A Motion Planning and Tracking Framework for Autonomous Vehicles Based on Artificial Potential Field Elaborated Resistance Network Approach

This paper presents a novel motion planning and tracking framework for automated vehicles based on artificial potential field (APF) elaborated resistance approach. Motion planning is one of the key parts of autonomous driving, which plans a sequence of movement states to help vehicles drive safely,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial electronics (1982) Ročník 67; číslo 2; s. 1376 - 1386
Hlavní autoři: Huang, Yanjun, Ding, Haitao, Zhang, Yubiao, Wang, Hong, Cao, Dongpu, Xu, Nan, Hu, Chuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0046, 1557-9948
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a novel motion planning and tracking framework for automated vehicles based on artificial potential field (APF) elaborated resistance approach. Motion planning is one of the key parts of autonomous driving, which plans a sequence of movement states to help vehicles drive safely, comfortably, economically, human-like, etc. In this paper, the APF method is used to assign different potential functions to different obstacles and road boundaries; while the drivable area is meshed and assigned resistance values in each edge based on the potential functions. A local current comparison method is employed to find a collision-free path. As opposed to a path, the vehicle motion or trajectory should be planned spatiotemporally. Therefore, the entire planning process is divided into two spaces, namely the virtual and actual. In the virtual space, the vehicle trajectory is predicted and executed step by step over a short horizon with the current vehicle speed. Then, the predicted trajectory is evaluated to decide if the speed should be kept or changed. Finally, it will be sent to the actual space, where an experimentally validated Carsim model controlled by a model predictive controller is used to track the planned trajectory. Several case studies are presented to demonstrate the effectiveness of the proposed framework.
AbstractList This paper presents a novel motion planning and tracking framework for automated vehicles based on artificial potential field (APF) elaborated resistance approach. Motion planning is one of the key parts of autonomous driving, which plans a sequence of movement states to help vehicles drive safely, comfortably, economically, human-like, etc. In this paper, the APF method is used to assign different potential functions to different obstacles and road boundaries; while the drivable area is meshed and assigned resistance values in each edge based on the potential functions. A local current comparison method is employed to find a collision-free path. As opposed to a path, the vehicle motion or trajectory should be planned spatiotemporally. Therefore, the entire planning process is divided into two spaces, namely the virtual and actual. In the virtual space, the vehicle trajectory is predicted and executed step by step over a short horizon with the current vehicle speed. Then, the predicted trajectory is evaluated to decide if the speed should be kept or changed. Finally, it will be sent to the actual space, where an experimentally validated Carsim model controlled by a model predictive controller is used to track the planned trajectory. Several case studies are presented to demonstrate the effectiveness of the proposed framework.
Author Huang, Yanjun
Ding, Haitao
Cao, Dongpu
Zhang, Yubiao
Wang, Hong
Hu, Chuan
Xu, Nan
Author_xml – sequence: 1
  givenname: Yanjun
  orcidid: 0000-0003-3133-8031
  surname: Huang
  fullname: Huang, Yanjun
  email: huangyanjun404@gmail.com
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
– sequence: 2
  givenname: Haitao
  orcidid: 0000-0003-2729-2907
  surname: Ding
  fullname: Ding, Haitao
  email: dinght@jlu.edu.cn
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
– sequence: 3
  givenname: Yubiao
  orcidid: 0000-0002-3843-3384
  surname: Zhang
  fullname: Zhang, Yubiao
  email: gary.zhang@uwaterloo.ca
  organization: Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 4
  givenname: Hong
  orcidid: 0000-0002-0279-3767
  surname: Wang
  fullname: Wang, Hong
  email: wanghongbit@gmail.com
  organization: Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 5
  givenname: Dongpu
  surname: Cao
  fullname: Cao, Dongpu
  email: dongpu.cao@uwaterloo.ca
  organization: Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 6
  givenname: Nan
  surname: Xu
  fullname: Xu, Nan
  email: xu.nan0612@gmail.com
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
– sequence: 7
  givenname: Chuan
  orcidid: 0000-0001-5379-1561
  surname: Hu
  fullname: Hu, Chuan
  email: chuan.hu.2013@gmail.com
  organization: Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
BookMark eNp9kE1vEzEQhq2qSKSBO1IvlnredLze3djHpUqgUoEKBa6riXfcut3Yqe0I8Rv4090lVQ8cOM2M9H5onjN26oMnxj4IWAgB-nJzvVqUIPSiVFrVWp-wmajrZaF1pU7ZDMqlKgCq5i07S-kBQFS1qGfsT8u_hOyC57cDeu_8HUff801E8zgd64g7-hXiI7ch8vaQgw-7cEj8J907M1DiHzFRz8eANmZnnXE48NuQyedpWzsaer4acBsi5lH4nZJLGb0h_pXy3-R2v48Bzf079sbikOj9y5yzH-vV5upzcfPt0_VVe1MYWS9zYYgIjVqClX2loBLC2saStlKrRtpeWmu3TdU3FkvckqJtD9YSINQlViTlnF0cc8fapwOl3D2EQ_RjZVdKACmVrsWoao4qE0NKkWxnXMYJVY7ohk5AN4HvRvDdBL57AT8a4R_jProdxt__s5wfLW787VWumkqCbuQzt7STvw
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_115228
crossref_primary_10_3390_pr12050984
crossref_primary_10_3390_electronics14030494
crossref_primary_10_1109_TITS_2023_3349198
crossref_primary_10_1109_TITS_2023_3277015
crossref_primary_10_1109_TIV_2019_2955901
crossref_primary_10_1016_j_oceaneng_2022_112591
crossref_primary_10_1002_aisy_202300269
crossref_primary_10_1016_j_comcom_2022_08_017
crossref_primary_10_1049_itr2_12460
crossref_primary_10_1109_TITS_2023_3285430
crossref_primary_10_3390_pr10091675
crossref_primary_10_3390_s20133638
crossref_primary_10_1109_ACCESS_2025_3551453
crossref_primary_10_1109_TVT_2023_3270174
crossref_primary_10_1109_TIV_2024_3392895
crossref_primary_10_1109_TMECH_2022_3165845
crossref_primary_10_1109_TSMC_2019_2950468
crossref_primary_10_1109_ACCESS_2021_3062557
crossref_primary_10_1109_TIV_2024_3406908
crossref_primary_10_1177_00202940221106570
crossref_primary_10_1109_TIE_2023_3306405
crossref_primary_10_1109_TVT_2022_3216486
crossref_primary_10_3390_machines10080707
crossref_primary_10_1109_TII_2023_3274224
crossref_primary_10_1007_s10458_021_09499_6
crossref_primary_10_3390_jmse10060827
crossref_primary_10_1007_s42154_022_00187_z
crossref_primary_10_1109_TIE_2021_3128885
crossref_primary_10_1007_s13278_025_01487_y
crossref_primary_10_1177_09544070231185803
crossref_primary_10_3390_act13090370
crossref_primary_10_3390_s24227292
crossref_primary_10_1109_TIE_2022_3177788
crossref_primary_10_1109_TITS_2022_3230680
crossref_primary_10_3390_su152115377
crossref_primary_10_1002_adc2_125
crossref_primary_10_1049_iet_its_2019_0446
crossref_primary_10_1109_ACCESS_2023_3347399
