A Review of Vehicle Detection Methods Based on Computer Vision

With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and transportation infrastructure. In order to achieve faster and more accurate identification of traffic vehicles, computer vision and deep learnin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of intelligent and connected vehicles Ročník 7; číslo 1; s. 1 - 18
Hlavní autoři: Ma, Changxi, Xue, Fansong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Tsinghua University Press 01.03.2024
Témata:
ISSN:2399-9802, 2399-9802
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and transportation infrastructure. In order to achieve faster and more accurate identification of traffic vehicles, computer vision and deep learning technology play a vital role and have made significant advancements. This study summarizes the current research status, latest findings, and future development trends of traditional detection algorithms and deep learning-based detection algorithms. Among the detection algorithms based on deep learning, this study focuses on the representative convolutional neural network models. Specifically, it examines the two-stage and one-stage detection algorithms, which have been extensively utilized in the field of intelligent transportation systems. Compared to traditional detection algorithms, deep learning-based detection algorithms can achieve higher accuracy and efficiency. The single-stage detection algorithm is more efficient for real-time detection, while the two-stage detection algorithm is more accurate than the single-stage detection algorithm. In the follow-up research, it is important to consider the balance between detection efficiency and detection accuracy. Additionally, vehicle missed detection and false detection in complex scenes, such as bad weather and vehicle overlap, should be taken into account. This will ensure better application of the research findings in engineering practice.
AbstractList With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and transportation infrastructure. In order to achieve faster and more accurate identification of traffic vehicles, computer vision and deep learning technology play a vital role and have made significant advancements. This study summarizes the current research status, latest findings, and future development trends of traditional detection algorithms and deep learning-based detection algorithms. Among the detection algorithms based on deep learning, this study focuses on the representative convolutional neural network models. Specifically, it examines the two-stage and one-stage detection algorithms, which have been extensively utilized in the field of intelligent transportation systems. Compared to traditional detection algorithms, deep learning-based detection algorithms can achieve higher accuracy and efficiency. The single-stage detection algorithm is more efficient for real-time detection, while the two-stage detection algorithm is more accurate than the single-stage detection algorithm. In the follow-up research, it is important to consider the balance between detection efficiency and detection accuracy. Additionally, vehicle missed detection and false detection in complex scenes, such as bad weather and vehicle overlap, should be taken into account. This will ensure better application of the research findings in engineering practice.
Author Ma, Changxi
Xue, Fansong
Author_xml – sequence: 1
  givenname: Changxi
  surname: Ma
  fullname: Ma, Changxi
  organization: School of Traffic and Transportation, Lanzhou Jiaotong University,Lanzhou,China,730070
– sequence: 2
  givenname: Fansong
  surname: Xue
  fullname: Xue, Fansong
  organization: School of Traffic and Transportation, Lanzhou Jiaotong University,Lanzhou,China,730070
