL-vnp70YAkuFm9hENGTz_DSNf1dvpkUc3dU1lbkPinkXoZlKWX1VmtxYyCSqlpB5BRjKelrriS5bg9vu47DpS8puVCJV3n9ckG-psqPjdh7l97m__5rCzbqKJJ1Kti3YQnHO7D-TVtwFz467M5X6GFNXSKWjw0j31S403HWa1hZjMJW1pmX7nXDZD5jj_jsqXLsihycYfQBN00lNMEGk9LRi6jVc9Q31q2NiDre48zFomRErF9xy1mnFizfg4ded3h9E9SVF4IiTmQZkOekDZmWso2NcApFobWpRW1jrdLYmthaO0qFSW0e5SNUODLcWuQ5T6JcYBzvw8p4MsYDYEVsk6SQ0gotKBkzSsrUJCINMaIJItmCdgNGVtSy5K46xmvm0xOuM4Ivc_BlNXwtOF-MeKskOf7ou-vgWvSrkWrBcYN3Vq_ZWUbJGKeEnULOw99HHcFa5LJtz9k-hpVyOscTWC3ey5fZ9NSb4ycP_t87 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4xhjR42GCAKHTDD7wgLdRJ7MR-7KZWoLVVhQriLUrjs0BCLWpT_sT-9M5OUpBAk_bmBzuO9J19d_bn7wDOyAeIUIR5MHWrSRguAq24DjCyEkOuUCvri02ko5G6u9PjDfixfguDiJ58hheu6e_yzbxYuaOyjiL3SSH3B_gohYjC6rXW-s5AyKpeQeQ0Yyntay4lue5MrnqOxaUvKL1Q0uu8vjghX1XlzVbs_Uv_y__92S58ruNI1q2A34MNnH2FnVfqgvvwp8uGvkYPayoTsXxmGHmnwp2Ps37Dy2IUuLLuqnTvG-arJbvFe0-WYz_JxRlGH3DTVFITbDwvHcGIWn1HfmO92oyo4zUuXTRKZsRGFbucdWvJ8gO46fcmvy6DuvZCUMQyLQPynbQl02K2sRFOoyi0NrGobaxVElsTW2uniTCJzaN8igqnhluLPOcyygXG8SFszuYzPAJWxFbKIk2t0ILSMaPSNDFSJCFGNEGUtqDTgJEVtTC5q4_xmPkEheuM4MscfFkNXwvO1yOeKlGOf_Tdd3Ct-9VItaDd4J3Vq3aZUTrGKWWnoPP4_VGn8OlyMhxkg6vR7xPYjlzu7RncbdgsFyv8BlvFc_mwXHz3pvkXzojigg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Motion+Planning+and+Tracking+Framework+for+Autonomous+Vehicles+Based+on+Artificial+Potential+Field+Elaborated+Resistance+Network+Approach&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Huang%2C+Yanjun&rft.au=Ding%2C+Haitao&rft.au=Zhang%2C+Yubiao&rft.au=Wang%2C+Hong&rft.date=2020-02-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=67&rft.issue=2&rft.spage=1376&rft.epage=1386&rft_id=info:doi/10.1109%2FTIE.2019.2898599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2019_2898599 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |