Pixyz: a Python library for developing deep generative models
With the recent rapid progress in the study of deep generative models (DGMs), there is a need for a framework that can implement them in a simple and generic way. In this research, we focus on two features of DGMs: (1) deep neural networks are encapsulated by probability distributions, and (2) model...
Uloženo v:
| Vydáno v: | Advanced robotics Ročník 37; číslo 19; s. 1221 - 1236 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
02.10.2023
|
| Témata: | |
| ISSN: | 0169-1864, 1568-5535 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | With the recent rapid progress in the study of deep generative models (DGMs), there is a need for a framework that can implement them in a simple and generic way. In this research, we focus on two features of DGMs: (1) deep neural networks are encapsulated by probability distributions, and (2) models are designed and learned based on an objective function. Taking these features into account, we propose a new Python library to implement DGMs called Pixyz. This library adopts a step-by-step implementation method with three APIs, which allows us to implement various DGMs more concisely and intuitively. In addition, the library introduces memoization to reduce the cost of duplicate computations in DGMs to speed up the computation. We demonstrate experimentally that this library is faster than existing probabilistic programming languages in training DGMs. |
|---|---|
| ISSN: | 0169-1864 1568-5535 |
| DOI: | 10.1080/01691864.2023.2244568 |