crossref_primary_10_1016_j_autcon_2025_106334
crossref_primary_10_1017_S0263574721000709
crossref_primary_10_1109_TITS_2022_3152032
crossref_primary_10_1109_TIV_2021_3117840
crossref_primary_10_1109_TIV_2022_3227921
crossref_primary_10_1109_TIV_2023_3274536
crossref_primary_10_3390_electronics9071173
crossref_primary_10_1109_LRA_2022_3152693
crossref_primary_10_1109_TVT_2024_3389054
crossref_primary_10_3390_pr11082473
crossref_primary_10_4271_02_14_02_0013
crossref_primary_10_1002_adc2_137
crossref_primary_10_1109_LRA_2022_3161710
crossref_primary_10_1007_s12239_022_0081_3
crossref_primary_10_3390_app122311982
crossref_primary_10_3390_machines12030173
crossref_primary_10_3390_machines13090800
crossref_primary_10_1007_s11227_022_04395_6
crossref_primary_10_1177_09544070211014319
crossref_primary_10_3390_s25041206
crossref_primary_10_1177_00375497211063380
crossref_primary_10_1109_TITS_2020_3030087
crossref_primary_10_1016_j_rcim_2023_102570
crossref_primary_10_1109_TITS_2022_3226493
crossref_primary_10_1049_itr2_12231
crossref_primary_10_3390_app15094946
crossref_primary_10_1109_ACCESS_2020_3020075
crossref_primary_10_3390_act11040109
crossref_primary_10_1109_TITS_2021_3105518
crossref_primary_10_1177_0142331220979946
crossref_primary_10_1109_TVT_2025_3532643
crossref_primary_10_1109_TITS_2022_3190521
crossref_primary_10_3390_electronics9020233
crossref_primary_10_1109_JSEN_2022_3150073
crossref_primary_10_1109_TIV_2023_3340668
crossref_primary_10_1177_09544070231174652
crossref_primary_10_1016_j_rineng_2025_105936
crossref_primary_10_1049_itr2_12014
crossref_primary_10_3390_s23229180
crossref_primary_10_1049_iet_cta_2020_0122
crossref_primary_10_1109_JIOT_2022_3155697
crossref_primary_10_1109_TNNLS_2025_3556438
crossref_primary_10_2478_pomr_2023_0004
crossref_primary_10_3390_app11219887
crossref_primary_10_1109_ACCESS_2020_3023071
crossref_primary_10_1016_j_trc_2021_103452
crossref_primary_10_1109_ACCESS_2021_3050005
crossref_primary_10_1109_TIV_2024_3391007
crossref_primary_10_1109_TITS_2022_3165155
crossref_primary_10_1080_00423114_2020_1864419
crossref_primary_10_1016_j_isatra_2022_10_020
crossref_primary_10_1016_j_physa_2025_130793
crossref_primary_10_3390_wevj12040192
crossref_primary_10_1049_itr2_12246
crossref_primary_10_1109_TIV_2023_3327715
crossref_primary_10_1016_j_trc_2024_104554
crossref_primary_10_1109_JIOT_2024_3446664
crossref_primary_10_1177_09544070221130553
crossref_primary_10_1007_s11431_022_2179_9
crossref_primary_10_3390_en15051769
crossref_primary_10_3390_electronics13081442
crossref_primary_10_1186_s10033_023_00968_5
crossref_primary_10_1177_09544070221109027
crossref_primary_10_1016_j_robot_2022_104049
crossref_primary_10_1109_TITS_2021_3126876
crossref_primary_10_1038_s41598_022_14255_1
crossref_primary_10_1109_ACCESS_2020_2990199
crossref_primary_10_1049_iet_its_2020_0471
crossref_primary_10_2478_amns_2025_0063
crossref_primary_10_1109_TVT_2020_2976958
crossref_primary_10_1109_LRA_2023_3284354
crossref_primary_10_1109_TSMC_2023_3283021
crossref_primary_10_1002_rnc_6690
crossref_primary_10_1007_s12239_022_0109_8
crossref_primary_10_1109_TASE_2024_3361990
crossref_primary_10_1049_itr2_12161
crossref_primary_10_3390_s25103143
crossref_primary_10_1080_19439962_2024_2329121
crossref_primary_10_1177_09544070221149278
crossref_primary_10_26599_JICV_2023_9210006
crossref_primary_10_1109_TVT_2022_3212982
crossref_primary_10_1109_TVT_2021_3131314
crossref_primary_10_1109_ACCESS_2020_3044909
