Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant
Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse 'global' process or develops, instead, according to distinct anatomical patterns. Using source-based...
Uložené v:
| Vydané v: | Brain (London, England : 1878) Ročník 139; číslo Pt 1; s. 115 - 126 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
01.01.2016
|
| Predmet: | |
| ISSN: | 1460-2156 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse 'global' process or develops, instead, according to distinct anatomical patterns. Using source-based morphometry we searched for anatomical patterns of co-varying cortical thickness and assessed their relationships with white matter pathology, physical disability and cognitive functioning. Magnetic resonance imaging was performed at 3 T in 208 patients with long-standing multiple sclerosis (141 females; age = 53.7 ± 9.6 years; disease duration = 20.2 ± 7.1 years) and 60 age- and sex-matched healthy controls. Spatial independent component analysis was performed on cortical thickness maps derived from 3D T1-weighted images across all subjects to identify co-varying patterns. The loadings, which reflect the presence of each cortical thickness pattern in a subject, were compared between patients with multiple sclerosis and healthy controls with generalized linear models. Stepwise linear regression analyses were used to assess whether white matter pathology was associated with these loadings and to identify the cortical thickness patterns that predict measures of physical and cognitive dysfunction. Ten cortical thickness patterns were identified, of which six had significantly lower loadings in patients with multiple sclerosis than in controls: the largest loading differences corresponded to the pattern predominantly involving the bilateral temporal pole and entorhinal cortex, and the pattern involving the bilateral posterior cingulate cortex. In patients with multiple sclerosis, overall white matter lesion load was negatively associated with the loadings of these two patterns. The final model for physical dysfunction as measured with Expanded Disability Status Scale score (adjusted R(2) = 0.297; P < 0.001) included the predictors age, overall white matter lesion load, the loadings of two cortical thickness patterns (bilateral sensorimotor cortex and bilateral insula), and global cortical thickness. The final model predicting average cognition (adjusted R(2) = 0.469; P < 0.001) consisted of age, the loadings of two cortical thickness patterns (bilateral posterior cingulate cortex and bilateral temporal pole), overall white matter lesion load and normal-appearing white matter integrity. Although white matter pathology measures were part of the final clinical regression models, they explained limited incremental variance (to a maximum of 4%). Several cortical atrophy patterns relevant for multiple sclerosis were found. This suggests that cortical atrophy in multiple sclerosis occurs largely in a non-random manner and develops (at least partly) according to distinct anatomical patterns. In addition, these cortical atrophy patterns showed stronger associations with clinical (especially cognitive) dysfunction than global cortical atrophy. |
|---|---|
| AbstractList | Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in multiple sclerosis is a diffuse 'global' process or develops, instead, according to distinct anatomical patterns. Using source-based morphometry we searched for anatomical patterns of co-varying cortical thickness and assessed their relationships with white matter pathology, physical disability and cognitive functioning. Magnetic resonance imaging was performed at 3 T in 208 patients with long-standing multiple sclerosis (141 females; age = 53.7 ± 9.6 years; disease duration = 20.2 ± 7.1 years) and 60 age- and sex-matched healthy controls. Spatial independent component analysis was performed on cortical thickness maps derived from 3D T1-weighted images across all subjects to identify co-varying patterns. The loadings, which reflect the presence of each cortical thickness pattern in a subject, were compared between patients with multiple sclerosis and healthy controls with generalized linear models. Stepwise linear regression analyses were used to assess whether white matter pathology was associated with these loadings and to identify the cortical thickness patterns that predict measures of physical and cognitive dysfunction. Ten cortical thickness patterns were identified, of which six had significantly lower loadings in patients with multiple sclerosis than in controls: the largest loading differences corresponded to the pattern predominantly involving the bilateral temporal pole and entorhinal cortex, and the pattern involving the bilateral posterior cingulate cortex. In patients with multiple sclerosis, overall white matter lesion load was negatively associated with the loadings of these two patterns. The final model for physical dysfunction as measured with Expanded Disability Status Scale score (adjusted R(2) = 0.297; P < 0.001) included the predictors age, overall white matter lesion load, the loadings of two cortical thickness patterns (bilateral sensorimotor cortex and bilateral insula), and global cortical thickness. The final model predicting average cognition (adjusted R(2) = 0.469; P < 0.001) consisted of age, the loadings of two cortical thickness patterns (bilateral posterior cingulate cortex and bilateral temporal pole), overall white matter lesion load and normal-appearing white matter integrity. Although white matter pathology measures were part of the final clinical regression models, they explained limited incremental variance (to a maximum of 4%). Several cortical atrophy patterns relevant for multiple sclerosis were found. This suggests that cortical atrophy in multiple sclerosis occurs largely in a non-random manner and develops (at least partly) according to distinct anatomical patterns. In addition, these cortical atrophy patterns showed stronger associations with clinical (especially cognitive) dysfunction than global cortical atrophy. |
| Author | Daams, Marita Tijms, Betty M Uitdehaag, Bernard M J Wink, Alle Meije Pouwels, Petra J W Vrenken, Hugo Barkhof, Frederik Steenwijk, Martijn D Balk, Lisanne J Tewarie, Prejaas K Geurts, Jeroen J G |
| Author_xml | – sequence: 1 givenname: Martijn D surname: Steenwijk fullname: Steenwijk, Martijn D email: m.steenwijk@vumc.nl organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands 2 Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands m.steenwijk@vumc.nl – sequence: 2 givenname: Jeroen J G surname: Geurts fullname: Geurts, Jeroen J G organization: 3 Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 3 givenname: Marita surname: Daams fullname: Daams, Marita organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands 3 Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 4 givenname: Betty M surname: Tijms fullname: Tijms, Betty M organization: 4 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 5 givenname: Alle Meije surname: Wink fullname: Wink, Alle Meije organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 6 givenname: Lisanne J surname: Balk fullname: Balk, Lisanne J organization: 4 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 7 givenname: Prejaas K surname: Tewarie fullname: Tewarie, Prejaas K organization: 4 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 8 givenname: Bernard M J surname: Uitdehaag fullname: Uitdehaag, Bernard M J organization: 4 Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 9 givenname: Frederik surname: Barkhof fullname: Barkhof, Frederik organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 10 givenname: Hugo surname: Vrenken fullname: Vrenken, Hugo organization: 1 Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands 2 Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands – sequence: 11 givenname: Petra J W surname: Pouwels fullname: Pouwels, Petra J W organization: 2 Department of Physics and Medical Technology, Neuroscience Campus Amsterdam, VU University Medical Centre, The Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26637488$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kEtLxDAYRYMozkN3riVLN3XyaJNmKYMvGHCjbkuSfsVImtYkHZl_b8Vxc-_mcC7cFToNQwCErii5pUTxjYnahY3-3nMuT9CSloIUjFZigVYpfRJCS87EOVowIbgs63qJ3rdDzM5qj3WOw_hxwKPOGWJI2AXcTz670QNO1kMckktYR8DzahF1aIcez4mtd-FX4Q84goe9DvkCnXXaJ7g89hq9Pdy_bp-K3cvj8_ZuV1heyTynkgB1zVQrFWslEF5RxrqqLVteqc4qw6mcWdG1WhhqLINSSVMzVlIjK7ZGN3_eMQ5fE6Tc9C5Z8F4HGKbUUClIXZdKiBm9PqKT6aFtxuh6HQ_N_xfsB9hSYio |
| CitedBy_id | crossref_primary_10_1111_ene_14723 crossref_primary_10_1212_NXI_0000000000000375 crossref_primary_10_1016_j_labinv_2023_100189 crossref_primary_10_1016_j_nicl_2022_103001 crossref_primary_10_1002_ana_26290 crossref_primary_10_1093_brain_awy202 crossref_primary_10_1016_j_nicl_2017_11_002 crossref_primary_10_1177_15459683231164787 crossref_primary_10_1177_13524585211008743 crossref_primary_10_1093_brain_awac474 crossref_primary_10_1097_TGR_0000000000000235 crossref_primary_10_3390_s23177629 crossref_primary_10_1002_brb3_3327 crossref_primary_10_1177_0271678X221121849 crossref_primary_10_1002_hbm_70107 crossref_primary_10_1016_j_it_2023_02_002 crossref_primary_10_1177_1352458517699874 crossref_primary_10_1038_s41746_019_0127_8 crossref_primary_10_1177_13524585211044957 crossref_primary_10_3389_fneur_2021_608491 crossref_primary_10_1007_s00415_023_11937_2 crossref_primary_10_1016_j_media_2021_102267 crossref_primary_10_1016_j_neuroimage_2024_120617 crossref_primary_10_1016_j_jneuroim_2024_578504 crossref_primary_10_3390_ijms24021639 crossref_primary_10_1007_s00415_022_11535_8 crossref_primary_10_3389_fneur_2017_00727 crossref_primary_10_1007_s11682_021_00591_9 crossref_primary_10_1111_ene_14186 crossref_primary_10_1111_jon_12654 crossref_primary_10_1177_13524585211032510 crossref_primary_10_1016_j_jns_2020_116768 crossref_primary_10_1155_ane_3001118 crossref_primary_10_1177_1352458519838205 crossref_primary_10_1016_j_nicl_2022_102959 crossref_primary_10_1111_ene_15289 crossref_primary_10_1080_13543784_2021_1942840 crossref_primary_10_3390_diagnostics11030464 crossref_primary_10_1007_s40120_021_00239_2 crossref_primary_10_1177_1352458517708463 crossref_primary_10_1177_1352458516653666 crossref_primary_10_1007_s10072_023_06817_6 crossref_primary_10_1080_14737175_2020_1757435 crossref_primary_10_1093_brain_awac203 crossref_primary_10_1177_1352458516676642 crossref_primary_10_3389_frobt_2022_926255 crossref_primary_10_1007_s00330_025_11892_8 crossref_primary_10_1111_dmcn_14487 crossref_primary_10_1007_s00415_020_09969_z crossref_primary_10_1136_jnnp_2021_328568 crossref_primary_10_1111_jon_12998 crossref_primary_10_1007_s12021_020_09499_z crossref_primary_10_1212_WNL_0000000000210080 crossref_primary_10_1016_j_imu_2021_100766 crossref_primary_10_1038_s41582_020_00439_8 crossref_primary_10_1038_s41598_019_50025_2 crossref_primary_10_1016_j_neuroimage_2021_117945 crossref_primary_10_1212_NXI_0000000000200222 crossref_primary_10_1002_acn3_52085 crossref_primary_10_1073_pnas_2025000118 crossref_primary_10_1097_MD_0000000000003208 crossref_primary_10_1093_brain_awad126 crossref_primary_10_1002_jmri_26218 crossref_primary_10_1016_j_msard_2019_101899 crossref_primary_10_1080_14737175_2025_2450788 crossref_primary_10_1016_j_msard_2022_103838 crossref_primary_10_1177_1352458519881760 crossref_primary_10_1016_j_nicl_2023_103454 crossref_primary_10_1007_s00415_024_12281_9 crossref_primary_10_1212_WNL_0000000000213349 crossref_primary_10_1016_j_ypsc_2023_04_001 crossref_primary_10_1016_j_neurobiolaging_2020_02_002 crossref_primary_10_1111_ane_12601 crossref_primary_10_1186_s12859_019_2609_8 crossref_primary_10_1038_s41583_018_0053_9 crossref_primary_10_1590_0004_282x20170072 crossref_primary_10_1186_s12967_024_04892_7 crossref_primary_10_1088_2057_1976_ad1e77 crossref_primary_10_1016_j_ebiom_2020_102807 crossref_primary_10_1136_jnnp_2025_335925 crossref_primary_10_1148_radiol_2021203414 crossref_primary_10_1007_s00415_022_11494_0 crossref_primary_10_3389_fneur_2017_00433 crossref_primary_10_1016_j_humov_2016_06_010 crossref_primary_10_1002_brb3_954 crossref_primary_10_1080_14737175_2016_1181543 crossref_primary_10_3390_ijms26178523 crossref_primary_10_1088_1741_2552_ac0f4b crossref_primary_10_1002_ana_25063 crossref_primary_10_1186_s12967_020_02317_9 crossref_primary_10_1016_j_remnie_2021_03_016 crossref_primary_10_3389_fnagi_2022_942095 crossref_primary_10_1093_brain_awab033 crossref_primary_10_3389_fneur_2019_01173 crossref_primary_10_1212_WNL_0000000000007499 crossref_primary_10_1016_j_nicl_2021_102705 crossref_primary_10_1136_jnnp_2022_330203 crossref_primary_10_1177_13524585251314779 crossref_primary_10_1002_acn3_52311 crossref_primary_10_1371_journal_pcbi_1005350 crossref_primary_10_1080_02699206_2023_2170830 crossref_primary_10_1038_s41380_020_00932_y crossref_primary_10_1177_1352458517726382 crossref_primary_10_1002_hbm_26117 crossref_primary_10_1002_brb3_614 crossref_primary_10_1007_s00415_024_12517_8 crossref_primary_10_1093_cercor_bhaa034 crossref_primary_10_1017_S1355617717000959 crossref_primary_10_1109_ACCESS_2019_2926697 crossref_primary_10_3390_biomedicines7010014 crossref_primary_10_3390_app11041773 crossref_primary_10_1007_s00330_024_11157_w crossref_primary_10_1038_s41582_019_0183_3 crossref_primary_10_1111_ene_14214 crossref_primary_10_1177_1352458517740214 crossref_primary_10_3389_fimmu_2023_1135540 crossref_primary_10_1111_jnp_12198 crossref_primary_10_1002_hbm_24849 crossref_primary_10_1038_s41598_022_08477_6 crossref_primary_10_1016_j_brainres_2016_04_027 crossref_primary_10_1097_WCO_0000000000000456 crossref_primary_10_1212_WNL_0000000000003689 crossref_primary_10_7554_eLife_49298 crossref_primary_10_1111_jon_12814 crossref_primary_10_3390_brainsci11030346 crossref_primary_10_1212_WNL_0000000000009097 crossref_primary_10_3389_fnmol_2023_1210091 crossref_primary_10_1007_s11910_020_01045_3 crossref_primary_10_1007_s00415_023_11736_9 crossref_primary_10_1016_j_nicl_2016_06_009 crossref_primary_10_1093_brain_awv354 crossref_primary_10_1177_2055217320902481 crossref_primary_10_1016_j_clineuro_2021_106805 crossref_primary_10_1111_ene_14239 crossref_primary_10_1002_ana_25145 crossref_primary_10_1002_ana_25020 crossref_primary_10_1016_j_bspc_2019_101591 crossref_primary_10_1177_1352458519900972 crossref_primary_10_1016_j_crad_2019_07_005 crossref_primary_10_3390_biomedicines7010022 crossref_primary_10_3389_fnins_2023_1268860 crossref_primary_10_1007_s00415_024_12795_2 crossref_primary_10_1371_journal_pone_0177727 crossref_primary_10_1038_s41380_024_02452_5 crossref_primary_10_3390_ijms231810651 crossref_primary_10_1093_ageing_afab200 crossref_primary_10_1002_acn3_51029 crossref_primary_10_1136_jnnp_2020_325610 crossref_primary_10_1212_WNL_0000000000005279 crossref_primary_10_3389_fneur_2023_1268411 crossref_primary_10_1007_s11307_017_1052_3 crossref_primary_10_3390_brainsci10110798 crossref_primary_10_1007_s00415_021_10576_9 crossref_primary_10_1177_1352458517751650 crossref_primary_10_1177_1352458517692886 crossref_primary_10_1038_s41467_020_18367_y crossref_primary_10_1002_hbm_26553 crossref_primary_10_1177_13524585241259648 crossref_primary_10_1016_j_nicl_2021_102632 crossref_primary_10_1111_ene_15067 crossref_primary_10_1212_NXI_0000000000000681 crossref_primary_10_1007_s00415_016_8374_y crossref_primary_10_1016_j_nicl_2019_101926 crossref_primary_10_1177_1756286419838673 crossref_primary_10_1016_j_nic_2024_03_008 crossref_primary_10_1093_brain_awy114 crossref_primary_10_7717_peerj_2442 crossref_primary_10_3389_fneur_2020_00872 crossref_primary_10_1016_j_jns_2017_10_019 crossref_primary_10_1212_WNL_0000000000004977 crossref_primary_10_1016_j_visres_2020_01_003 crossref_primary_10_1002_hbm_25375 crossref_primary_10_1007_s00330_021_08405_8 crossref_primary_10_1016_j_nicl_2021_102606 crossref_primary_10_1177_20552173231196990 crossref_primary_10_3389_fneur_2016_00147 crossref_primary_10_1002_jdn_10090 crossref_primary_10_3390_app14135626 crossref_primary_10_1016_j_bbi_2024_05_015 crossref_primary_10_1002_acn3_50872 crossref_primary_10_1007_s00415_023_11945_2 crossref_primary_10_1093_brain_awz355 crossref_primary_10_1002_acn3_52261 crossref_primary_10_1212_WNL_0000000000003511 crossref_primary_10_1212_WNL_0000000000011494 crossref_primary_10_1016_j_msard_2019_101462 crossref_primary_10_1093_brain_awaa233 crossref_primary_10_1177_1352458516671027 crossref_primary_10_1016_j_apmr_2022_10_009 crossref_primary_10_1212_NXI_0000000000000587 crossref_primary_10_1002_brb3_2050 crossref_primary_10_1038_s41380_023_01943_1 crossref_primary_10_1007_s00415_022_11415_1 crossref_primary_10_1212_WNL_0000000000008198 crossref_primary_10_1136_jnnp_2022_330894 crossref_primary_10_17116_jnevro202512504267 crossref_primary_10_1002_acn3_52026 crossref_primary_10_3389_fnagi_2019_00105 crossref_primary_10_1002_hbm_24940 crossref_primary_10_1212_WNL_0000000000003982 crossref_primary_10_1002_hbm_23615 crossref_primary_10_3389_fneur_2021_666868 crossref_primary_10_1080_14737175_2024_2304116 |
| ContentType | Journal Article |
| Copyright | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| Copyright_xml | – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/brain/awv337 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1460-2156 |
| EndPage | 126 |
| ExternalDocumentID | 26637488 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6.Y 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ ABDFA ABDPE ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPTD ABQLI ABQNK ABQTQ ABSAR ABSMQ ABVGC ABWST ABXVV ABZBJ ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUTJ ACUTO ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AI. AIJHB AJEEA AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CGR COF CS3 CUY CVF CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS ECM EE~ EIF EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NPM NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN VXZ W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 7X8 ABPQP ABXZS ADNBA AEMQT AJBYB AJNCP ALXQX |
| ID | FETCH-LOGICAL-c357t-c397ee8829d792d7e035122f5d4d359fc9b317c356fda6b1bc2e497b82241b752 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 234 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370205000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Oct 02 10:30:47 EDT 2025 Wed Feb 19 01:59:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt 1 |
| Keywords | neurodegeneration white matter grey matter MRI multiple sclerosis |
| Language | English |
| License | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-c397ee8829d792d7e035122f5d4d359fc9b317c356fda6b1bc2e497b82241b752 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26637488 |
| PQID | 1760884966 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1760884966 pubmed_primary_26637488 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Brain (London, England : 1878) |
| PublicationTitleAlternate | Brain |
| PublicationYear | 2016 |
| References | 26747854 - Brain. 2016 Jan;139(Pt 1):7-10 |
| References_xml | – reference: 26747854 - Brain. 2016 Jan;139(Pt 1):7-10 |
| SSID | ssj0014326 |
| Score | 2.5943801 |
| Snippet | Grey matter atrophy is common in multiple sclerosis. However, in contrast with other neurodegenerative diseases, it is unclear whether grey matter atrophy in... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 115 |
| SubjectTerms | Atrophy - pathology Case-Control Studies Cerebral Cortex - pathology Cognition Disorders - complications Cognition Disorders - pathology Disability Evaluation Female Gray Matter - pathology Humans Magnetic Resonance Imaging Male Middle Aged Models, Neurological Multiple Sclerosis - complications Multiple Sclerosis - pathology Neuroimaging White Matter - pathology |
| Title | Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26637488 https://www.proquest.com/docview/1760884966 |
| Volume | 139 |
| WOSCitedRecordID | wos000370205000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7Uinjx_agvInhdSh67aU4iYvFgSw8qvS15LRR0t3ZrxX_vZJvSkyB4mcsmbBgmmS_fTGYAbvDG5b0XPJG-4IlgKJTlImFMpsoUKX5u6sw-ycGgOxqpYSTc6phWuTwTm4PaVTZw5B0qM9wQAtH57eQjCV2jQnQ1ttBYhxZHKBOsWo5WUQSB2CQmu-PFvWNC04WO_ppzLn8HlI1j6e3-d0l7sBMhJblb2MA-rPnyALb6MWh-CK_31bRhrEngvVGtZNIU1SxrMi7JMqOQ1DgZXea4JnrqSVmVCboxV70TlGT5gPLtm4QuKwi_Z0fw0nt4vn9MYjuFxPJUzlAq6T0iauWkYk76EERkrEidcDxVhVUGwQSOzQqnM0ONZV4oaUKeKTUyZcewgT_3p0BEZqnpakUZdUK6TMtCU28zRrm2XIs2XC81lqO5hhiELn31WecrnbXhZKH2fLKoq5EjVgjFcLpnf5h9DtsIXSIZcgGtAjerv4RNO5-N6-lVYwcoB8P-Dw9bwUA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+atrophy+patterns+in+multiple+sclerosis+are+non-random+and+clinically+relevant&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Steenwijk%2C+Martijn+D&rft.au=Geurts%2C+Jeroen+J+G&rft.au=Daams%2C+Marita&rft.au=Tijms%2C+Betty+M&rft.date=2016-01-01&rft.eissn=1460-2156&rft.volume=139&rft.issue=Pt+1&rft.spage=115&rft_id=info:doi/10.1093%2Fbrain%2Fawv337&rft_id=info%3Apmid%2F26637488&rft_id=info%3Apmid%2F26637488&rft.externalDocID=26637488 |