BookMark eNp9kM9KAzEQh4NUsNa-gKe8wNbJbHazuQh1_VepCKK9hjTJ2i1tU7JR8e3dbYuIB08zDPP7mPlOSW_jN46QcwYjzDMpLx4m5WyEgOlIIgNg8oj0MZUykQVg71d_QoZNswQALKCQKPrkckyf3UftPqmv6MwtarNy9NpFZ2LtN_TRxYW3Db3SjbO0HZR-vX2PLtBZ3bQLZ-S40qvGDQ91QF5vb17K-2T6dDcpx9PEpJmIicmkMTo3YHWGAhznzDAtNQfJnMitdVoYPkfZvaMFpFxkCDy1Bc55YTEdkMmea71eqm2o1zp8Ka9rtRv48KZ0iN3xCrXBCqXIcw5cp06yvEqB5cZgzjKRtSzcs0zwTRNc9cNjoHZCVSdUdULVQWgbKv6ETB115ygGXa_-i34Dip551w
CitedBy_id crossref_primary_10_1016_j_commtr_2025_100202
crossref_primary_10_3390_s25175421
crossref_primary_10_26599_JICV_2023_9210050
crossref_primary_10_1038_s41598_025_98286_4
crossref_primary_10_1007_s11760_025_04379_y
crossref_primary_10_3389_fnbot_2024_1448538
crossref_primary_10_1109_ACCESS_2025_3548837
crossref_primary_10_3390_s25144381
Cites_doi 10.1145/3301506.3301531
10.1109/ICMLC.2018.8526958
10.1109/CVPR.2016.308
10.1109/CVPR.2001.990517
10.1109/CVPR.2013.237
10.1109/ICAICA52286.2021.9498188
10.1109/CVPR.2016.90
10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00208
10.1109/ICCV.2017.324
10.5755/j01.itc.50.1.25094
10.1109/IMCEC46724.2019.8984055
10.1109/IWAIT.2018.8369767
10.5244/C.31.76
10.48550/arXiv.1804.02767
10.1109/TIV.2020.3010832
10.3390/pr10071285
10.1109/TITS.2016.2617202
10.1109/TPAMI.2009.167
10.1016/S1383-7621(96)00106-3
10.1109/ISPCC48220.2019.8988389
10.1109/TIE.2002.807650
10.1108/JICV-02-2018-0004
10.3390/info11120583
10.1109/CVPR.2008.4587597
10.1109/CVPR.2018.00442
10.1155/2020/5761414
10.1109/ACCESS.2019.2928603
10.1109/ITCA52113.2020.00097
10.1109/ICCE.2019.8661944
10.1109/ECTI-CON51831.2021.9454903
10.1109/TPAMI.2015.2437384
10.1109/ICCT50939.2020.9295791
10.1109/CVPR.2017.106
10.1016/j.aeue.2013.02.001
10.1109/AIID51893.2021.9456462
10.1109/CAC.2018.8623407
10.1145/3065386
10.1109/CVPR.2017.690
10.1109/IAEAC50856.2021.9390613
10.1109/TIM.2021.3065438
10.1109/CISP-BMEI.2016.7852774
10.1007/s11263-013-0620-5
10.1109/ICCV.2017.212
10.1109/SIBGRAPI.2012.40
10.1109/ICCV.1999.790410
10.1109/TPAMI.2015.2389824
10.1109/CVPR.2014.81
10.1109/CVPR.2006.119
10.3390/s18103341
10.1109/ICCV.2017.322
10.1109/IAI50351.2020.9262216
10.1109/ACCESS.2021.3057723
10.1109/ICOIN50884.2021.9333970
10.1109/ICICCS51141.2021.9432144
10.1109/ICCV.2015.169
10.1109/iccsp.2019.8698018
10.1109/CVPR.2005.177
10.1109/TPAMI.2016.2577031
10.5555/3298023.3298188
10.1109/5.726791
10.1108/JICV-11-2020-0014
10.1109/MVT.2009.935537
10.1155/2008/782432
10.1109/TENSYMP50017.2020.9230463
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2016.91
10.1109/CVPR.2015.7298594
10.1109/ICCV.2019.00059
10.1109/CVCI51460.2020.9338478
10.1109/ICSIDP47821.2019.9173158
10.1109/ICACCCN.2018.8748339
10.1109/TITS.2004.838192
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.26599/JICV.2023.9210019
DatabaseName CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2399-9802
EndPage 18
ExternalDocumentID oai_doaj_org_article_2ac2f29766404a3e916f3016cc261575
10_26599_JICV_2023_9210019
GroupedDBID AAFWJ
AAGBP
AAYXX
ABGJK
ABJCF
ABVLG
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
ESBDL
GEI
GROUPED_DOAJ
H13
HCIFZ
JAVBF
K7-
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
XDTOA
ID FETCH-LOGICAL-c357t-c59cca6c0da5270e441c1a9a4091e76ddea7c4b296599a7034752043d82b48d23
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001388239800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2399-9802
IngestDate Fri Oct 03 12:44:40 EDT 2025
Sat Nov 29 05:34:25 EST 2025
Tue Nov 18 22:39:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-c59cca6c0da5270e441c1a9a4091e76ddea7c4b296599a7034752043d82b48d23
OpenAccessLink https://doaj.org/article/2ac2f29766404a3e916f3016cc261575
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_2ac2f29766404a3e916f3016cc261575
crossref_primary_10_26599_JICV_2023_9210019
crossref_citationtrail_10_26599_JICV_2023_9210019
PublicationCentury 2000
PublicationDate 2024-3-00
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-3-00
PublicationDecade 2020
PublicationTitle Journal of intelligent and connected vehicles
PublicationYear 2024
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References ref57
ref56
Wei (ref84) 2021; 57
ref59
ref58
ref53
ref52
ref54
Qiao (ref55) 2020; 50
Li (ref40) 2017
Liang (ref42) 2021; 21
Simonyan (ref67) 2014
Xu (ref89) 2022; 58
ref51
ref50
Zhou (ref99) 2019
ref46
Yang (ref93) 2022; 62
ref45
Liu (ref47) 2020; 40
ref43
ref49
ref8
ref7
ref9
ref4
ref5
Cireşan (ref10) 2011
ref101
Li (ref38) 2022; 48
Ioffe (ref30) 2015
Jeong (ref31) 2017
ref34
Song (ref71) 2021; 40
ref37
ref36
Kang (ref32) 2016; 52
ref33
Liang (ref41) 2021; 35
ref39
Yi (ref94) 2021; 43
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Zhang (ref96) 2020; 56
Zhu (ref100) 2020; 34
Bochkovskiy (ref3) 2020
ref13
ref12
ref15
ref14
ref97
Fu (ref18) 2017
ref11
Cao (ref6) 2017; 22
ref98
ref17
ref16
ref19
Lin (ref44) 2013
ref92
ref91
Song (ref70) 2018; 35
ref90
Zhang (ref95) 2021; 43
Rong (ref63) 2021; 40
ref85
ref88
ref87
Law (ref35) 2019
ref82
Xia (ref86) 2021; 57
ref81
ref83
ref80
ref79
ref78
ref75
ref74
ref77
ref76
Song (ref69) 2019; 55
ref2
ref1
ref73
ref72
ref68
ref64
ref66
ref65
Liu (ref48) 2019; 42
ref60
ref62
ref61
References_xml – ident: ref22
  doi: 10.1145/3301506.3301531
– volume-title: FSSD: Feature fusion single shot multibox detector
  year: 2017
  ident: ref40
– volume: 21
  start-page: 2767
  year: 2021
  ident: ref42
  article-title: Center-based algorithm for multi-class vehicle detection
  publication-title: Sci Technol Eng
– ident: ref7
  doi: 10.1109/ICMLC.2018.8526958
– ident: ref75
  doi: 10.1109/CVPR.2016.308
– volume: 42
  start-page: 47
  year: 2019
  ident: ref48
  article-title: Improved YOLO vehicle detection algorithm
  publication-title: Modern Electronics Technique
– volume: 40
  start-page: 114
  year: 2021
  ident: ref71
  article-title: Urban road vehicle detection method by aerial photography based on improved SSD
  publication-title: Transduc Miscrosyst Technol
– ident: ref79
  doi: 10.1109/CVPR.2001.990517
– ident: ref12
  doi: 10.1109/CVPR.2013.237
– ident: ref1
  doi: 10.1109/ICAICA52286.2021.9498188
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– ident: ref72
  doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00208
– ident: ref46
  doi: 10.1109/ICCV.2017.324
– ident: ref66
  doi: 10.5755/j01.itc.50.1.25094
– ident: ref8
  doi: 10.1109/IMCEC46724.2019.8984055
– ident: ref27
  doi: 10.1109/IWAIT.2018.8369767
– volume-title: Enhancement of SSD by concatenating feature maps for object detection
  year: 2017
  ident: ref31
  doi: 10.5244/C.31.76
– volume: 56
  start-page: 104
  year: 2020
  ident: ref96
  article-title: Improved Yolo_v2 illegal vehicle detection method
  publication-title: Comput Eng Appl
– ident: ref60
  doi: 10.48550/arXiv.1804.02767
– ident: ref82
  doi: 10.1109/TIV.2020.3010832
– volume: 34
  start-page: 1
  year: 2020
  ident: ref100
  article-title: Vehicle detection based on YOLO-TridentNet
  publication-title: J Chongqing Univ Technol (Natural Science)
– ident: ref81
  doi: 10.3390/pr10071285
– ident: ref91
  doi: 10.1109/TITS.2016.2617202
– ident: ref17
  doi: 10.1109/TPAMI.2009.167
– ident: ref2
  doi: 10.1016/S1383-7621(96)00106-3
– ident: ref64
  doi: 10.1109/ISPCC48220.2019.8988389
– volume: 48
  start-page: 266
  year: 2022
  ident: ref38
  article-title: Vehicle detection based on improved SSD algorithm
  publication-title: Computer Engineering
– volume: 40
  start-page: 854
  year: 2020
  ident: ref47
  article-title: Vehicle information detection based on improved RetinaNet
  publication-title: J Comput Appl
– ident: ref4
  doi: 10.1109/TIE.2002.807650
– ident: ref98
  doi: 10.1108/JICV-02-2018-0004
– ident: ref23
  doi: 10.3390/info11120583
– volume: 58
  start-page: 209
  year: 2022
  ident: ref89
  article-title: Improvement of lightweight vehicle detection network based on SSD
  publication-title: Comput Eng Appl
– ident: ref16
  doi: 10.1109/CVPR.2008.4587597
– volume-title: YOLOv4: Optimal speed and accuracy of object detection
  year: 2020
  ident: ref3
– volume: 43
  start-page: 1195
  year: 2021
  ident: ref95
  article-title: A method of vehicle detection at night based on RetinaNet and optimized loss functions
  publication-title: Automot Eng
– ident: ref97
  doi: 10.1109/CVPR.2018.00442
– volume-title: Network in network
  year: 2013
  ident: ref44
– ident: ref88
  doi: 10.1155/2020/5761414
– volume-title: High-performance neural networks for visual object classification
  year: 2011
  ident: ref10
– ident: ref85
  doi: 10.1109/ACCESS.2019.2928603
– ident: ref90
  doi: 10.1109/ITCA52113.2020.00097
– ident: ref92
  doi: 10.1109/ICCE.2019.8661944
– ident: ref33
  doi: 10.1109/ECTI-CON51831.2021.9454903
– ident: ref21
  doi: 10.1109/TPAMI.2015.2437384
– ident: ref39
  doi: 10.1109/ICCT50939.2020.9295791
– volume-title: DSSD: Deconvolutional single shot detector
  year: 2017
  ident: ref18
– ident: ref45
  doi: 10.1109/CVPR.2017.106
– ident: ref51
  doi: 10.1016/j.aeue.2013.02.001
– ident: ref80
  doi: 10.1109/AIID51893.2021.9456462
– ident: ref61
  doi: 10.1109/CAC.2018.8623407
– ident: ref34
  doi: 10.1145/3065386
– ident: ref58
  doi: 10.1109/CVPR.2017.690
– volume: 57
  start-page: 247
  year: 2021
  ident: ref86
  article-title: Improved YOLOv4s dense remote sensing target detection
  publication-title: Comput Eng Appl
– volume: 57
  start-page: 191
  year: 2021
  ident: ref84
  article-title: Target detection of improved CenterNet to remote sensing images
  publication-title: Computer Engineering and Applications
– ident: ref28
  doi: 10.1109/IAEAC50856.2021.9390613
– ident: ref5
  doi: 10.1109/TIM.2021.3065438
– volume: 52
  start-page: 209
  year: 2016
  ident: ref32
  article-title: Improvement of deformable part model and its application in vehicle detection
  publication-title: Computer Engineering and Applications
– volume-title: CornerNet-lite: Efficient keypoint based object detection
  year: 2019
  ident: ref35
– ident: ref29
  doi: 10.1109/CISP-BMEI.2016.7852774
– ident: ref78
  doi: 10.1007/s11263-013-0620-5
– start-page: 448
  volume-title: Proceedings of the 32nd International Conference on Machine Learning
  year: 2015
  ident: ref30
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref65
  doi: 10.1109/ICCV.2017.212
– volume-title: Very deep convolutional networks for large-scale image recognition
  year: 2014
  ident: ref67
– ident: ref36
  doi: 10.1109/SIBGRAPI.2012.40
– ident: ref50
  doi: 10.1109/ICCV.1999.790410
– ident: ref25
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref19
  doi: 10.1109/CVPR.2014.81
– ident: ref101
  doi: 10.1109/CVPR.2006.119
– ident: ref76
  doi: 10.3390/s18103341
– ident: ref24
  doi: 10.1109/ICCV.2017.322
– ident: ref77
  doi: 10.1109/IAI50351.2020.9262216
– ident: ref15
  doi: 10.1109/ACCESS.2021.3057723
– ident: ref14
  doi: 10.1109/ICOIN50884.2021.9333970
– ident: ref68
  doi: 10.1109/ICICCS51141.2021.9432144
– volume: 55
  start-page: 225
  year: 2019
  ident: ref69
  article-title: Improved RetinaNet model for vehicle target detection
  publication-title: Comput Eng Appl
– ident: ref20
  doi: 10.1109/ICCV.2015.169
– ident: ref52
  doi: 10.1109/iccsp.2019.8698018
– ident: ref11
  doi: 10.1109/CVPR.2005.177
– volume-title: Objects as points
  year: 2019
  ident: ref99
– ident: ref62
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref73
  doi: 10.5555/3298023.3298188
– volume: 62
  start-page: 259
  year: 2022
  ident: ref93
  article-title: Application of improved SSD algorithm in intelligent transportation
  publication-title: Telecommun Eng
– volume: 35
  start-page: 137
  year: 2021
  ident: ref41
  article-title: Improved CornerNet-Saccade algorithm for vehicle detection
  publication-title: J Chongqing Univ Technol (Natural Science)
– volume: 35
  start-page: 1270
  year: 2018
  ident: ref70
  article-title: Vehicle target detection in complex scenes based on deep learning method
  publication-title: Comput Appl Res
– ident: ref37
  doi: 10.1109/5.726791
– ident: ref43
  doi: 10.1108/JICV-11-2020-0014
– ident: ref13
  doi: 10.1109/MVT.2009.935537
– volume: 50
  start-page: 926
  year: 2020
  ident: ref55
  article-title: Lightweight vehicle detection network based on SSD
  publication-title: Radio Engineering
– ident: ref53
  doi: 10.1155/2008/782432
– ident: ref56
  doi: 10.1109/TENSYMP50017.2020.9230463
– ident: ref49
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref57
  doi: 10.1109/CVPR.2016.91
– volume: 22
  start-page: 671
  year: 2017
  ident: ref6
  article-title: Vehicle target detection based on Fast R-CNN
  publication-title: Chinese Journal of Image Graphics
– ident: ref74
  doi: 10.1109/CVPR.2015.7298594
– ident: ref9
  doi: 10.1109/ICCV.2019.00059
– ident: ref83
  doi: 10.1109/CVCI51460.2020.9338478
– volume: 43
  start-page: 237
  year: 2021
  ident: ref94
  article-title: Vehicle-based thermal imaging target detection method based on enhanced lightweight network
  publication-title: Infrared Technol
– ident: ref54
  doi: 10.1109/ICSIDP47821.2019.9173158
– ident: ref59
  doi: 10.1109/ICACCCN.2018.8748339
– volume: 40
  start-page: 130
  year: 2021
  ident: ref63
  article-title: Target detection algorithm based on RefineDet network and attention mechanism
  publication-title: Sens Micro Syst
– ident: ref87
  doi: 10.1109/TITS.2004.838192
SSID ssj0002808927
Score 2.340071
SecondaryResourceType review_article
Snippet With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1
SubjectTerms computer vision
deep learning
intelligent transportation system
object detection algorithm
vehicle detection
Title A Review of Vehicle Detection Methods Based on Computer Vision
URI https://doaj.org/article/2ac2f29766404a3e916f3016cc261575
Volume 7
WOSCitedRecordID wos001388239800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2399-9802
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002808927
  issn: 2399-9802
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2399-9802
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002808927
  issn: 2399-9802
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx7YUNrEdvxYkErVCpCoGAB1ixzbESCUojZ05LdzjkMVFlhYMli2ZX3n5O6iu-9D6Dzh0nJS0IjHuYAEhakoZ4WMvEyNpFRIqotabEJMJnI6VfctqS9fExbogQNwfaINKQg4TQ4baeognCngUvpyX3DGomYvjYVqJVOv9S-jWCoiQpcM4alS_dub4VPPi4X3FPHEQ-qHJ2oR9teeZbyNtpqQEA_CUXbQmit30WaLKHAPXQ5w6DHBswIv3bOfiK2r6jqqEgcZ6AX2LsliGDCNVgMOreP76HE8ehheR43yQWRoKqrIpAqQ5Sa2OiUidhCzmEQrDclY4gSHT5IWhuXEswEqDS8tE6lvcrWS5ExaQg9Qp5yV7hBhCACk8IrCPGcMYpWc59YSJxINwRwVoouSbxQy09CCe3WKtwzSgxq5zCOXeeSyBrkuuliteQ-kGL_OvvLgrmZ6Qut6AMycNWbO_jLz0X9scow24GAslJCdoE41_3CnaN0sq5fF_Ky-QfC8-xx9AWErxQI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+Vehicle+Detection+Methods+Based+on+Computer+Vision&rft.jtitle=Journal+of+intelligent+and+connected+vehicles&rft.au=Ma%2C+Changxi&rft.au=Xue%2C+Fansong&rft.date=2024-03-01&rft.issn=2399-9802&rft.eissn=2399-9802&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.26599%2FJICV.2023.9210019&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_JICV_2023_9210019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-9802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-9802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-9802&client=summon