crossref_primary_10_1016_j_ymssp_2020_106798
crossref_primary_10_1109_LRA_2022_3155239
crossref_primary_10_1109_TSMC_2025_3578828
crossref_primary_10_1186_s10033_021_00590_3
crossref_primary_10_1109_TASE_2020_3010887
crossref_primary_10_1016_j_trc_2024_104899
crossref_primary_10_3390_drones6120402
crossref_primary_10_1049_iet_its_2020_0357
crossref_primary_10_1002_asjc_2778
crossref_primary_10_1016_j_trc_2023_104470
crossref_primary_10_3390_electronics12204296
crossref_primary_10_3390_robotics12030086
crossref_primary_10_1080_23249935_2023_2182143
crossref_primary_10_32604_cmc_2024_055883
crossref_primary_10_1109_TVT_2021_3097203
crossref_primary_10_1016_j_energy_2022_124690
crossref_primary_10_1109_TVT_2020_3034800
crossref_primary_10_1016_j_arcontrol_2022_11_001
crossref_primary_10_1016_j_asoc_2021_108086
crossref_primary_10_1109_ACCESS_2024_3443196
crossref_primary_10_1049_itr2_12180
crossref_primary_10_1109_TITS_2024_3518915
crossref_primary_10_1109_TVT_2020_3031661
crossref_primary_10_1007_s00521_024_10680_7
crossref_primary_10_1007_s12239_024_00076_w
crossref_primary_10_1109_TIE_2024_3390738
crossref_primary_10_1177_01423312221141591
crossref_primary_10_3390_jmse11071408
crossref_primary_10_1016_j_eswa_2024_125870
crossref_primary_10_1109_ACCESS_2024_3373695
crossref_primary_10_1186_s10033_024_00991_0
crossref_primary_10_3390_electronics11071110
crossref_primary_10_1109_TIE_2021_3073301
crossref_primary_10_1051_itmconf_20235701002
crossref_primary_10_1109_TIM_2025_3577816
crossref_primary_10_1016_j_dt_2022_04_002
crossref_primary_10_3390_wevj13060097
crossref_primary_10_1109_LRA_2023_3290819
crossref_primary_10_3390_jmse10091266
crossref_primary_10_1007_s11431_022_2273_5
crossref_primary_10_1049_iet_its_2019_0826
crossref_primary_10_1109_TIV_2024_3389640
crossref_primary_10_1109_TVT_2022_3159994
crossref_primary_10_1109_TITS_2023_3298110
crossref_primary_10_1007_s11432_022_3904_9
crossref_primary_10_1109_TIE_2022_3220876
crossref_primary_10_3390_s24010221
crossref_primary_10_1016_j_physa_2024_130323
crossref_primary_10_1016_j_measurement_2024_114844
crossref_primary_10_1109_TIE_2023_3265048
crossref_primary_10_1109_TVT_2022_3152542
crossref_primary_10_3390_su14074020
crossref_primary_10_1109_TIE_2024_3429620
crossref_primary_10_1109_TVT_2024_3368700
crossref_primary_10_1109_TMECH_2022_3224606
crossref_primary_10_1093_tse_tdac068
crossref_primary_10_1109_TITS_2022_3150365
crossref_primary_10_1109_ACCESS_2020_3047385
crossref_primary_10_1177_0361198120933271
crossref_primary_10_3389_fnbot_2023_1234962
crossref_primary_10_1016_j_neucom_2022_06_102
crossref_primary_10_1109_TIV_2024_3444595
crossref_primary_10_1016_j_rcim_2024_102903
crossref_primary_10_3390_wevj15120547
crossref_primary_10_1007_s40815_025_02020_1
crossref_primary_10_1049_itr2_12501
crossref_primary_10_1109_TITS_2023_3320583
crossref_primary_10_1109_MITS_2022_3181172
crossref_primary_10_1109_TITS_2021_3107310
crossref_primary_10_1007_s10586_024_04287_9
crossref_primary_10_3390_jmse11122283
crossref_primary_10_1016_j_eswa_2023_122510
crossref_primary_10_1109_ACCESS_2022_3203451
crossref_primary_10_1002_rob_22057
crossref_primary_10_3390_wevj15030099
crossref_primary_10_1109_TVT_2022_3203083
crossref_primary_10_1109_ACCESS_2023_3294713
crossref_primary_10_1016_j_ymssp_2021_107993
crossref_primary_10_1109_ACCESS_2020_3044055
crossref_primary_10_1007_s11432_019_2983_0
crossref_primary_10_1007_s42154_024_00333_9
crossref_primary_10_1109_TIV_2020_3047858
