An effective surrogate model assisted algorithm for multi-objective optimization: application to wind farm layout design

Due to the intricate and diverse nature of industrial systems, traditional optimization algorithms require a significant amount of time to search for the optimal solution throughout the entire design space, making them unsuitable for meeting practical industrial demands. To address this issue, we pr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in energy research Ročník 11
Hlavní autori: Chen, Yong, Wang, Li, Huang, Hui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 14.09.2023
Predmet:
ISSN:2296-598X, 2296-598X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Due to the intricate and diverse nature of industrial systems, traditional optimization algorithms require a significant amount of time to search for the optimal solution throughout the entire design space, making them unsuitable for meeting practical industrial demands. To address this issue, we propose a novel approach that combines surrogate models with optimization algorithms. Firstly, we introduce the Sparse Gaussian Process regression (SGP) into the surrogate model, proposing the SGP surrogate-assisted optimization method. This approach effectively overcomes the computational expense caused by the large amount of data required in Gaussian Process model. Secondly, we use grid partitioning to divide the optimization problem into multiple regions, and utilize the multi-objective particle swarm optimization algorithm to optimize particles in each region. By combining the advantages of grid partitioning and particle swarm optimization, which overcome the limitations of traditional optimization algorithms in handling multi-objective problems. Lastly, the effectiveness and robustness of the proposed method are verified through three types of 12 test functions and a wind farm layout optimization case study. The results show that the combination of meshing and SGP surrogate enables more accurate identification of optimal solutions, thereby improving the accuracy and speed of the optimization results. Additionally, the method demonstrates its applicability to a variety of complex multi-objective optimization problems.
AbstractList Due to the intricate and diverse nature of industrial systems, traditional optimization algorithms require a significant amount of time to search for the optimal solution throughout the entire design space, making them unsuitable for meeting practical industrial demands. To address this issue, we propose a novel approach that combines surrogate models with optimization algorithms. Firstly, we introduce the Sparse Gaussian Process regression (SGP) into the surrogate model, proposing the SGP surrogate-assisted optimization method. This approach effectively overcomes the computational expense caused by the large amount of data required in Gaussian Process model. Secondly, we use grid partitioning to divide the optimization problem into multiple regions, and utilize the multi-objective particle swarm optimization algorithm to optimize particles in each region. By combining the advantages of grid partitioning and particle swarm optimization, which overcome the limitations of traditional optimization algorithms in handling multi-objective problems. Lastly, the effectiveness and robustness of the proposed method are verified through three types of 12 test functions and a wind farm layout optimization case study. The results show that the combination of meshing and SGP surrogate enables more accurate identification of optimal solutions, thereby improving the accuracy and speed of the optimization results. Additionally, the method demonstrates its applicability to a variety of complex multi-objective optimization problems.
Author Chen, Yong
Wang, Li
Huang, Hui
Author_xml – sequence: 1
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
– sequence: 2
  givenname: Li
  surname: Wang
  fullname: Wang, Li
– sequence: 3
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
BookMark eNp9kctKAzEUhoMoeH0BV3mBqclJMzNxJ-KlILhRcBfS5GRMmZmUJPX29NZaRFy4Ohf4Pw7nOyS7YxyRkFPOJkK06szjmLoJMBATDkIJATvkAEDVlVTt0-6vfp-c5LxgjHEBcsrZAXm7GCl6j7aEF6R5lVLsTEE6RIc9NTmHXNBR03cxhfI8UB8THVZ9CVWcL7axuCxhCB-mhDieU7Nc9sFuBloifQ2jo96kgfbmPa4KdZhDNx6TPW_6jCfbekQer68eLm-ru_ub2eXFXWWFbEpl5wq4dFZwxtdng69Fg1IZVcs590q2DVhomaunDXpUnjkhW2U4gLGucSCOyOyb66JZ6GUKg0nvOpqgN4uYOm1SCbZHXYNH3ja1dcin3jcK1ywpnLUSai7naxZ8s2yKOSf0PzzO9JcKvVGhv1TorYp1qP0TsqFsvlOSCf1_0U81cJR8
CitedBy_id crossref_primary_10_3389_fenrg_2024_1468702
crossref_primary_10_1109_ACCESS_2024_3403889
Cites_doi 10.1016/j.knosys.2021.107049
10.1109/tsmc.2023.3257030
10.1016/j.strusafe.2017.06.003
10.1007/s11081-017-9370-5
10.1109/tcad.2015.2501307
10.1109/tevc.2013.2248012
10.1016/j.apenergy.2013.08.061
10.1016/j.ijepes.2021.107401
10.1080/01621459.1991.10475138
10.1016/j.compfluid.2022.105643
10.2514/1.j058807
10.1016/j.joim.2021.11.008
10.2514/1.c10485e
10.1016/j.compchemeng.2015.08.022
10.1007/s00521-022-07705-4
10.1109/tevc.2004.826067
10.4018/978-1-59904-498-9.ch002
10.1016/j.eswa.2022.119495
10.1109/tsmcc.2005.855506
10.1016/j.asoc.2021.108353
10.1109/tevc.2017.2675628
10.3390/app11031213
10.1016/j.apenergy.2019.04.047
10.1007/s00500-022-07362-8
10.1016/j.cma.2020.113269
10.48550/arXiv.2105.03893
10.1016/j.renene.2021.02.003
10.1109/access.2018.2832181
10.1007/s40747-022-00717-6
10.1016/j.oceaneng.2021.110239
10.1016/j.swevo.2016.12.005
10.1007/s11047-022-09907-0
10.1016/j.biosystems.2019.05.005
10.1016/j.apenergy.2021.117286
10.1038/nature14541
10.1007/s00500-015-1767-5
10.1023/a:1008306431147
10.3390/sym14061219
10.1016/j.jocs.2015.11.004
10.1155/2021/6681489
10.1016/j.engstruct.2023.116495
10.1016/j.energy.2020.119214
10.1155/2022/4179898
10.1016/j.energy.2017.02.174
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2023.1239332
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_62fe1876cde14ff79e35853dcc52615b
10_3389_fenrg_2023_1239332
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-cb9215dc31010012f637e59a965b1f95872c280d647efe9f0d3589a122acd7d23
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072698400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-598X
IngestDate Fri Oct 03 12:31:36 EDT 2025
Sat Nov 29 03:07:06 EST 2025
Tue Nov 18 22:27:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-cb9215dc31010012f637e59a965b1f95872c280d647efe9f0d3589a122acd7d23
OpenAccessLink https://doaj.org/article/62fe1876cde14ff79e35853dcc52615b
ParticipantIDs doaj_primary_oai_doaj_org_article_62fe1876cde14ff79e35853dcc52615b
crossref_primary_10_3389_fenrg_2023_1239332
crossref_citationtrail_10_3389_fenrg_2023_1239332
PublicationCentury 2000
PublicationDate 2023-09-14
PublicationDateYYYYMMDD 2023-09-14
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-14
  day: 14
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Han (B13) 2012; 343
Liu (B24) 2013; 18
Wang (B42); 14
Parsopoulos (B34) 2008
Preen (B35) 2019; 182
Vafadar (B41) 2021; 11
Talgorn (B40) 2018; 19
Ciccazzo (B4) 2015; 35
Ling (B22) 2022; 20
Zhao (B46) 2022; 246
Sun (B39) 2017; 21
Akinola (B1) 2022; 34
Jones (B16) 1998; 13
Liu (B23) 2016; 12
Joseph (B17) 2008
Gu (B12) 2021; 223
Satria Palar (B36) 2020; 58
Cui (B6) 2017; 125
Mavrovouniotis (B30) 2017; 33
Li (B20) 2015
Currin (B7) 1991; 86
Palmer (B33) 2019
Zhang (B45) 2019; 247
Giovanis (B9) 2020; 370
Zheng (B47) 2022; 8
Kudela (B18) 2022; 26
Li (B19) 2018; 6
Su (B38) 2017; 68
Jeong (B15) 2005; 42
Zhou (B48) 2006; 37
He (B14) 2023; 217
Lim (B21) 2015; 19
Liu (B26); 53
Liu (B27) 2021; 2021
Coello (B5) 2004; 8
Liu (B25); 22
Lystad (B29) 2023; 292
Shadab (B37) 2022; 134
Golparvar (B10) 2021; 299
Ghahramani (B8) 2015; 521
Wang (B43); 2022
Nguyen (B32) 2014; 113
Avendaño-Valencia (B2) 2021; 170
Grimstad (B11) 2016; 84
Moreno (B31) 2021; 216
Chen (B3) 2022; 116
Liu (B28) 2022; 243
Yang (B44) 2008; 20
References_xml – volume-title: Evolutionary algorithms and computational methods for derivatives pricing: Ucl
  year: 2019
  ident: B33
– volume: 223
  start-page: 107049
  year: 2021
  ident: B12
  article-title: A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2021.107049
– volume: 53
  start-page: 4843
  ident: B26
  article-title: Solving highly expensive optimization problems via evolutionary expected improvement
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/tsmc.2023.3257030
– volume: 68
  start-page: 97
  year: 2017
  ident: B38
  article-title: A Gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2017.06.003
– volume: 19
  start-page: 213
  year: 2018
  ident: B40
  article-title: Locally weighted regression models for surrogate-assisted design optimization
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-017-9370-5
– volume: 35
  start-page: 1224
  year: 2015
  ident: B4
  article-title: A SVM surrogate model-based method for parametric yield optimization
  publication-title: IEEE Trans. Computer-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/tcad.2015.2501307
– volume: 18
  start-page: 180
  year: 2013
  ident: B24
  article-title: A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2013.2248012
– volume: 113
  start-page: 1043
  year: 2014
  ident: B32
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. energy
  doi: 10.1016/j.apenergy.2013.08.061
– volume: 134
  start-page: 107401
  year: 2022
  ident: B37
  article-title: Gaussian process surrogate model for an effective life assessment of transformer considering model and measurement uncertainties
  publication-title: Int. J. Electr. Power and Energy Syst.
  doi: 10.1016/j.ijepes.2021.107401
– volume: 86
  start-page: 953
  year: 1991
  ident: B7
  article-title: Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1991.10475138
– volume: 246
  start-page: 105643
  year: 2022
  ident: B46
  article-title: Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-Kriging surrogate model
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2022.105643
– volume: 58
  start-page: 1864
  year: 2020
  ident: B36
  article-title: Gaussian process surrogate model with composite kernel learning for engineering design
  publication-title: AIAA J.
  doi: 10.2514/1.j058807
– volume: 20
  start-page: 5843
  year: 2008
  ident: B44
  article-title: Multi-objective particle swarm optimization based on adaptive grid algorithms
  publication-title: J. Syst. Simul.
– volume: 20
  start-page: 1
  year: 2022
  ident: B22
  article-title: Complementary and alternative medicine during COVID-19 pandemic: what we have done
  publication-title: IEEE Trans. Reliab.
  doi: 10.1016/j.joim.2021.11.008
– volume: 42
  start-page: 1375
  year: 2005
  ident: B15
  article-title: Efficient optimization design method using kriging model
  publication-title: J. Aircr.
  doi: 10.2514/1.c10485e
– volume: 84
  start-page: 237
  year: 2016
  ident: B11
  article-title: Global optimization of multiphase flow networks using spline surrogate models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.08.022
– volume: 34
  start-page: 19751
  year: 2022
  ident: B1
  article-title: Multiclass feature selection with metaheuristic optimization algorithms: a review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07705-4
– volume: 8
  start-page: 256
  year: 2004
  ident: B5
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2004.826067
– start-page: 20
  volume-title: Multi-objective optimization in computational intelligence: Theory and practice
  year: 2008
  ident: B34
  doi: 10.4018/978-1-59904-498-9.ch002
– volume: 217
  start-page: 119495
  year: 2023
  ident: B14
  article-title: A review of surrogate-assisted evolutionary algorithms for expensive optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119495
– volume-title: Blind kriging: A new method for developing metamodels
  year: 2008
  ident: B17
– volume: 37
  start-page: 66
  year: 2006
  ident: B48
  article-title: Combining global and local surrogate models to accelerate evolutionary optimization
  publication-title: IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev.
  doi: 10.1109/tsmcc.2005.855506
– volume: 116
  start-page: 108353
  year: 2022
  ident: B3
  article-title: A radial basis function surrogate model assisted evolutionary algorithm for high-dimensional expensive optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108353
– volume: 21
  start-page: 644
  year: 2017
  ident: B39
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/tevc.2017.2675628
– volume: 11
  start-page: 1213
  year: 2021
  ident: B41
  article-title: Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges
  publication-title: Appl. Sci.
  doi: 10.3390/app11031213
– start-page: 541
  year: 2015
  ident: B20
  article-title: A method for distributing reference points uniformly along the Pareto front of DTLZ test functions in many-objective evolutionary optimization
– volume: 247
  start-page: 270
  year: 2019
  ident: B45
  article-title: Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression
  publication-title: Appl. energy
  doi: 10.1016/j.apenergy.2019.04.047
– volume: 26
  start-page: 13709
  year: 2022
  ident: B18
  article-title: Recent advances and applications of surrogate models for finite element method computations: A review
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07362-8
– volume: 370
  start-page: 113269
  year: 2020
  ident: B9
  article-title: Data-driven surrogates for high dimensional models using Gaussian process regression on the Grassmann manifold
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113269
– volume: 343
  year: 2012
  ident: B13
  article-title: Surrogate-based optimization
  publication-title: Real-world Appl. Genet. algorithms
  doi: 10.48550/arXiv.2105.03893
– volume: 170
  start-page: 539
  year: 2021
  ident: B2
  article-title: Virtual fatigue diagnostics of wake-affected wind turbine via Gaussian Process Regression
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.02.003
– volume: 6
  start-page: 26194
  year: 2018
  ident: B19
  article-title: Evolutionary many-objective optimization: A comparative study of the state-of-the-art
  publication-title: IEEE Access
  doi: 10.1109/access.2018.2832181
– volume: 8
  start-page: 4339
  year: 2022
  ident: B47
  article-title: An adaptive model switch-based surrogate-assisted evolutionary algorithm for noisy expensive multi-objective optimization
  publication-title: Complex and Intelligent Syst.
  doi: 10.1007/s40747-022-00717-6
– volume: 243
  start-page: 110239
  year: 2022
  ident: B28
  article-title: Multi-fidelity Co-Kriging surrogate model for ship hull form optimization
  publication-title: Ocean. Eng.
  doi: 10.1016/j.oceaneng.2021.110239
– volume: 33
  start-page: 1
  year: 2017
  ident: B30
  article-title: A survey of swarm intelligence for dynamic optimization: algorithms and applications
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.12.005
– volume: 22
  start-page: 329
  ident: B25
  article-title: MOEA/D with gradient-enhanced kriging for expensive multiobjective optimization
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-022-09907-0
– volume: 182
  start-page: 1
  year: 2019
  ident: B35
  article-title: Towards an evolvable cancer treatment simulator
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2019.05.005
– volume: 299
  start-page: 117286
  year: 2021
  ident: B10
  article-title: A surrogate-model-based approach for estimating the first and second-order moments of offshore wind power
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117286
– volume: 521
  start-page: 452
  year: 2015
  ident: B8
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
  doi: 10.1038/nature14541
– volume: 19
  start-page: 3571
  year: 2015
  ident: B21
  article-title: Kursawe and ZDT functions optimization using hybrid micro genetic algorithm (HMGA)
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1767-5
– volume: 13
  start-page: 455
  year: 1998
  ident: B16
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Glob. Optim.
  doi: 10.1023/a:1008306431147
– volume: 14
  start-page: 1219
  ident: B42
  article-title: Recent advances in surrogate modeling methods for uncertainty quantification and propagation
  publication-title: Symmetry
  doi: 10.3390/sym14061219
– volume: 12
  start-page: 28
  year: 2016
  ident: B23
  article-title: A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2015.11.004
– volume: 2021
  start-page: 1
  year: 2021
  ident: B27
  article-title: Intelligent extremum surrogate modeling framework for dynamic probabilistic analysis of complex mechanism
  publication-title: Math. Problems Eng.
  doi: 10.1155/2021/6681489
– volume: 292
  start-page: 116495
  year: 2023
  ident: B29
  article-title: Full long-term extreme buffeting response calculations using sequential Gaussian process surrogate modeling
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.116495
– volume: 216
  start-page: 119214
  year: 2021
  ident: B31
  article-title: Multi-objective lightning search algorithm applied to wind farm layout optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119214
– volume: 2022
  start-page: 1
  ident: B43
  article-title: Fatigue optimization of structural parameters for orthotropic steel bridge decks using RSM and NSGA-II
  publication-title: Math. Problems Eng.
  doi: 10.1155/2022/4179898
– volume: 125
  start-page: 681
  year: 2017
  ident: B6
  article-title: Review: multi-objective optimization methods and application in energy saving
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.174
SSID ssj0001325410
Score 2.2456353
Snippet Due to the intricate and diverse nature of industrial systems, traditional optimization algorithms require a significant amount of time to search for the...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms adaptive grid multi-objective particle swarm optimization algorithm
multi-objective optimization
sparse Gaussian process
surrogate model
wind power engineering
Title An effective surrogate model assisted algorithm for multi-objective optimization: application to wind farm layout design
URI https://doaj.org/article/62fe1876cde14ff79e35853dcc52615b
Volume 11
WOSCitedRecordID wos001072698400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RRveWBDaWM7jms2QK1YqBhA6hbFrwJqGxRSHgu_nbMTqrDAwpIhsiPru7N9n3P-DqFTzhzEAczPNNmLkkS4SCXCRjpJEwXTySiiQrEJMRz2RiN52yr15XPCanngGrhuSp0lMGW1sSRxTkjLIMJlRmsOwT9XfvWNhWyRqXC6woD4kLi-JQMsTHYdmGPc8cXCO8TLfjH6YydqCfaHnWWwgdabkBBf1EPZREt2toXWWkKB2-j9YobrzAtYnPDLvCwLf_yFQx0bDPGvN5bB-WRcANl_mGIIRXHIFYwK9dR0K2B1mDbXLs9x6881rgr8Btwcu7yc4kn-UcwrbEJqxw66H_Tvrq6jpmZCpBkXVaSVhE3caIjavLoSdSkTlstcplwRJ3lPUE17sUnBIM5KFxuAU-aE0lwbYSjbRcuzYmb3ENZci1R5IwMF5KnOqVNJHmsH_NsJxfcR-cYv042guK9rMcmAWHjMs4B55jHPGsz30dmiz3Mtp_Fr60tvlkVLL4UdXoCDZI2DZH85yMF_fOQQrfqB-UQRkhyh5aqc22O0ol-rx5fyJPgePG8--1_bleLE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+surrogate+model+assisted+algorithm+for+multi-objective+optimization%3A+application+to+wind+farm+layout+design&rft.jtitle=Frontiers+in+energy+research&rft.au=Chen%2C+Yong&rft.au=Wang%2C+Li&rft.au=Huang%2C+Hui&rft.date=2023-09-14&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=11&rft_id=info:doi/10.3389%2Ffenrg.2023.1239332&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2023_1239332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon