A Review of Vehicle Detection Methods Based on Computer Vision
With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and transportation infrastructure. In order to achieve faster and more accurate identification of traffic vehicles, computer vision and deep learnin...
Saved in:
| Published in: | Journal of intelligent and connected vehicles Vol. 7; no. 1; pp. 1 - 18 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Tsinghua University Press
01.03.2024
|
| Subjects: | |
| ISSN: | 2399-9802, 2399-9802 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and transportation infrastructure. In order to achieve faster and more accurate identification of traffic vehicles, computer vision and deep learning technology play a vital role and have made significant advancements. This study summarizes the current research status, latest findings, and future development trends of traditional detection algorithms and deep learning-based detection algorithms. Among the detection algorithms based on deep learning, this study focuses on the representative convolutional neural network models. Specifically, it examines the two-stage and one-stage detection algorithms, which have been extensively utilized in the field of intelligent transportation systems. Compared to traditional detection algorithms, deep learning-based detection algorithms can achieve higher accuracy and efficiency. The single-stage detection algorithm is more efficient for real-time detection, while the two-stage detection algorithm is more accurate than the single-stage detection algorithm. In the follow-up research, it is important to consider the balance between detection efficiency and detection accuracy. Additionally, vehicle missed detection and false detection in complex scenes, such as bad weather and vehicle overlap, should be taken into account. This will ensure better application of the research findings in engineering practice. |
|---|---|
| AbstractList | With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and transportation infrastructure. In order to achieve faster and more accurate identification of traffic vehicles, computer vision and deep learning technology play a vital role and have made significant advancements. This study summarizes the current research status, latest findings, and future development trends of traditional detection algorithms and deep learning-based detection algorithms. Among the detection algorithms based on deep learning, this study focuses on the representative convolutional neural network models. Specifically, it examines the two-stage and one-stage detection algorithms, which have been extensively utilized in the field of intelligent transportation systems. Compared to traditional detection algorithms, deep learning-based detection algorithms can achieve higher accuracy and efficiency. The single-stage detection algorithm is more efficient for real-time detection, while the two-stage detection algorithm is more accurate than the single-stage detection algorithm. In the follow-up research, it is important to consider the balance between detection efficiency and detection accuracy. Additionally, vehicle missed detection and false detection in complex scenes, such as bad weather and vehicle overlap, should be taken into account. This will ensure better application of the research findings in engineering practice. |
| Author | Ma, Changxi Xue, Fansong |
| Author_xml | – sequence: 1 givenname: Changxi surname: Ma fullname: Ma, Changxi organization: School of Traffic and Transportation, Lanzhou Jiaotong University,Lanzhou,China,730070 – sequence: 2 givenname: Fansong surname: Xue fullname: Xue, Fansong organization: School of Traffic and Transportation, Lanzhou Jiaotong University,Lanzhou,China,730070 |
| BookMark | eNp9kM9KAzEQh4NUsNa-gKe8wNbJbHazuQh1_VepCKK9hjTJ2i1tU7JR8e3dbYuIB08zDPP7mPlOSW_jN46QcwYjzDMpLx4m5WyEgOlIIgNg8oj0MZUykQVg71d_QoZNswQALKCQKPrkckyf3UftPqmv6MwtarNy9NpFZ2LtN_TRxYW3Db3SjbO0HZR-vX2PLtBZ3bQLZ-S40qvGDQ91QF5vb17K-2T6dDcpx9PEpJmIicmkMTo3YHWGAhznzDAtNQfJnMitdVoYPkfZvaMFpFxkCDy1Bc55YTEdkMmea71eqm2o1zp8Ka9rtRv48KZ0iN3xCrXBCqXIcw5cp06yvEqB5cZgzjKRtSzcs0zwTRNc9cNjoHZCVSdUdULVQWgbKv6ETB115ygGXa_-i34Dip551w |
| CitedBy_id | crossref_primary_10_1016_j_commtr_2025_100202 crossref_primary_10_3390_s25175421 crossref_primary_10_26599_JICV_2023_9210050 crossref_primary_10_1038_s41598_025_98286_4 crossref_primary_10_1007_s11760_025_04379_y crossref_primary_10_3389_fnbot_2024_1448538 crossref_primary_10_1109_ACCESS_2025_3548837 crossref_primary_10_3390_s25144381 |
| Cites_doi | 10.1145/3301506.3301531 10.1109/ICMLC.2018.8526958 10.1109/CVPR.2016.308 10.1109/CVPR.2001.990517 10.1109/CVPR.2013.237 10.1109/ICAICA52286.2021.9498188 10.1109/CVPR.2016.90 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00208 10.1109/ICCV.2017.324 10.5755/j01.itc.50.1.25094 10.1109/IMCEC46724.2019.8984055 10.1109/IWAIT.2018.8369767 10.5244/C.31.76 10.48550/arXiv.1804.02767 10.1109/TIV.2020.3010832 10.3390/pr10071285 10.1109/TITS.2016.2617202 10.1109/TPAMI.2009.167 10.1016/S1383-7621(96)00106-3 10.1109/ISPCC48220.2019.8988389 10.1109/TIE.2002.807650 10.1108/JICV-02-2018-0004 10.3390/info11120583 10.1109/CVPR.2008.4587597 10.1109/CVPR.2018.00442 10.1155/2020/5761414 10.1109/ACCESS.2019.2928603 10.1109/ITCA52113.2020.00097 10.1109/ICCE.2019.8661944 10.1109/ECTI-CON51831.2021.9454903 10.1109/TPAMI.2015.2437384 10.1109/ICCT50939.2020.9295791 10.1109/CVPR.2017.106 10.1016/j.aeue.2013.02.001 10.1109/AIID51893.2021.9456462 10.1109/CAC.2018.8623407 10.1145/3065386 10.1109/CVPR.2017.690 10.1109/IAEAC50856.2021.9390613 10.1109/TIM.2021.3065438 10.1109/CISP-BMEI.2016.7852774 10.1007/s11263-013-0620-5 10.1109/ICCV.2017.212 10.1109/SIBGRAPI.2012.40 10.1109/ICCV.1999.790410 10.1109/TPAMI.2015.2389824 10.1109/CVPR.2014.81 10.1109/CVPR.2006.119 10.3390/s18103341 10.1109/ICCV.2017.322 10.1109/IAI50351.2020.9262216 10.1109/ACCESS.2021.3057723 10.1109/ICOIN50884.2021.9333970 10.1109/ICICCS51141.2021.9432144 10.1109/ICCV.2015.169 10.1109/iccsp.2019.8698018 10.1109/CVPR.2005.177 10.1109/TPAMI.2016.2577031 10.5555/3298023.3298188 10.1109/5.726791 10.1108/JICV-11-2020-0014 10.1109/MVT.2009.935537 10.1155/2008/782432 10.1109/TENSYMP50017.2020.9230463 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2016.91 10.1109/CVPR.2015.7298594 10.1109/ICCV.2019.00059 10.1109/CVCI51460.2020.9338478 10.1109/ICSIDP47821.2019.9173158 10.1109/ICACCCN.2018.8748339 10.1109/TITS.2004.838192 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.26599/JICV.2023.9210019 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2399-9802 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_2ac2f29766404a3e916f3016cc261575 10_26599_JICV_2023_9210019 |
| GroupedDBID | AAFWJ AAGBP AAYXX ABGJK ABJCF ABVLG ADBBV AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION EBS EJD ESBDL GEI GROUPED_DOAJ H13 HCIFZ JAVBF K7- M7S M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS XDTOA |
| ID | FETCH-LOGICAL-c357t-c59cca6c0da5270e441c1a9a4091e76ddea7c4b296599a7034752043d82b48d23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001388239800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2399-9802 |
| IngestDate | Fri Oct 03 12:44:40 EDT 2025 Sat Nov 29 05:34:25 EST 2025 Tue Nov 18 22:39:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-c59cca6c0da5270e441c1a9a4091e76ddea7c4b296599a7034752043d82b48d23 |
| OpenAccessLink | https://doaj.org/article/2ac2f29766404a3e916f3016cc261575 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2ac2f29766404a3e916f3016cc261575 crossref_primary_10_26599_JICV_2023_9210019 crossref_citationtrail_10_26599_JICV_2023_9210019 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-3-00 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-3-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of intelligent and connected vehicles |
| PublicationYear | 2024 |
| Publisher | Tsinghua University Press |
| Publisher_xml | – name: Tsinghua University Press |
| References | ref57 ref56 Wei (ref84) 2021; 57 ref59 ref58 ref53 ref52 ref54 Qiao (ref55) 2020; 50 Li (ref40) 2017 Liang (ref42) 2021; 21 Simonyan (ref67) 2014 Xu (ref89) 2022; 58 ref51 ref50 Zhou (ref99) 2019 ref46 Yang (ref93) 2022; 62 ref45 Liu (ref47) 2020; 40 ref43 ref49 ref8 ref7 ref9 ref4 ref5 Cireşan (ref10) 2011 ref101 Li (ref38) 2022; 48 Ioffe (ref30) 2015 Jeong (ref31) 2017 ref34 Song (ref71) 2021; 40 ref37 ref36 Kang (ref32) 2016; 52 ref33 Liang (ref41) 2021; 35 ref39 Yi (ref94) 2021; 43 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Zhang (ref96) 2020; 56 Zhu (ref100) 2020; 34 Bochkovskiy (ref3) 2020 ref13 ref12 ref15 ref14 ref97 Fu (ref18) 2017 ref11 Cao (ref6) 2017; 22 ref98 ref17 ref16 ref19 Lin (ref44) 2013 ref92 ref91 Song (ref70) 2018; 35 ref90 Zhang (ref95) 2021; 43 Rong (ref63) 2021; 40 ref85 ref88 ref87 Law (ref35) 2019 ref82 Xia (ref86) 2021; 57 ref81 ref83 ref80 ref79 ref78 ref75 ref74 ref77 ref76 Song (ref69) 2019; 55 ref2 ref1 ref73 ref72 ref68 ref64 ref66 ref65 Liu (ref48) 2019; 42 ref60 ref62 ref61 |
| References_xml | – ident: ref22 doi: 10.1145/3301506.3301531 – volume-title: FSSD: Feature fusion single shot multibox detector year: 2017 ident: ref40 – volume: 21 start-page: 2767 year: 2021 ident: ref42 article-title: Center-based algorithm for multi-class vehicle detection publication-title: Sci Technol Eng – ident: ref7 doi: 10.1109/ICMLC.2018.8526958 – ident: ref75 doi: 10.1109/CVPR.2016.308 – volume: 42 start-page: 47 year: 2019 ident: ref48 article-title: Improved YOLO vehicle detection algorithm publication-title: Modern Electronics Technique – volume: 40 start-page: 114 year: 2021 ident: ref71 article-title: Urban road vehicle detection method by aerial photography based on improved SSD publication-title: Transduc Miscrosyst Technol – ident: ref79 doi: 10.1109/CVPR.2001.990517 – ident: ref12 doi: 10.1109/CVPR.2013.237 – ident: ref1 doi: 10.1109/ICAICA52286.2021.9498188 – ident: ref26 doi: 10.1109/CVPR.2016.90 – ident: ref72 doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00208 – ident: ref46 doi: 10.1109/ICCV.2017.324 – ident: ref66 doi: 10.5755/j01.itc.50.1.25094 – ident: ref8 doi: 10.1109/IMCEC46724.2019.8984055 – ident: ref27 doi: 10.1109/IWAIT.2018.8369767 – volume-title: Enhancement of SSD by concatenating feature maps for object detection year: 2017 ident: ref31 doi: 10.5244/C.31.76 – volume: 56 start-page: 104 year: 2020 ident: ref96 article-title: Improved Yolo_v2 illegal vehicle detection method publication-title: Comput Eng Appl – ident: ref60 doi: 10.48550/arXiv.1804.02767 – ident: ref82 doi: 10.1109/TIV.2020.3010832 – volume: 34 start-page: 1 year: 2020 ident: ref100 article-title: Vehicle detection based on YOLO-TridentNet publication-title: J Chongqing Univ Technol (Natural Science) – ident: ref81 doi: 10.3390/pr10071285 – ident: ref91 doi: 10.1109/TITS.2016.2617202 – ident: ref17 doi: 10.1109/TPAMI.2009.167 – ident: ref2 doi: 10.1016/S1383-7621(96)00106-3 – ident: ref64 doi: 10.1109/ISPCC48220.2019.8988389 – volume: 48 start-page: 266 year: 2022 ident: ref38 article-title: Vehicle detection based on improved SSD algorithm publication-title: Computer Engineering – volume: 40 start-page: 854 year: 2020 ident: ref47 article-title: Vehicle information detection based on improved RetinaNet publication-title: J Comput Appl – ident: ref4 doi: 10.1109/TIE.2002.807650 – ident: ref98 doi: 10.1108/JICV-02-2018-0004 – ident: ref23 doi: 10.3390/info11120583 – volume: 58 start-page: 209 year: 2022 ident: ref89 article-title: Improvement of lightweight vehicle detection network based on SSD publication-title: Comput Eng Appl – ident: ref16 doi: 10.1109/CVPR.2008.4587597 – volume-title: YOLOv4: Optimal speed and accuracy of object detection year: 2020 ident: ref3 – volume: 43 start-page: 1195 year: 2021 ident: ref95 article-title: A method of vehicle detection at night based on RetinaNet and optimized loss functions publication-title: Automot Eng – ident: ref97 doi: 10.1109/CVPR.2018.00442 – volume-title: Network in network year: 2013 ident: ref44 – ident: ref88 doi: 10.1155/2020/5761414 – volume-title: High-performance neural networks for visual object classification year: 2011 ident: ref10 – ident: ref85 doi: 10.1109/ACCESS.2019.2928603 – ident: ref90 doi: 10.1109/ITCA52113.2020.00097 – ident: ref92 doi: 10.1109/ICCE.2019.8661944 – ident: ref33 doi: 10.1109/ECTI-CON51831.2021.9454903 – ident: ref21 doi: 10.1109/TPAMI.2015.2437384 – ident: ref39 doi: 10.1109/ICCT50939.2020.9295791 – volume-title: DSSD: Deconvolutional single shot detector year: 2017 ident: ref18 – ident: ref45 doi: 10.1109/CVPR.2017.106 – ident: ref51 doi: 10.1016/j.aeue.2013.02.001 – ident: ref80 doi: 10.1109/AIID51893.2021.9456462 – ident: ref61 doi: 10.1109/CAC.2018.8623407 – ident: ref34 doi: 10.1145/3065386 – ident: ref58 doi: 10.1109/CVPR.2017.690 – volume: 57 start-page: 247 year: 2021 ident: ref86 article-title: Improved YOLOv4s dense remote sensing target detection publication-title: Comput Eng Appl – volume: 57 start-page: 191 year: 2021 ident: ref84 article-title: Target detection of improved CenterNet to remote sensing images publication-title: Computer Engineering and Applications – ident: ref28 doi: 10.1109/IAEAC50856.2021.9390613 – ident: ref5 doi: 10.1109/TIM.2021.3065438 – volume: 52 start-page: 209 year: 2016 ident: ref32 article-title: Improvement of deformable part model and its application in vehicle detection publication-title: Computer Engineering and Applications – volume-title: CornerNet-lite: Efficient keypoint based object detection year: 2019 ident: ref35 – ident: ref29 doi: 10.1109/CISP-BMEI.2016.7852774 – ident: ref78 doi: 10.1007/s11263-013-0620-5 – start-page: 448 volume-title: Proceedings of the 32nd International Conference on Machine Learning year: 2015 ident: ref30 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: ref65 doi: 10.1109/ICCV.2017.212 – volume-title: Very deep convolutional networks for large-scale image recognition year: 2014 ident: ref67 – ident: ref36 doi: 10.1109/SIBGRAPI.2012.40 – ident: ref50 doi: 10.1109/ICCV.1999.790410 – ident: ref25 doi: 10.1109/TPAMI.2015.2389824 – ident: ref19 doi: 10.1109/CVPR.2014.81 – ident: ref101 doi: 10.1109/CVPR.2006.119 – ident: ref76 doi: 10.3390/s18103341 – ident: ref24 doi: 10.1109/ICCV.2017.322 – ident: ref77 doi: 10.1109/IAI50351.2020.9262216 – ident: ref15 doi: 10.1109/ACCESS.2021.3057723 – ident: ref14 doi: 10.1109/ICOIN50884.2021.9333970 – ident: ref68 doi: 10.1109/ICICCS51141.2021.9432144 – volume: 55 start-page: 225 year: 2019 ident: ref69 article-title: Improved RetinaNet model for vehicle target detection publication-title: Comput Eng Appl – ident: ref20 doi: 10.1109/ICCV.2015.169 – ident: ref52 doi: 10.1109/iccsp.2019.8698018 – ident: ref11 doi: 10.1109/CVPR.2005.177 – volume-title: Objects as points year: 2019 ident: ref99 – ident: ref62 doi: 10.1109/TPAMI.2016.2577031 – ident: ref73 doi: 10.5555/3298023.3298188 – volume: 62 start-page: 259 year: 2022 ident: ref93 article-title: Application of improved SSD algorithm in intelligent transportation publication-title: Telecommun Eng – volume: 35 start-page: 137 year: 2021 ident: ref41 article-title: Improved CornerNet-Saccade algorithm for vehicle detection publication-title: J Chongqing Univ Technol (Natural Science) – volume: 35 start-page: 1270 year: 2018 ident: ref70 article-title: Vehicle target detection in complex scenes based on deep learning method publication-title: Comput Appl Res – ident: ref37 doi: 10.1109/5.726791 – ident: ref43 doi: 10.1108/JICV-11-2020-0014 – ident: ref13 doi: 10.1109/MVT.2009.935537 – volume: 50 start-page: 926 year: 2020 ident: ref55 article-title: Lightweight vehicle detection network based on SSD publication-title: Radio Engineering – ident: ref53 doi: 10.1155/2008/782432 – ident: ref56 doi: 10.1109/TENSYMP50017.2020.9230463 – ident: ref49 doi: 10.1007/978-3-319-46448-0_2 – ident: ref57 doi: 10.1109/CVPR.2016.91 – volume: 22 start-page: 671 year: 2017 ident: ref6 article-title: Vehicle target detection based on Fast R-CNN publication-title: Chinese Journal of Image Graphics – ident: ref74 doi: 10.1109/CVPR.2015.7298594 – ident: ref9 doi: 10.1109/ICCV.2019.00059 – ident: ref83 doi: 10.1109/CVCI51460.2020.9338478 – volume: 43 start-page: 237 year: 2021 ident: ref94 article-title: Vehicle-based thermal imaging target detection method based on enhanced lightweight network publication-title: Infrared Technol – ident: ref54 doi: 10.1109/ICSIDP47821.2019.9173158 – ident: ref59 doi: 10.1109/ICACCCN.2018.8748339 – volume: 40 start-page: 130 year: 2021 ident: ref63 article-title: Target detection algorithm based on RefineDet network and attention mechanism publication-title: Sens Micro Syst – ident: ref87 doi: 10.1109/TITS.2004.838192 |
| SSID | ssj0002808927 |
| Score | 2.340071 |
| SecondaryResourceType | review_article |
| Snippet | With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | computer vision deep learning intelligent transportation system object detection algorithm vehicle detection |
| Title | A Review of Vehicle Detection Methods Based on Computer Vision |
| URI | https://doaj.org/article/2ac2f29766404a3e916f3016cc261575 |
| Volume | 7 |
| WOSCitedRecordID | wos001388239800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2399-9802 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002808927 issn: 2399-9802 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2399-9802 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002808927 issn: 2399-9802 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL3lgQ2kdx47tBalURYCgYgDULXJsR4BQitrQkd_OOQ5VWGBhyWDZkfXO8d1Fd-8hdKpsrAtKVJQaRSKmDIF7UKdRmltHrcglNzXP7K0Yj-Vkou5bUl--JizQAwfg-lQbWlBwmikjTCcOwpkCDqUv9wVnLGr2UiJUK5l6rX8ZEamoCF0yNOVK9W-uh089LxbeU9QTD6kfnqhF2F97lstNtNGEhHgQtrKFVly5jdZbRIE76HyAQ48JnhZ44Z79RGxdVddRlTjIQM-xd0kWw4BptBpwaB3fRY-Xo4fhVdQoH0Qm4aKKDFeAbGqI1ZwK4iBmMbFWGpKx2IkUriQtDMupZwNUGj5aJrhvcrWS5kxamuyhTjkt3T7CUuQ057lyOmEQLCjJqZXMMB4XAuBzXRR_o5CZhhbcq1O8ZZAe1MhlHrnMI5c1yHXR2XLNeyDF-HX2hQd3OdMTWtcDYOasMXP2l5kP_uMlh2gNNsZCCdkR6lSzD3eMVs2iepnPTuoTBM-7z9EXaCTF_Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Vehicle+Detection+Methods+Based+on+Computer+Vision&rft.jtitle=Journal+of+intelligent+and+connected+vehicles&rft.au=Ma%2C+Changxi&rft.au=Xue%2C+Fansong&rft.date=2024-03-01&rft.issn=2399-9802&rft.eissn=2399-9802&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.26599%2FJICV.2023.9210019&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_JICV_2023_9210019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-9802&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-9802&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-9802&client=summon |