crossref_primary_10_1109_TIV_2022_3146972
crossref_primary_10_1109_TIV_2023_3337417
crossref_primary_10_1007_s12204_025_2814_8
crossref_primary_10_1016_j_oceaneng_2022_112421
crossref_primary_10_3390_electronics12051236
crossref_primary_10_1007_s40866_023_00190_1
crossref_primary_10_1007_s11465_023_0753_3
crossref_primary_10_1016_j_engappai_2025_111522
crossref_primary_10_1109_TIE_2021_3066943
crossref_primary_10_3390_s25010191
crossref_primary_10_1016_j_trc_2025_105186
crossref_primary_10_3390_app10093180
crossref_primary_10_1016_j_apm_2025_116264
crossref_primary_10_1049_iet_its_2020_0297
crossref_primary_10_1109_LCSYS_2024_3399102
crossref_primary_10_1109_TVT_2020_3046052
crossref_primary_10_1109_TITS_2022_3229699
crossref_primary_10_1088_1742_6596_2383_1_012091
crossref_primary_10_1177_0954407020938490
crossref_primary_10_1007_s10409_023_23304_x
crossref_primary_10_1177_09544070241264366
crossref_primary_10_1016_j_apm_2023_09_012
crossref_primary_10_1109_TIE_2022_3148753
crossref_primary_10_1016_j_aap_2025_107961
crossref_primary_10_1109_TVT_2022_3170440
crossref_primary_10_1177_09544070241239992
crossref_primary_10_1109_TVT_2024_3521508
crossref_primary_10_1007_s12239_023_0102_x
crossref_primary_10_1109_TIE_2023_3322016
crossref_primary_10_1016_j_oceaneng_2023_116627
crossref_primary_10_1109_TSMC_2024_3412172
crossref_primary_10_1016_j_apm_2023_05_035
crossref_primary_10_1109_ACCESS_2024_3443869
crossref_primary_10_1109_TIV_2021_3123341
crossref_primary_10_1145_3469086
crossref_primary_10_3390_s25113447
crossref_primary_10_1109_TII_2020_3024946
crossref_primary_10_3390_jmse9121324
crossref_primary_10_1109_TVT_2024_3490617
crossref_primary_10_1109_TIE_2025_3528507
crossref_primary_10_1109_TCYB_2021_3070385
crossref_primary_10_1109_TIE_2023_3269462
crossref_primary_10_1109_TMECH_2023_3327785
crossref_primary_10_1109_TTE_2023_3269602
crossref_primary_10_1016_j_oceaneng_2020_108102
crossref_primary_10_1177_0954407020969992
crossref_primary_10_3390_machines10080600
Cites_doi 10.1109/TIE.2016.2573240
10.1109/IVS.2017.7995713
10.1109/TITS.2016.2604240
10.1016/j.conengprac.2016.06.005
10.1109/TITS.2015.2426211
10.1016/j.conengprac.2011.01.008
10.1109/ICRA.2011.5980223
10.1109/TIV.2016.2578706
10.1016/j.jpowsour.2016.11.106
10.1109/TVT.2012.2186991
10.1109/TITS.2015.2389215
10.1109/TMECH.2016.2631897
10.1016/j.conengprac.2013.11.012
10.1109/MWSCAS.1991.252085
10.1016/j.ymssp.2017.07.019
10.1109/IROS.2009.5354448
10.1016/j.mechatronics.2017.04.001
10.1177/0278364909340445
10.1109/CICT.2015.145
10.1049/ip-vis:19941325
10.1080/00423114.2017.1420205
10.1007/978-1-4614-1433-9
10.1016/j.ymssp.2018.06.024
10.1016/j.ymssp.2015.10.021
10.1007/BF01212361
10.1109/TTE.2016.2538183
10.1609/aimag.v30i2.2238
10.1504/IJVAS.2005.008237
10.1109/ICCSN.2011.6014330
10.1080/00423114.2017.1387277
10.1109/TITS.2015.2498841
10.1109/IVS.2013.6629524
10.1002/rnc.1245
10.1098/rsta.2010.0110
10.1109/TMECH.2016.2612689
10.1109/TVT.2016.2555853
10.1109/TCST.2018.2789440
10.1109/TMECH.2018.2812220
10.1109/TCST.2013.2278237
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2019.2898599
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 1386
ExternalDocumentID 10_1109_TIE_2019_2898599
8643096
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1864206
  funderid: 10.13039/501100001809
– fundername: Foundation of State Key Laboratory of Automotive Simulation and Control
  grantid: 20170103
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c357t-ceeeac870f3d480411ff6fe9f39863fd3fffb64d6fa2abe8ebd0ffe0a052a4e33
IEDL.DBID RIE
ISICitedReferencesCount 309
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490873600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:19:00 EDT 2025
Sat Nov 29 01:31:43 EST 2025
Tue Nov 18 22:26:23 EST 2025
Wed Aug 27 02:40:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-ceeeac870f3d480411ff6fe9f39863fd3fffb64d6fa2abe8ebd0ffe0a052a4e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3133-8031
0000-0002-0279-3767
0000-0002-3843-3384
0000-0003-2729-2907
0000-0001-5379-1561
PQID 2300338951
PQPubID 85464
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIE_2019_2898599
ieee_primary_8643096
proquest_journals_2300338951
crossref_primary_10_1109_TIE_2019_2898599
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
xu (ref23) 0
ref10
ref2
(ref7) 2014
ref1
ref39
ref17
ref38
lemos (ref32) 2016; 21
ref16
ref19
ref18
rossiter (ref46) 2003
liu (ref33) 0; 2
ref24
ref45
ref26
ref47
ref25
ref20
ref42
ref41
ref22
ref44
(ref43) 2017
(ref13) 0
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
ref40
bojarski (ref21) 2016
References_xml – start-page: 445
  year: 0
  ident: ref13
  article-title: Local path planning in a complex environment for self-driving car
  publication-title: Proc 4th Annu IEEE Int Conf Cyber Technol Autom Control Intell
– ident: ref31
  doi: 10.1109/TIE.2016.2573240
– ident: ref22
  doi: 10.1109/IVS.2017.7995713
– ident: ref24
  doi: 10.1109/TITS.2016.2604240
– ident: ref41
  doi: 10.1016/j.conengprac.2016.06.005
– ident: ref28
  doi: 10.1109/TITS.2015.2426211
– ident: ref29
  doi: 10.1016/j.conengprac.2011.01.008
– volume: 21
  start-page: 188
  year: 2016
  ident: ref32
  article-title: Local and global path generation for autonomous vehicles using splines
  publication-title: Ingeniería
– ident: ref17
  doi: 10.1109/ICRA.2011.5980223
– ident: ref6
  doi: 10.1109/TIV.2016.2578706
– ident: ref44
  doi: 10.1016/j.jpowsour.2016.11.106
– year: 2017
  ident: ref43
  publication-title: Predictive Control for Linear and Hybrid Systems
– ident: ref25
  doi: 10.1109/TVT.2012.2186991
– ident: ref15
  doi: 10.1109/TITS.2015.2389215
– ident: ref45
  doi: 10.1109/TMECH.2016.2631897
– volume: 2
  start-page: 9109
  year: 0
  ident: ref33
  article-title: Robot path planning in impedance networks
  publication-title: Proc 6th World Congr Intell Control Autom
– ident: ref9
  doi: 10.1016/j.conengprac.2013.11.012
– ident: ref35
  doi: 10.1109/MWSCAS.1991.252085
– ident: ref12
  doi: 10.1016/j.ymssp.2017.07.019
– ident: ref16
  doi: 10.1109/IROS.2009.5354448
– ident: ref47
  doi: 10.1016/j.mechatronics.2017.04.001
– ident: ref14
  doi: 10.1177/0278364909340445
– ident: ref19
  doi: 10.1109/CICT.2015.145
– ident: ref34
  doi: 10.1049/ip-vis:19941325
– year: 2016
  ident: ref21
  article-title: End to end learning for self-driving cars
– ident: ref40
  doi: 10.1080/00423114.2017.1420205
– start-page: 2061
  year: 0
  ident: ref23
  article-title: A real-time motion planner with trajectory optimization for autonomous vehicles
  publication-title: Proc IEEE Int Conf Robot Autom
– year: 2003
  ident: ref46
  publication-title: Model-Based Predictive Control A Practical Approach
– ident: ref36
  doi: 10.1007/978-1-4614-1433-9
– ident: ref37
  doi: 10.1016/j.ymssp.2018.06.024
– ident: ref11
  doi: 10.1016/j.ymssp.2015.10.021
– ident: ref1
  doi: 10.1007/BF01212361
– ident: ref30
  doi: 10.1109/TTE.2016.2538183
