Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant

Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse 'global' process or develops, instead, according to distinct anatomical patterns. Using source-based...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Brain (London, England : 1878) Ročník 139; číslo Pt 1; s. 115 - 126
Hlavní autori: Steenwijk, Martijn D, Geurts, Jeroen J G, Daams, Marita, Tijms, Betty M, Wink, Alle Meije, Balk, Lisanne J, Tewarie, Prejaas K, Uitdehaag, Bernard M J, Barkhof, Frederik, Vrenken, Hugo, Pouwels, Petra J W
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.01.2016
Predmet:
ISSN:1460-2156
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse 'global' process or develops, instead, according to distinct anatomical patterns. Using source-based morphometry we searched for anatomical patterns of co-varying cortical thickness and assessed their relationships with white matter pathology, physical disability and cognitive functioning. Magnetic resonance imaging was performed at 3 T in 208 patients with long-standing multiple sclerosis (141 females; age = 53.7 ± 9.6 years; disease duration = 20.2 ± 7.1 years) and 60 age- and sex-matched healthy controls. Spatial independent component analysis was performed on cortical thickness maps derived from 3D T1-weighted images across all subjects to identify co-varying patterns. The loadings, which reflect the presence of each cortical thickness pattern in a subject, were compared between patients with multiple sclerosis and healthy controls with generalized linear models. Stepwise linear regression analyses were used to assess whether white matter pathology was associated with these loadings and to identify the cortical thickness patterns that predict measures of physical and cognitive dysfunction. Ten cortical thickness patterns were identified, of which six had significantly lower loadings in patients with multiple sclerosis than in controls: the largest loading differences corresponded to the pattern predominantly involving the bilateral temporal pole and entorhinal cortex, and the pattern involving the bilateral posterior cingulate cortex. In patients with multiple sclerosis, overall white matter lesion load was negatively associated with the loadings of these two patterns. The final model for physical dysfunction as measured with Expanded Disability Status Scale score (adjusted R(2) = 0.297; P < 0.001) included the predictors age, overall white matter lesion load, the loadings of two cortical thickness patterns (bilateral sensorimotor cortex and bilateral insula), and global cortical thickness. The final model predicting average cognition (adjusted R(2) = 0.469; P < 0.001) consisted of age, the loadings of two cortical thickness patterns (bilateral posterior cingulate cortex and bilateral temporal pole), overall white matter lesion load and normal-appearing white matter integrity. Although white matter pathology measures were part of the final clinical regression models, they explained limited incremental variance (to a maximum of 4%). Several cortical atrophy patterns relevant for multiple sclerosis were found. This suggests that cortical atrophy in multiple sclerosis occurs largely in a non-random manner and develops (at least partly) according to distinct anatomical patterns. In addition, these cortical atrophy patterns showed stronger associations with clinical (especially cognitive) dysfunction than global cortical atrophy.
AbstractList Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse 'global' process or develops, instead, according to distinct anatomical patterns. Using source-based morphometry we searched for anatomical patterns of co-varying cortical thickness and assessed their relationships with white matter pathology, physical disability and cognitive functioning. Magnetic resonance imaging was performed at 3 T in 208 patients with long-standing multiple sclerosis (141 females; age = 53.7 ± 9.6 years; disease duration = 20.2 ± 7.1 years) and 60 age- and sex-matched healthy controls. Spatial independent component analysis was performed on cortical thickness maps derived from 3D T1-weighted images across all subjects to identify co-varying patterns. The loadings, which reflect the presence of each cortical thickness pattern in a subject, were compared between patients with multiple sclerosis and healthy controls with generalized linear models. Stepwise linear regression analyses were used to assess whether white matter pathology was associated with these loadings and to identify the cortical thickness patterns that predict measures of physical and cognitive dysfunction. Ten cortical thickness patterns were identified, of which six had significantly lower loadings in patients with multiple sclerosis than in controls: the largest loading differences corresponded to the pattern predominantly involving the bilateral temporal pole and entorhinal cortex, and the pattern involving the bilateral posterior cingulate cortex. In patients with multiple sclerosis, overall white matter lesion load was negatively associated with the loadings of these two patterns. The final model for physical dysfunction as measured with Expanded Disability Status Scale score (adjusted R(2) = 0.297; P < 0.001) included the predictors age, overall white matter lesion load, the loadings of two cortical thickness patterns (bilateral sensorimotor cortex and bilateral insula), and global cortical thickness. The final model predicting average cognition (adjusted R(2) = 0.469; P < 0.001) consisted of age, the loadings of two cortical thickness patterns (bilateral posterior cingulate cortex and bilateral temporal pole), overall white matter lesion load and normal-appearing white matter integrity. Although white matter pathology measures were part of the final clinical regression models, they explained limited incremental variance (to a maximum of 4%). Several cortical atrophy patterns relevant for multiple sclerosis were found. This suggests that cortical atrophy in multiple sclerosis occurs largely in a non-random manner and develops (at least partly) according to distinct anatomical patterns. In addition, these cortical atrophy patterns showed stronger associations with clinical (especially cognitive) dysfunction than global cortical atrophy.
Author Daams, Marita
Tijms, Betty M
Uitdehaag, Bernard M J
Wink, Alle Meije
Pouwels, Petra J W
Vrenken, Hugo
Barkhof, Frederik
Steenwijk, Martijn D
Balk, Lisanne J
Tewarie, Prejaas K
Geurts, Jeroen J G
Author_xml – sequence: 1
  givenname: Martijn D
  surname: Steenwijk
  fullname: Steenwijk, Martijn D
  email: m.steenwijk@vumc.nl
  organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands 2 Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands m.steenwijk@vumc.nl
– sequence: 2
  givenname: Jeroen J G
  surname: Geurts
  fullname: Geurts, Jeroen J G
  organization: 3 Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 3
  givenname: Marita
  surname: Daams
  fullname: Daams, Marita
  organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands 3 Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 4
  givenname: Betty M
  surname: Tijms
  fullname: Tijms, Betty M
  organization: 4 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 5
  givenname: Alle Meije
  surname: Wink
  fullname: Wink, Alle Meije
  organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 6
  givenname: Lisanne J
  surname: Balk
  fullname: Balk, Lisanne J
  organization: 4 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 7
  givenname: Prejaas K
  surname: Tewarie
  fullname: Tewarie, Prejaas K
  organization: 4 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 8
  givenname: Bernard M J
  surname: Uitdehaag
  fullname: Uitdehaag, Bernard M J
  organization: 4 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 9
  givenname: Frederik
  surname: Barkhof
  fullname: Barkhof, Frederik
  organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 10
  givenname: Hugo
  surname: Vrenken
  fullname: Vrenken, Hugo
  organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands 2 Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
– sequence: 11
  givenname: Petra J W
  surname: Pouwels
  fullname: Pouwels, Petra J W
  organization: 2 Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26637488$$D View this record in MEDLINE/PubMed
BookMark eNo1kEtLxDAYRYMozkN3riVLN3XyaJNmKYMvGHCjbkuSfsVImtYkHZl_b8Vxc-_mcC7cFToNQwCErii5pUTxjYnahY3-3nMuT9CSloIUjFZigVYpfRJCS87EOVowIbgs63qJ3rdDzM5qj3WOw_hxwKPOGWJI2AXcTz670QNO1kMckktYR8DzahF1aIcez4mtd-FX4Q84goe9DvkCnXXaJ7g89hq9Pdy_bp-K3cvj8_ZuV1heyTynkgB1zVQrFWslEF5RxrqqLVteqc4qw6mcWdG1WhhqLINSSVMzVlIjK7ZGN3_eMQ5fE6Tc9C5Z8F4HGKbUUClIXZdKiBm9PqKT6aFtxuh6HQ_N_xfsB9hSYio
CitedBy_id crossref_primary_10_1111_ene_14723
crossref_primary_10_1212_NXI_0000000000000375
crossref_primary_10_1016_j_labinv_2023_100189
crossref_primary_10_1016_j_nicl_2022_103001
crossref_primary_10_1002_ana_26290
crossref_primary_10_1093_brain_awy202
crossref_primary_10_1016_j_nicl_2017_11_002
crossref_primary_10_1177_15459683231164787
crossref_primary_10_1177_13524585211008743
crossref_primary_10_1093_brain_awac474
crossref_primary_10_1097_TGR_0000000000000235
crossref_primary_10_3390_s23177629
crossref_primary_10_1002_brb3_3327
crossref_primary_10_1177_0271678X221121849
crossref_primary_10_1002_hbm_70107
crossref_primary_10_1016_j_it_2023_02_002
crossref_primary_10_1177_1352458517699874
crossref_primary_10_1038_s41746_019_0127_8
crossref_primary_10_1177_13524585211044957
crossref_primary_10_3389_fneur_2021_608491
crossref_primary_10_1007_s00415_023_11937_2
crossref_primary_10_1016_j_media_2021_102267
crossref_primary_10_1016_j_neuroimage_2024_120617
crossref_primary_10_1016_j_jneuroim_2024_578504
crossref_primary_10_3390_ijms24021639
crossref_primary_10_1007_s00415_022_11535_8
crossref_primary_10_3389_fneur_2017_00727
crossref_primary_10_1007_s11682_021_00591_9
crossref_primary_10_1111_ene_14186
crossref_primary_10_1111_jon_12654
crossref_primary_10_1177_13524585211032510
crossref_primary_10_1016_j_jns_2020_116768
crossref_primary_10_1155_ane_3001118
crossref_primary_10_1177_1352458519838205
crossref_primary_10_1016_j_nicl_2022_102959
crossref_primary_10_1111_ene_15289
crossref_primary_10_1080_13543784_2021_1942840
crossref_primary_10_3390_diagnostics11030464
crossref_primary_10_1007_s40120_021_00239_2
crossref_primary_10_1177_1352458517708463
crossref_primary_10_1177_1352458516653666
crossref_primary_10_1007_s10072_023_06817_6
crossref_primary_10_1080_14737175_2020_1757435
crossref_primary_10_1093_brain_awac203
crossref_primary_10_1177_1352458516676642
crossref_primary_10_3389_frobt_2022_926255
crossref_primary_10_1007_s00330_025_11892_8
crossref_primary_10_1111_dmcn_14487
crossref_primary_10_1007_s00415_020_09969_z
crossref_primary_10_1136_jnnp_2021_328568
crossref_primary_10_1111_jon_12998
crossref_primary_10_1007_s12021_020_09499_z
crossref_primary_10_1212_WNL_0000000000210080
crossref_primary_10_1016_j_imu_2021_100766
crossref_primary_10_1038_s41582_020_00439_8
crossref_primary_10_1038_s41598_019_50025_2
crossref_primary_10_1016_j_neuroimage_2021_117945
crossref_primary_10_1212_NXI_0000000000200222
crossref_primary_10_1002_acn3_52085
crossref_primary_10_1073_pnas_2025000118
crossref_primary_10_1097_MD_0000000000003208
crossref_primary_10_1093_brain_awad126
crossref_primary_10_1002_jmri_26218
crossref_primary_10_1016_j_msard_2019_101899
crossref_primary_10_1080_14737175_2025_2450788
crossref_primary_10_1016_j_msard_2022_103838
crossref_primary_10_1177_1352458519881760
crossref_primary_10_1016_j_nicl_2023_103454
crossref_primary_10_1007_s00415_024_12281_9
crossref_primary_10_1212_WNL_0000000000213349
crossref_primary_10_1016_j_ypsc_2023_04_001
crossref_primary_10_1016_j_neurobiolaging_2020_02_002
crossref_primary_10_1111_ane_12601
crossref_primary_10_1186_s12859_019_2609_8
crossref_primary_10_1038_s41583_018_0053_9
crossref_primary_10_1590_0004_282x20170072
crossref_primary_10_1186_s12967_024_04892_7
crossref_primary_10_1088_2057_1976_ad1e77
crossref_primary_10_1016_j_ebiom_2020_102807
crossref_primary_10_1136_jnnp_2025_335925
crossref_primary_10_1148_radiol_2021203414
crossref_primary_10_1007_s00415_022_11494_0
crossref_primary_10_3389_fneur_2017_00433
crossref_primary_10_1016_j_humov_2016_06_010
crossref_primary_10_1002_brb3_954
crossref_primary_10_1080_14737175_2016_1181543
crossref_primary_10_3390_ijms26178523
crossref_primary_10_1088_1741_2552_ac0f4b
crossref_primary_10_1002_ana_25063
crossref_primary_10_1186_s12967_020_02317_9
crossref_primary_10_1016_j_remnie_2021_03_016
crossref_primary_10_3389_fnagi_2022_942095
crossref_primary_10_1093_brain_awab033
crossref_primary_10_3389_fneur_2019_01173
crossref_primary_10_1212_WNL_0000000000007499
crossref_primary_10_1016_j_nicl_2021_102705
crossref_primary_10_1136_jnnp_2022_330203
crossref_primary_10_1177_13524585251314779
crossref_primary_10_1002_acn3_52311
crossref_primary_10_1371_journal_pcbi_1005350
crossref_primary_10_1080_02699206_2023_2170830
crossref_primary_10_1038_s41380_020_00932_y
crossref_primary_10_1177_1352458517726382
crossref_primary_10_1002_hbm_26117
crossref_primary_10_1002_brb3_614
crossref_primary_10_1007_s00415_024_12517_8
crossref_primary_10_1093_cercor_bhaa034
crossref_primary_10_1017_S1355617717000959
crossref_primary_10_1109_ACCESS_2019_2926697
crossref_primary_10_3390_biomedicines7010014
crossref_primary_10_3390_app11041773
crossref_primary_10_1007_s00330_024_11157_w
crossref_primary_10_1038_s41582_019_0183_3
crossref_primary_10_1111_ene_14214
crossref_primary_10_1177_1352458517740214
crossref_primary_10_3389_fimmu_2023_1135540
crossref_primary_10_1111_jnp_12198
crossref_primary_10_1002_hbm_24849
crossref_primary_10_1038_s41598_022_08477_6
crossref_primary_10_1016_j_brainres_2016_04_027
crossref_primary_10_1097_WCO_0000000000000456
crossref_primary_10_1212_WNL_0000000000003689
crossref_primary_10_7554_eLife_49298
crossref_primary_10_1111_jon_12814
crossref_primary_10_3390_brainsci11030346
crossref_primary_10_1212_WNL_0000000000009097
crossref_primary_10_3389_fnmol_2023_1210091
crossref_primary_10_1007_s11910_020_01045_3
crossref_primary_10_1007_s00415_023_11736_9
crossref_primary_10_1016_j_nicl_2016_06_009
crossref_primary_10_1093_brain_awv354
crossref_primary_10_1177_2055217320902481
crossref_primary_10_1016_j_clineuro_2021_106805
crossref_primary_10_1111_ene_14239
crossref_primary_10_1002_ana_25145
crossref_primary_10_1002_ana_25020
crossref_primary_10_1016_j_bspc_2019_101591
crossref_primary_10_1177_1352458519900972
crossref_primary_10_1016_j_crad_2019_07_005
crossref_primary_10_3390_biomedicines7010022
crossref_primary_10_3389_fnins_2023_1268860
crossref_primary_10_1007_s00415_024_12795_2
crossref_primary_10_1371_journal_pone_0177727
crossref_primary_10_1038_s41380_024_02452_5
crossref_primary_10_3390_ijms231810651
crossref_primary_10_1093_ageing_afab200
crossref_primary_10_1002_acn3_51029
crossref_primary_10_1136_jnnp_2020_325610
crossref_primary_10_1212_WNL_0000000000005279
crossref_primary_10_3389_fneur_2023_1268411
crossref_primary_10_1007_s11307_017_1052_3
crossref_primary_10_3390_brainsci10110798
crossref_primary_10_1007_s00415_021_10576_9
crossref_primary_10_1177_1352458517751650
crossref_primary_10_1177_1352458517692886
crossref_primary_10_1038_s41467_020_18367_y
crossref_primary_10_1002_hbm_26553
crossref_primary_10_1177_13524585241259648
crossref_primary_10_1016_j_nicl_2021_102632
crossref_primary_10_1111_ene_15067
crossref_primary_10_1212_NXI_0000000000000681
crossref_primary_10_1007_s00415_016_8374_y
crossref_primary_10_1016_j_nicl_2019_101926
crossref_primary_10_1177_1756286419838673
crossref_primary_10_1016_j_nic_2024_03_008
crossref_primary_10_1093_brain_awy114
crossref_primary_10_7717_peerj_2442
crossref_primary_10_3389_fneur_2020_00872
crossref_primary_10_1016_j_jns_2017_10_019
crossref_primary_10_1212_WNL_0000000000004977
crossref_primary_10_1016_j_visres_2020_01_003
crossref_primary_10_1002_hbm_25375
crossref_primary_10_1007_s00330_021_08405_8
crossref_primary_10_1016_j_nicl_2021_102606
crossref_primary_10_1177_20552173231196990
crossref_primary_10_3389_fneur_2016_00147
crossref_primary_10_1002_jdn_10090
crossref_primary_10_3390_app14135626
crossref_primary_10_1016_j_bbi_2024_05_015
crossref_primary_10_1002_acn3_50872
crossref_primary_10_1007_s00415_023_11945_2
crossref_primary_10_1093_brain_awz355
crossref_primary_10_1002_acn3_52261
crossref_primary_10_1212_WNL_0000000000003511
crossref_primary_10_1212_WNL_0000000000011494
crossref_primary_10_1016_j_msard_2019_101462
crossref_primary_10_1093_brain_awaa233
crossref_primary_10_1177_1352458516671027
crossref_primary_10_1016_j_apmr_2022_10_009
crossref_primary_10_1212_NXI_0000000000000587
crossref_primary_10_1002_brb3_2050
crossref_primary_10_1038_s41380_023_01943_1
crossref_primary_10_1007_s00415_022_11415_1
crossref_primary_10_1212_WNL_0000000000008198
crossref_primary_10_1136_jnnp_2022_330894
crossref_primary_10_17116_jnevro202512504267
crossref_primary_10_1002_acn3_52026
crossref_primary_10_3389_fnagi_2019_00105
crossref_primary_10_1002_hbm_24940
crossref_primary_10_1212_WNL_0000000000003982
crossref_primary_10_1002_hbm_23615
crossref_primary_10_3389_fneur_2021_666868
crossref_primary_10_1080_14737175_2024_2304116
ContentType Journal Article
Copyright The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/brain/awv337
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 126
ExternalDocumentID 26637488
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6.Y
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABQTQ
ABSAR
ABSMQ
ABVGC
ABWST
ABXVV
ABZBJ
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
ECM
EE~
EIF
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NPM
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
VXZ
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
7X8
ABPQP
ABXZS
ADNBA
AEMQT
AJBYB
AJNCP
ALXQX
ID FETCH-LOGICAL-c357t-c397ee8829d792d7e035122f5d4d359fc9b317c356fda6b1bc2e497b82241b752
IEDL.DBID 7X8
ISICitedReferencesCount 234
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370205000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Oct 02 10:30:47 EDT 2025
Wed Feb 19 01:59:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords neurodegeneration
white matter
grey matter
MRI
multiple sclerosis
Language English
License The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-c397ee8829d792d7e035122f5d4d359fc9b317c356fda6b1bc2e497b82241b752
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26637488
PQID 1760884966
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1760884966
pubmed_primary_26637488
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2016
References 26747854 - Brain. 2016 Jan;139(Pt 1):7-10
References_xml – reference: 26747854 - Brain. 2016 Jan;139(Pt 1):7-10
SSID ssj0014326
Score 2.5943801
Snippet Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 115
SubjectTerms Atrophy - pathology
Case-Control Studies
Cerebral Cortex - pathology
Cognition Disorders - complications
Cognition Disorders - pathology
Disability Evaluation
Female
Gray Matter - pathology
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Models, Neurological
Multiple Sclerosis - complications
Multiple Sclerosis - pathology
Neuroimaging
White Matter - pathology
Title Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant
URI https://www.ncbi.nlm.nih.gov/pubmed/26637488
https://www.proquest.com/docview/1760884966
Volume 139
WOSCitedRecordID wos000370205000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7Uinjx_agvInhdSh67aU4iYvFgSw8qvS15LRR0t3ZrxX_vZJvSkyB4mcsmbBgmmS_fTGYAbvDG5b0XPJG-4IlgKJTlImFMpsoUKX5u6sw-ycGgOxqpYSTc6phWuTwTm4PaVTZw5B0qM9wQAtH57eQjCV2jQnQ1ttBYhxZHKBOsWo5WUQSB2CQmu-PFvWNC04WO_ppzLn8HlI1j6e3-d0l7sBMhJblb2MA-rPnyALb6MWh-CK_31bRhrEngvVGtZNIU1SxrMi7JMqOQ1DgZXea4JnrqSVmVCboxV70TlGT5gPLtm4QuKwi_Z0fw0nt4vn9MYjuFxPJUzlAq6T0iauWkYk76EERkrEidcDxVhVUGwQSOzQqnM0ONZV4oaUKeKTUyZcewgT_3p0BEZqnpakUZdUK6TMtCU28zRrm2XIs2XC81lqO5hhiELn31WecrnbXhZKH2fLKoq5EjVgjFcLpnf5h9DtsIXSIZcgGtAjerv4RNO5-N6-lVYwcoB8P-Dw9bwUA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+atrophy+patterns+in+multiple+sclerosis+are+non-random+and+clinically+relevant&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Steenwijk%2C+Martijn+D&rft.au=Geurts%2C+Jeroen+J+G&rft.au=Daams%2C+Marita&rft.au=Tijms%2C+Betty+M&rft.date=2016-01-01&rft.eissn=1460-2156&rft.volume=139&rft.issue=Pt+1&rft.spage=115&rft_id=info:doi/10.1093%2Fbrain%2Fawv337&rft_id=info%3Apmid%2F26637488&rft_id=info%3Apmid%2F26637488&rft.externalDocID=26637488