– ident: ref5
  doi: 10.1609/aimag.v30i2.2238
– ident: ref42
  doi: 10.1504/IJVAS.2005.008237
– ident: ref20
  doi: 10.1109/ICCSN.2011.6014330
– ident: ref39
  doi: 10.1080/00423114.2017.1387277
– ident: ref10
  doi: 10.1109/TITS.2015.2498841
– ident: ref18
  doi: 10.1109/IVS.2013.6629524
– ident: ref26
  doi: 10.1002/rnc.1245
– ident: ref4
  doi: 10.1098/rsta.2010.0110
– ident: ref3
  doi: 10.1109/TMECH.2016.2612689
– ident: ref27
  doi: 10.1109/TVT.2016.2555853
– ident: ref2
  doi: 10.1109/TCST.2018.2789440
– ident: ref38
  doi: 10.1109/TMECH.2018.2812220
– ident: ref8
  doi: 10.1109/TCST.2013.2278237
– year: 2014
  ident: ref7
SSID ssj0014515
Score 2.6852744
Snippet This paper presents a novel motion planning and tracking framework for automated vehicles based on artificial potential field (APF) elaborated resistance...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1376
SubjectTerms Automotive parts
Autonomous vehicle
Autonomous vehicles
Collision avoidance
Heuristic algorithms
Human motion
Local current
model predictive controller
Motion planning
Motional resistance
obstacle avoidance
Planning
Potential fields
Predictive control
Resistance
resistance network
Roads
Tracking
Traffic speed
Trajectory
Trajectory analysis
Vehicles
Title A Motion Planning and Tracking Framework for Autonomous Vehicles Based on Artificial Potential Field Elaborated Resistance Network Approach
URI https://ieeexplore.ieee.org/document/8643096
https://www.proquest.com/docview/2300338951
Volume 67
WOSCitedRecordID wos000490873600049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3H9IgcvgnXTNm2S4yq76MFlkVW8lW4zQUF2Zbfrn_BPO0nbVVAEbzkkTeFNMjPJyxuAM_IBIhRhHozcahKGi0ArrgOMbIIhV6iV9cUmZL-vnp70YAkuFm9hENGTz_DSNf1dvpkUc3dU1lbkPinkXoZlKWX1VmtxYyCSqlpB5BRjKelrriS5bg9vu47DpS8puVCJV3n9ckG-psqPjdh7l97m__5rCzbqKJJ1Kti3YQnHO7D-TVtwFz467M5X6GFNXSKWjw0j31S403HWa1hZjMJW1pmX7nXDZD5jj_jsqXLsihycYfQBN00lNMEGk9LRi6jVc9Q31q2NiDre48zFomRErF9xy1mnFizfg4ded3h9E9SVF4IiTmQZkOekDZmWso2NcApFobWpRW1jrdLYmthaO0qFSW0e5SNUODLcWuQ5T6JcYBzvw8p4MsYDYEVsk6SQ0gotKBkzSsrUJCINMaIJItmCdgNGVtSy5K46xmvm0xOuM4Ivc_BlNXwtOF-MeKskOf7ou-vgWvSrkWrBcYN3Vq_ZWUbJGKeEnULOw99HHcFa5LJtz9k-hpVyOscTWC3ey5fZ9NSb4ycP_t87
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4xhjR42GCAKHTDD7wgLdRJ7MR-7KZWoLVVhQriLUrjs0BCLWpT_sT-9M5OUpBAk_bmBzuO9J19d_bn7wDOyAeIUIR5MHWrSRguAq24DjCyEkOuUCvri02ko5G6u9PjDfixfguDiJ58hheu6e_yzbxYuaOyjiL3SSH3B_gohYjC6rXW-s5AyKpeQeQ0Yyntay4lue5MrnqOxaUvKL1Q0uu8vjghX1XlzVbs_Uv_y__92S58ruNI1q2A34MNnH2FnVfqgvvwp8uGvkYPayoTsXxmGHmnwp2Ps37Dy2IUuLLuqnTvG-arJbvFe0-WYz_JxRlGH3DTVFITbDwvHcGIWn1HfmO92oyo4zUuXTRKZsRGFbucdWvJ8gO46fcmvy6DuvZCUMQyLQPynbQl02K2sRFOoyi0NrGobaxVElsTW2uniTCJzaN8igqnhluLPOcyygXG8SFszuYzPAJWxFbKIk2t0ILSMaPSNDFSJCFGNEGUtqDTgJEVtTC5q4_xmPkEheuM4MscfFkNXwvO1yOeKlGOf_Tdd3Ct-9VItaDd4J3Vq3aZUTrGKWWnoPP4_VGn8OlyMhxkg6vR7xPYjlzu7RncbdgsFyv8BlvFc_mwXHz3pvkXzojigg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Motion+Planning+and+Tracking+Framework+for+Autonomous+Vehicles+Based+on+Artificial+Potential+Field+Elaborated+Resistance+Network+Approach&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Huang%2C+Yanjun&rft.au=Ding%2C+Haitao&rft.au=Zhang%2C+Yubiao&rft.au=Wang%2C+Hong&rft.date=2020-02-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=67&rft.issue=2&rft.spage=1376&rft.epage=1386&rft_id=info:doi/10.1109%2FTIE.2019.2898599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2019_2898599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon