Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem

•Chain encoding scheme efficiently describes FJSP.•Novel decoding scheme makes further local searching with a decoding process.•Improved communication mechanism of PSO brings finer searching.•Critical path method promotes searching efficiency•Formalized parameter tuning helps determine appropriate p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & operations research Ročník 121; s. 104951
Hlavní autoři: Ding, Haojie, Gu, Xingsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.09.2020
Pergamon Press Inc
Témata:
ISSN:0305-0548, 1873-765X, 0305-0548
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Chain encoding scheme efficiently describes FJSP.•Novel decoding scheme makes further local searching with a decoding process.•Improved communication mechanism of PSO brings finer searching.•Critical path method promotes searching efficiency•Formalized parameter tuning helps determine appropriate parameter values. The flexible job shop scheduling problem (FJSP) is a typical scheduling problem in practical production and has been proven to be a NP-hard problem. The study of FJSP is important to remarkably direct actual manufacturing processes. The paper proposes an improved particle swarm optimization (PSO) algorithm for solving FJSP and obtains beneficial solutions by improvement on encoding/decoding scheme, communication mechanism between particles, and alternate rules of candidate machines of operations. The innovation of encoding/decoding scheme proposes a novel designed chain encoding scheme and a corresponding effective decoding scheme. The chain-based encoding scheme can reasonably convert FJSP to an appropriate operation linked list and the novel designed decoding scheme owns the capacity of further explorering the solution space. The improvement of traditional PSO focuses on the innovation of information communication between particles, besides the modification of algorithm architecture. The amelioration of rules on operated machine selection is carried out based on the critical path of operations research (OR). It promotes algorithm efficiency by only alternating the candidate machines of operations on the critical path. In addition, much parameters tuning work is involved in a series of experiments. The study proposes some tuning schemes of parameters with exact mathematical methods, and these schemes can effectively help find more appropriate parameters. The final experiment results prove that the improved PSO exhibits remarkable ability to solve FJSP.
AbstractList •Chain encoding scheme efficiently describes FJSP.•Novel decoding scheme makes further local searching with a decoding process.•Improved communication mechanism of PSO brings finer searching.•Critical path method promotes searching efficiency•Formalized parameter tuning helps determine appropriate parameter values. The flexible job shop scheduling problem (FJSP) is a typical scheduling problem in practical production and has been proven to be a NP-hard problem. The study of FJSP is important to remarkably direct actual manufacturing processes. The paper proposes an improved particle swarm optimization (PSO) algorithm for solving FJSP and obtains beneficial solutions by improvement on encoding/decoding scheme, communication mechanism between particles, and alternate rules of candidate machines of operations. The innovation of encoding/decoding scheme proposes a novel designed chain encoding scheme and a corresponding effective decoding scheme. The chain-based encoding scheme can reasonably convert FJSP to an appropriate operation linked list and the novel designed decoding scheme owns the capacity of further explorering the solution space. The improvement of traditional PSO focuses on the innovation of information communication between particles, besides the modification of algorithm architecture. The amelioration of rules on operated machine selection is carried out based on the critical path of operations research (OR). It promotes algorithm efficiency by only alternating the candidate machines of operations on the critical path. In addition, much parameters tuning work is involved in a series of experiments. The study proposes some tuning schemes of parameters with exact mathematical methods, and these schemes can effectively help find more appropriate parameters. The final experiment results prove that the improved PSO exhibits remarkable ability to solve FJSP.
The flexible job shop scheduling problem (FJSP) is a typical scheduling problem in practical production and has been proven to be a NP-hard problem. The study of FJSP is important to remarkably direct actual manufacturing processes. The paper proposes an improved particle swarm optimization (PSO) algorithm for solving FJSP and obtains beneficial solutions by improvement on encoding/decoding scheme, communication mechanism between particles, and alternate rules of candidate machines of operations. The innovation of encoding/decoding scheme proposes a novel designed chain encoding scheme and a corresponding effective decoding scheme. The chain-based encoding scheme can reasonably convert FJSP to an appropriate operation linked list and the novel designed decoding scheme owns the capacity of further explorering the solution space. The improvement of traditional PSO focuses on the innovation of information communication between particles, besides the modification of algorithm architecture. The amelioration of rules on operated machine selection is carried out based on the critical path of operations research (OR). It promotes algorithm efficiency by only alternating the candidate machines of operations on the critical path. In addition, much parameters tuning work is involved in a series of experiments. The study proposes some tuning schemes of parameters with exact mathematical methods, and these schemes can effectively help find more appropriate parameters. The final experiment results prove that the improved PSO exhibits remarkable ability to solve FJSP.
ArticleNumber 104951
Author Ding, Haojie
Gu, Xingsheng
Author_xml – sequence: 1
  givenname: Haojie
  surname: Ding
  fullname: Ding, Haojie
  email: hero_ding1978@163.com
– sequence: 2
  givenname: Xingsheng
  orcidid: 0000-0002-1082-4586
  surname: Gu
  fullname: Gu, Xingsheng
  email: xsgu@ecust.edu.cn
BookMark eNp9kD1P5DAQhi3ESSx79wPoLFFnz3biOBEVQsCthHQNSNdZ_piwjpI42F6-Ov75eVkqinVjjeZ9ZjTPKTqe_AQInVGyooTWv_uV8WHFCNvVVcvpEVrQRpSFqPm_Y7QgJeEF4VVzgk5j7El-gtEF-liPc_DPYPGsQnJmABxfVBixn5Mb3btKzk9YDY8-uLQZsVYxZ6dMDBgm462bHrGaLLbwVUSzgREi7nzA3QCvTueZvdc4bvz82bXbYRfMe3Nr_Il-dGqI8OvrX6KHm-v7qz_F3d_b9dXlXWFKLlJhmADNmpJqCqUVOt_GK61VA4zUuuZVy3jTdkoQVYNtLWuFaBjTAGC4BSiX6Hw_N-992kJMsvfbMOWVkvFshlactDlF9ykTfIwBOjkHN6rwJimRO9Oyl9m03JmWe9OZEd8Y49KnuBSUGw6SF3sS8uHPDoKMxmWtYF0Ak6T17gD9HwSwnX8
CitedBy_id crossref_primary_10_1016_j_ijpe_2024_109163
crossref_primary_10_1155_2022_9191247
crossref_primary_10_3390_pr11061826
crossref_primary_10_3390_machines10080618
crossref_primary_10_1109_ACCESS_2020_3033002
crossref_primary_10_1016_j_engappai_2025_112096
crossref_primary_10_1016_j_eswa_2022_119474
crossref_primary_10_1016_j_engappai_2024_109557
crossref_primary_10_1016_j_eswa_2025_128708
crossref_primary_10_1109_TNNLS_2022_3208942
crossref_primary_10_1007_s12065_024_00976_x
crossref_primary_10_1016_j_eswa_2025_129590
crossref_primary_10_1051_wujns_2022276531
crossref_primary_10_3390_app14104029
crossref_primary_10_1016_j_engappai_2025_111951
crossref_primary_10_1016_j_asoc_2025_112697
crossref_primary_10_1016_j_eswa_2022_119359
crossref_primary_10_1016_j_cor_2025_107027
crossref_primary_10_1016_j_swevo_2024_101836
crossref_primary_10_1016_j_eswa_2025_127496
crossref_primary_10_1016_j_cor_2023_106174
crossref_primary_10_1108_AA_12_2020_0196
crossref_primary_10_3390_app14062586
crossref_primary_10_1007_s40295_023_00381_z
crossref_primary_10_1007_s00521_024_09654_6
crossref_primary_10_1007_s10696_022_09446_x
crossref_primary_10_1016_j_cie_2024_110688
crossref_primary_10_1016_j_cie_2024_110004
crossref_primary_10_1109_TCYB_2022_3158334
crossref_primary_10_1016_j_cor_2022_105731
crossref_primary_10_1016_j_cor_2025_107139
crossref_primary_10_1016_j_cor_2025_107216
crossref_primary_10_1016_j_cor_2023_106365
crossref_primary_10_1108_IJWIS_09_2023_0147
crossref_primary_10_1016_j_ins_2025_122298
crossref_primary_10_1016_j_cor_2024_106785
crossref_primary_10_1016_j_ejor_2023_05_017
crossref_primary_10_3390_s23010090
crossref_primary_10_1093_jcde_qwad078
crossref_primary_10_3390_pr13051583
crossref_primary_10_3390_math9070768
crossref_primary_10_3390_machines12090666
crossref_primary_10_3390_pr10030571
crossref_primary_10_1016_j_jfranklin_2025_107944
crossref_primary_10_1155_2021_1520859
crossref_primary_10_1007_s10489_022_04213_9
crossref_primary_10_1007_s10878_021_00748_8
crossref_primary_10_1016_j_cie_2024_109903
crossref_primary_10_1155_2022_4212556
crossref_primary_10_3390_e27070662
crossref_primary_10_1016_j_cor_2021_105267
crossref_primary_10_1016_j_knosys_2021_107815
crossref_primary_10_1038_s41598_025_91140_7
crossref_primary_10_1016_j_cie_2020_106781
crossref_primary_10_1016_j_rcim_2022_102509
crossref_primary_10_1016_j_jmsy_2021_05_018
crossref_primary_10_1016_j_engappai_2025_110447
crossref_primary_10_1080_23302674_2023_2221072
crossref_primary_10_1111_exsy_13727
crossref_primary_10_1016_j_engappai_2021_104411
crossref_primary_10_1002_cpe_6348
crossref_primary_10_1016_j_eswa_2022_117182
crossref_primary_10_1080_0305215X_2024_2328191
crossref_primary_10_1016_j_knosys_2020_106602
crossref_primary_10_3233_JIFS_224021
crossref_primary_10_1016_j_cie_2025_111330
crossref_primary_10_1016_j_cor_2024_106885
crossref_primary_10_1016_j_asoc_2024_111932
crossref_primary_10_1016_j_ejor_2022_06_009
crossref_primary_10_1016_j_swevo_2025_101943
crossref_primary_10_1016_j_cie_2025_111533
crossref_primary_10_1016_j_eswa_2025_129467
crossref_primary_10_1016_j_knosys_2024_111940
crossref_primary_10_1016_j_asoc_2024_111937
crossref_primary_10_1016_j_cor_2025_107155
crossref_primary_10_3390_machines10111100
crossref_primary_10_1177_09544054221121921
Cites_doi 10.1016/j.cor.2009.07.002
10.1016/j.omega.2015.04.002
10.1016/j.cie.2005.01.018
10.1016/j.procs.2017.08.267
10.1109/TASE.2013.2274517
10.1016/j.cie.2007.08.008
10.1080/00207540701824845
10.1016/j.ijpe.2014.03.006
10.1109/TSMCC.2007.897494
10.1287/opre.8.4.487
10.1016/j.cor.2011.10.024
10.1007/s10845-015-1039-3
10.1016/j.cie.2016.12.020
10.7763/IJCTE.2010.V2.139
10.1007/BF01719451
10.1016/j.ejor.2006.04.007
10.1016/j.cor.2007.02.014
10.1007/s10845-017-1350-2
10.1016/j.ejor.2017.08.021
10.1016/j.cie.2006.09.002
10.1287/moor.1.2.117
10.15837/ijccc.2007.2.2350
10.1016/j.eswa.2015.06.004
10.1109/TCYB.2018.2817240
10.1016/j.compchemeng.2016.04.030
10.1007/BF02023073
10.1016/j.cie.2007.04.010
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Pergamon Press Inc. Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Sep 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2020.104951
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1873-765X
0305-0548
ExternalDocumentID 10_1016_j_cor_2020_104951
S030505482030068X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XFK
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c357t-c27eb2831b1e3d7b87354bba8e206b65492589fa70a6ed9d2977822beeec5dee3
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000540716700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Sat Jul 26 00:01:11 EDT 2025
Sat Nov 29 07:22:28 EST 2025
Tue Nov 18 22:34:36 EST 2025
Fri Feb 23 02:46:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flexible job shop scheduling problem
Local search
Operations research
Encoding and decoding schemes
Particle swarm optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-c27eb2831b1e3d7b87354bba8e206b65492589fa70a6ed9d2977822beeec5dee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1082-4586
PQID 2505414509
PQPubID 45870
ParticipantIDs proquest_journals_2505414509
crossref_primary_10_1016_j_cor_2020_104951
crossref_citationtrail_10_1016_j_cor_2020_104951
elsevier_sciencedirect_doi_10_1016_j_cor_2020_104951
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2020
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Zhang, Ding, Zou, Qin, Fu (bib0046) 2019; 30
Gothwal, Raj (bib0017) 2018; 8
Mesghouni, Hammadi, Borne (bib0030) 1997; Vol. 1
Novara, Novas, Henning (bib0034) 2016; 93
Pezzella, Morganti, Ciaschetti (bib0037) 2008; 35
Buzatu, Fota, Lepadatescu, Duicu (bib0004) 2009
Rossi (bib0038) 2014; 153
Jia, Chen, Tang (bib0023) 2007
Li, Pan, Xie, Jia, Wang (bib0025) 2010; 2
Gao, Suganthan, Chua, Chong, Cai, Pan (bib0011) 2015; 42
Bratton, Kennedy (bib0003) 2007
Yao, Liu, Zhao, Ding (bib0044) 2019
Lu, Li, Gao, Liao, Yi (bib0029) 2017; 104
Gao, Yang, Zhou, Pan, Suganthan (bib0010) 2018; 49
Najid, Dauzere-Peres, Zaidat (bib0032) 2002; Vol. 5
Sha, Hsu (bib0039) 2006; 51
Kennedy (bib0024) 2010
Ong, Tay, Kwoh (bib0035) 2005
Pellerin, Perrier, Berthaut (bib0036) 2019
Defraeye, Van Nieuwenhuyse (bib0007) 2016; 58
Girish, Jawahar (bib0015) 2009
Gu, Gu, Cao, Gu (bib0018) 2010; 37
Liu, Abraham, Choi, Moon (bib0027) 2006
Xia, Wu (bib0043) 2005; 48
Yuan, Xu (bib0045) 2013; 12
Garey, Johnson, Sethi (bib0012) 1976; 1
Girish, Jawahar (bib0016) 2009; 47
Tay, Ho (bib0041) 2008; 54
Andrade-Pineda, Canca, Gonzalez-R, Calle (bib0001) 2019
Gao, Gen, Sun, Zhao (bib0009) 2007; 53
Hu, Zhou, Wei, Quay, Reddy, Tellez, Nam (bib0021) 2018
Deng, Gu (bib0008) 2012; 39
Wang, Sun (bib0042) 2009; 2
Brandimarte (bib0002) 1993; 41
Giffler, Thompson (bib0014) 1960; 8
Ho, Tay, Lai (bib0020) 2007; 179
Liouane, Saad, Hammadi, Borne (bib0026) 2007; 2
Chaouch, Driss, Ghedira (bib0005) 2017; 112
Hurink, Jurisch, Thole (bib0022) 1994; 15
Liu, Abraham, Grosan (bib0028) 2007; Vol. 1
Motaghedi-larijani, Sabri-laghaie, Heydari (bib0031) 2010
Zribi, Kacem, El Kamel, Borne (bib0047) 2007; 37
Clerc (bib0006) 2010; Vol. 93
Shen, Dauzère-Pérès, Neufeld (bib0040) 2018; 265
Ghosh, Nath, Sarkar (bib0013) 2015
Henchiri, Ennigrou (bib0019) 2013
Nouiri, Bekrar, Jemai, Niar, Ammari (bib0033) 2018; 29
Lu (10.1016/j.cor.2020.104951_bib0029) 2017; 104
Yuan (10.1016/j.cor.2020.104951_bib0045) 2013; 12
Defraeye (10.1016/j.cor.2020.104951_bib0007) 2016; 58
Kennedy (10.1016/j.cor.2020.104951_bib0024) 2010
Rossi (10.1016/j.cor.2020.104951_bib0038) 2014; 153
Garey (10.1016/j.cor.2020.104951_bib0012) 1976; 1
Chaouch (10.1016/j.cor.2020.104951_bib0005) 2017; 112
Zhang (10.1016/j.cor.2020.104951_bib0046) 2019; 30
Gao (10.1016/j.cor.2020.104951_bib0010) 2018; 49
Mesghouni (10.1016/j.cor.2020.104951_bib0030) 1997; Vol. 1
Tay (10.1016/j.cor.2020.104951_bib0041) 2008; 54
Brandimarte (10.1016/j.cor.2020.104951_bib0002) 1993; 41
Bratton (10.1016/j.cor.2020.104951_bib0003) 2007
Hurink (10.1016/j.cor.2020.104951_bib0022) 1994; 15
Xia (10.1016/j.cor.2020.104951_bib0043) 2005; 48
Hu (10.1016/j.cor.2020.104951_bib0021) 2018
Li (10.1016/j.cor.2020.104951_bib0025) 2010; 2
Gu (10.1016/j.cor.2020.104951_bib0018) 2010; 37
Liu (10.1016/j.cor.2020.104951_bib0027) 2006
Najid (10.1016/j.cor.2020.104951_bib0032) 2002; Vol. 5
Girish (10.1016/j.cor.2020.104951_bib0016) 2009; 47
Jia (10.1016/j.cor.2020.104951_bib0023) 2007
Buzatu (10.1016/j.cor.2020.104951_bib0004) 2009
Nouiri (10.1016/j.cor.2020.104951_bib0033) 2018; 29
Motaghedi-larijani (10.1016/j.cor.2020.104951_bib0031) 2010
Ong (10.1016/j.cor.2020.104951_bib0035) 2005
Liu (10.1016/j.cor.2020.104951_bib0028) 2007; Vol. 1
Gothwal (10.1016/j.cor.2020.104951_bib0017) 2018; 8
Deng (10.1016/j.cor.2020.104951_bib0008) 2012; 39
Gao (10.1016/j.cor.2020.104951_bib0009) 2007; 53
Andrade-Pineda (10.1016/j.cor.2020.104951_bib0001) 2019
Ghosh (10.1016/j.cor.2020.104951_bib0013) 2015
Yao (10.1016/j.cor.2020.104951_bib0044) 2019
Girish (10.1016/j.cor.2020.104951_bib0015) 2009
Ho (10.1016/j.cor.2020.104951_bib0020) 2007; 179
Liouane (10.1016/j.cor.2020.104951_bib0026) 2007; 2
Pellerin (10.1016/j.cor.2020.104951_bib0036) 2019
Giffler (10.1016/j.cor.2020.104951_bib0014) 1960; 8
Zribi (10.1016/j.cor.2020.104951_bib0047) 2007; 37
Novara (10.1016/j.cor.2020.104951_bib0034) 2016; 93
Clerc (10.1016/j.cor.2020.104951_bib0006) 2010; Vol. 93
Gao (10.1016/j.cor.2020.104951_bib0011) 2015; 42
Pezzella (10.1016/j.cor.2020.104951_bib0037) 2008; 35
Sha (10.1016/j.cor.2020.104951_bib0039) 2006; 51
Shen (10.1016/j.cor.2020.104951_bib0040) 2018; 265
Wang (10.1016/j.cor.2020.104951_bib0042) 2009; 2
Henchiri (10.1016/j.cor.2020.104951_bib0019) 2013
References_xml – volume: 58
  start-page: 4
  year: 2016
  end-page: 25
  ident: bib0007
  article-title: Staffing and scheduling under nonstationary demand for service: a literature review
  publication-title: Omega
– start-page: 385
  year: 2013
  end-page: 394
  ident: bib0019
  article-title: Particle swarm optimization combined with tabu search in a multi-agent model for flexible job shop problem
  publication-title: International Conference in Swarm Intelligence
– volume: 35
  start-page: 3202
  year: 2008
  end-page: 3212
  ident: bib0037
  article-title: A genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Comput. Oper.. Res.
– volume: 2
  start-page: 174
  year: 2007
  end-page: 184
  ident: bib0026
  article-title: Ant systems & local search optimization for flexible job shop scheduling production
  publication-title: Int. J. Comput. Commun. Control
– volume: 41
  start-page: 157
  year: 1993
  end-page: 183
  ident: bib0002
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Ann. Oper. Res.
– volume: 15
  start-page: 205
  year: 1994
  end-page: 215
  ident: bib0022
  article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines
  publication-title: Opera.-Res.-Spektrum
– volume: 2
  start-page: 189
  year: 2010
  ident: bib0025
  article-title: A hybrid particle swarm optimization and tabu search algorithm for flexible job-shop scheduling problem
  publication-title: Int. J. Comput. Theory Eng.
– volume: Vol. 1
  start-page: 138
  year: 2007
  end-page: 145
  ident: bib0028
  article-title: A novel variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems
  publication-title: 2007 2nd International Conference on Digital Information Management
– start-page: 442
  year: 2005
  end-page: 455
  ident: bib0035
  article-title: Applying the clonal selection principle to find flexible job-shop schedules
  publication-title: International Conference on Artificial Immune Systems
– volume: 42
  start-page: 7652
  year: 2015
  end-page: 7663
  ident: bib0011
  article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
  publication-title: Expert Syst. Appl.
– start-page: 60
  year: 2015
  end-page: 63
  ident: bib0013
  article-title: Pso algorithm with self tuned parameter for efficient routing in vlsi design
  publication-title: Proceedings of SSRG-IJECE International Conference on Futuristic Trends in Computing and Communication
– volume: 51
  start-page: 791
  year: 2006
  end-page: 808
  ident: bib0039
  article-title: A hybrid particle swarm optimization for job shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 153
  start-page: 253
  year: 2014
  end-page: 267
  ident: bib0038
  article-title: Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships
  publication-title: Int. J. Prod. Econ.
– volume: 30
  start-page: 1809
  year: 2019
  end-page: 1830
  ident: bib0046
  article-title: Review of job shop scheduling research and its new perspectives under industry 4.0
  publication-title: J. Intell. Manuf.
– volume: 37
  start-page: 652
  year: 2007
  end-page: 661
  ident: bib0047
  article-title: Assignment and scheduling in flexible job-shops by hierarchical optimization
  publication-title: IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.)
– volume: 8
  start-page: 487
  year: 1960
  end-page: 503
  ident: bib0014
  article-title: Algorithms for solving production-scheduling problems
  publication-title: Oper Res
– start-page: 1
  year: 2019
  end-page: 31
  ident: bib0001
  article-title: Scheduling a dual-resource flexible job shop with makespan and due date-related criteria
  publication-title: Ann. Oper. Res.
– year: 2019
  ident: bib0036
  article-title: A survey of hybrid metaheuristics for the resource-constrained project scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 1
  start-page: 117
  year: 1976
  end-page: 129
  ident: bib0012
  article-title: The complexity of flowshop and jobshop scheduling
  publication-title: Math. Oper. Res.
– year: 2010
  ident: bib0031
  article-title: Solving flexible job shop scheduling with multi objective approach
  publication-title: Int. J. Ind. Eng. Product. Res.
– start-page: 298
  year: 2009
  end-page: 303
  ident: bib0015
  article-title: A particle swarm optimization algorithm for flexible job shop scheduling problem
  publication-title: 2009 IEEE International Conference on Automation Science and Engineering
– start-page: 760
  year: 2010
  end-page: 766
  ident: bib0024
  article-title: Particle swarm optimization
  publication-title: Encycl. Mach. Learn.
– volume: Vol. 1
  start-page: 720
  year: 1997
  end-page: 725
  ident: bib0030
  article-title: Evolution programs for job-shop scheduling
  publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation
– volume: 29
  start-page: 603
  year: 2018
  end-page: 615
  ident: bib0033
  article-title: An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem
  publication-title: J. Intell. Manuf.
– volume: 54
  start-page: 453
  year: 2008
  end-page: 473
  ident: bib0041
  article-title: Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems
  publication-title: Comput. Ind. Eng.
– volume: 179
  start-page: 316
  year: 2007
  end-page: 333
  ident: bib0020
  article-title: An effective architecture for learning and evolving flexible job-shop schedules
  publication-title: Eur. J. Oper. Res.
– start-page: 139
  year: 2009
  end-page: 142
  ident: bib0004
  article-title: Modelling by finite element of the part-tool flexible technological system deformations at superfinishing process
  publication-title: Proceedings of the 8th WSEAS international conference on Artificial intelligence, knowledge engineering and data bases
– volume: 47
  start-page: 3891
  year: 2009
  end-page: 3917
  ident: bib0016
  article-title: Scheduling job shop associated with multiple routings with genetic and ant colony heuristics
  publication-title: Int. J. Prod. Res.
– volume: 12
  start-page: 336
  year: 2013
  end-page: 353
  ident: bib0045
  article-title: Multiobjective flexible job shop scheduling using memetic algorithms
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 49
  start-page: 1944
  year: 2018
  end-page: 1955
  ident: bib0010
  article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm
  publication-title: IEEE Trans Cybern
– volume: 2
  start-page: 312
  year: 2009
  end-page: 315
  ident: bib0042
  article-title: Design of flexible scheduling system based on an improved genetic algorithm
  publication-title: 2009 Second International Symposium on Computational Intelligence and Design
– start-page: 2260
  year: 2019
  end-page: 2265
  ident: bib0044
  article-title: An improved UKPK-PSO algorithm inspired from block chain technology for flexible job shop scheduling problem
  publication-title: 2019 Chinese Control Conference (CCC)
– volume: 37
  start-page: 927
  year: 2010
  end-page: 937
  ident: bib0018
  article-title: A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 8
  start-page: 59
  year: 2018
  end-page: 78
  ident: bib0017
  article-title: Prioritising the performance measures of FMS using multi-criteria decision making approaches
  publication-title: Int. J. Proc. Manag. Benchmark.
– volume: Vol. 5
  start-page: 6
  year: 2002
  end-page: pp
  ident: bib0032
  article-title: A modified simulated annealing method for flexible job shop scheduling problem
  publication-title: IEEE international conference on systems, man and cybernetics
– start-page: 197
  year: 2006
  end-page: 204
  ident: bib0027
  article-title: Variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems
  publication-title: Asia-Pacific Conference on Simulated Evolution and Learning
– start-page: 120
  year: 2007
  end-page: 127
  ident: bib0003
  article-title: Defining a standard for particle swarm optimization
  publication-title: 2007 IEEE swarm intelligence symposium
– volume: 53
  start-page: 149
  year: 2007
  end-page: 162
  ident: bib0009
  article-title: A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems
  publication-title: Comput. Ind. Eng.
– volume: 104
  start-page: 156
  year: 2017
  end-page: 174
  ident: bib0029
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Comput. Ind. Eng.
– start-page: 132
  year: 2018
  end-page: 138
  ident: bib0021
  article-title: Interconnect optimization considering multiple critical paths
  publication-title: Proceedings of the 2018 International Symposium on Physical Design
– volume: Vol. 93
  year: 2010
  ident: bib0006
  article-title: Particle swarm optimization
– volume: 265
  start-page: 503
  year: 2018
  end-page: 516
  ident: bib0040
  article-title: Solving the flexible job shop scheduling problem with sequence-dependent setup times
  publication-title: Eur. J. Oper. Res.
– start-page: 1587
  year: 2007
  end-page: 1592
  ident: bib0023
  article-title: An improved particle swarm optimization for multi-objective flexible job-shop scheduling problem
  publication-title: 2007 IEEE International Conference on Grey Systems and Intelligent Services
– volume: 39
  start-page: 2152
  year: 2012
  end-page: 2160
  ident: bib0008
  article-title: A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion
  publication-title: Comput. Oper.. Res.
– volume: 93
  start-page: 101
  year: 2016
  end-page: 117
  ident: bib0034
  article-title: A novel constraint programming model for large-scale scheduling problems in multiproduct multistage batch plants: limited resources and campaign-based operation
  publication-title: Comput. Chem. Eng.
– volume: 48
  start-page: 409
  year: 2005
  end-page: 425
  ident: bib0043
  article-title: An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems
  publication-title: Comput. Ind. Eng.
– volume: 112
  start-page: 296
  year: 2017
  end-page: 305
  ident: bib0005
  article-title: A modified ant colony optimization algorithm for the distributed job shop scheduling problem
  publication-title: Procedia Comput. Sci.
– start-page: 197
  year: 2006
  ident: 10.1016/j.cor.2020.104951_bib0027
  article-title: Variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems
– volume: Vol. 5
  start-page: 6
  year: 2002
  ident: 10.1016/j.cor.2020.104951_bib0032
  article-title: A modified simulated annealing method for flexible job shop scheduling problem
– volume: 37
  start-page: 927
  issue: 5
  year: 2010
  ident: 10.1016/j.cor.2020.104951_bib0018
  article-title: A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.07.002
– volume: 58
  start-page: 4
  year: 2016
  ident: 10.1016/j.cor.2020.104951_bib0007
  article-title: Staffing and scheduling under nonstationary demand for service: a literature review
  publication-title: Omega
  doi: 10.1016/j.omega.2015.04.002
– volume: 48
  start-page: 409
  issue: 2
  year: 2005
  ident: 10.1016/j.cor.2020.104951_bib0043
  article-title: An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2005.01.018
– start-page: 298
  year: 2009
  ident: 10.1016/j.cor.2020.104951_bib0015
  article-title: A particle swarm optimization algorithm for flexible job shop scheduling problem
– start-page: 120
  year: 2007
  ident: 10.1016/j.cor.2020.104951_bib0003
  article-title: Defining a standard for particle swarm optimization
– start-page: 139
  year: 2009
  ident: 10.1016/j.cor.2020.104951_bib0004
  article-title: Modelling by finite element of the part-tool flexible technological system deformations at superfinishing process
– volume: 112
  start-page: 296
  year: 2017
  ident: 10.1016/j.cor.2020.104951_bib0005
  article-title: A modified ant colony optimization algorithm for the distributed job shop scheduling problem
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.08.267
– volume: 12
  start-page: 336
  issue: 1
  year: 2013
  ident: 10.1016/j.cor.2020.104951_bib0045
  article-title: Multiobjective flexible job shop scheduling using memetic algorithms
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2013.2274517
– volume: 54
  start-page: 453
  issue: 3
  year: 2008
  ident: 10.1016/j.cor.2020.104951_bib0041
  article-title: Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2007.08.008
– volume: 47
  start-page: 3891
  issue: 14
  year: 2009
  ident: 10.1016/j.cor.2020.104951_bib0016
  article-title: Scheduling job shop associated with multiple routings with genetic and ant colony heuristics
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207540701824845
– start-page: 442
  year: 2005
  ident: 10.1016/j.cor.2020.104951_bib0035
  article-title: Applying the clonal selection principle to find flexible job-shop schedules
– volume: 153
  start-page: 253
  year: 2014
  ident: 10.1016/j.cor.2020.104951_bib0038
  article-title: Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2014.03.006
– volume: 37
  start-page: 652
  issue: 4
  year: 2007
  ident: 10.1016/j.cor.2020.104951_bib0047
  article-title: Assignment and scheduling in flexible job-shops by hierarchical optimization
  publication-title: IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2007.897494
– volume: 8
  start-page: 487
  issue: 4
  year: 1960
  ident: 10.1016/j.cor.2020.104951_bib0014
  article-title: Algorithms for solving production-scheduling problems
  publication-title: Oper Res
  doi: 10.1287/opre.8.4.487
– year: 2019
  ident: 10.1016/j.cor.2020.104951_bib0036
  article-title: A survey of hybrid metaheuristics for the resource-constrained project scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 39
  start-page: 2152
  issue: 9
  year: 2012
  ident: 10.1016/j.cor.2020.104951_bib0008
  article-title: A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion
  publication-title: Comput. Oper.. Res.
  doi: 10.1016/j.cor.2011.10.024
– volume: 29
  start-page: 603
  issue: 3
  year: 2018
  ident: 10.1016/j.cor.2020.104951_bib0033
  article-title: An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1039-3
– volume: 104
  start-page: 156
  year: 2017
  ident: 10.1016/j.cor.2020.104951_bib0029
  article-title: An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.12.020
– year: 2010
  ident: 10.1016/j.cor.2020.104951_bib0031
  article-title: Solving flexible job shop scheduling with multi objective approach
  publication-title: Int. J. Ind. Eng. Product. Res.
– start-page: 385
  year: 2013
  ident: 10.1016/j.cor.2020.104951_bib0019
  article-title: Particle swarm optimization combined with tabu search in a multi-agent model for flexible job shop problem
– volume: 2
  start-page: 189
  issue: 2
  year: 2010
  ident: 10.1016/j.cor.2020.104951_bib0025
  article-title: A hybrid particle swarm optimization and tabu search algorithm for flexible job-shop scheduling problem
  publication-title: Int. J. Comput. Theory Eng.
  doi: 10.7763/IJCTE.2010.V2.139
– volume: 2
  start-page: 312
  year: 2009
  ident: 10.1016/j.cor.2020.104951_bib0042
  article-title: Design of flexible scheduling system based on an improved genetic algorithm
– start-page: 60
  year: 2015
  ident: 10.1016/j.cor.2020.104951_bib0013
  article-title: Pso algorithm with self tuned parameter for efficient routing in vlsi design
– volume: 15
  start-page: 205
  issue: 4
  year: 1994
  ident: 10.1016/j.cor.2020.104951_bib0022
  article-title: Tabu search for the job-shop scheduling problem with multi-purpose machines
  publication-title: Opera.-Res.-Spektrum
  doi: 10.1007/BF01719451
– volume: 8
  start-page: 59
  issue: 1
  year: 2018
  ident: 10.1016/j.cor.2020.104951_bib0017
  article-title: Prioritising the performance measures of FMS using multi-criteria decision making approaches
  publication-title: Int. J. Proc. Manag. Benchmark.
– volume: 179
  start-page: 316
  issue: 2
  year: 2007
  ident: 10.1016/j.cor.2020.104951_bib0020
  article-title: An effective architecture for learning and evolving flexible job-shop schedules
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.04.007
– volume: Vol. 1
  start-page: 720
  year: 1997
  ident: 10.1016/j.cor.2020.104951_bib0030
  article-title: Evolution programs for job-shop scheduling
– volume: 35
  start-page: 3202
  issue: 10
  year: 2008
  ident: 10.1016/j.cor.2020.104951_bib0037
  article-title: A genetic algorithm for the flexible job-shop scheduling problem
  publication-title: Comput. Oper.. Res.
  doi: 10.1016/j.cor.2007.02.014
– volume: 30
  start-page: 1809
  issue: 4
  year: 2019
  ident: 10.1016/j.cor.2020.104951_bib0046
  article-title: Review of job shop scheduling research and its new perspectives under industry 4.0
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1350-2
– start-page: 1
  year: 2019
  ident: 10.1016/j.cor.2020.104951_bib0001
  article-title: Scheduling a dual-resource flexible job shop with makespan and due date-related criteria
  publication-title: Ann. Oper. Res.
– volume: 265
  start-page: 503
  issue: 2
  year: 2018
  ident: 10.1016/j.cor.2020.104951_bib0040
  article-title: Solving the flexible job shop scheduling problem with sequence-dependent setup times
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.08.021
– volume: 51
  start-page: 791
  issue: 4
  year: 2006
  ident: 10.1016/j.cor.2020.104951_bib0039
  article-title: A hybrid particle swarm optimization for job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2006.09.002
– start-page: 760
  year: 2010
  ident: 10.1016/j.cor.2020.104951_bib0024
  article-title: Particle swarm optimization
  publication-title: Encycl. Mach. Learn.
– volume: Vol. 93
  year: 2010
  ident: 10.1016/j.cor.2020.104951_bib0006
– volume: 1
  start-page: 117
  issue: 2
  year: 1976
  ident: 10.1016/j.cor.2020.104951_bib0012
  article-title: The complexity of flowshop and jobshop scheduling
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1.2.117
– start-page: 2260
  year: 2019
  ident: 10.1016/j.cor.2020.104951_bib0044
  article-title: An improved UKPK-PSO algorithm inspired from block chain technology for flexible job shop scheduling problem
– volume: 2
  start-page: 174
  issue: 2
  year: 2007
  ident: 10.1016/j.cor.2020.104951_bib0026
  article-title: Ant systems & local search optimization for flexible job shop scheduling production
  publication-title: Int. J. Comput. Commun. Control
  doi: 10.15837/ijccc.2007.2.2350
– volume: 42
  start-page: 7652
  issue: 21
  year: 2015
  ident: 10.1016/j.cor.2020.104951_bib0011
  article-title: A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.06.004
– volume: 49
  start-page: 1944
  issue: 5
  year: 2018
  ident: 10.1016/j.cor.2020.104951_bib0010
  article-title: Flexible job-shop rescheduling for new job insertion by using discrete jaya algorithm
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2817240
– volume: Vol. 1
  start-page: 138
  year: 2007
  ident: 10.1016/j.cor.2020.104951_bib0028
  article-title: A novel variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems
– start-page: 1587
  year: 2007
  ident: 10.1016/j.cor.2020.104951_bib0023
  article-title: An improved particle swarm optimization for multi-objective flexible job-shop scheduling problem
– volume: 93
  start-page: 101
  year: 2016
  ident: 10.1016/j.cor.2020.104951_bib0034
  article-title: A novel constraint programming model for large-scale scheduling problems in multiproduct multistage batch plants: limited resources and campaign-based operation
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.04.030
– start-page: 132
  year: 2018
  ident: 10.1016/j.cor.2020.104951_bib0021
  article-title: Interconnect optimization considering multiple critical paths
– volume: 41
  start-page: 157
  issue: 3
  year: 1993
  ident: 10.1016/j.cor.2020.104951_bib0002
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02023073
– volume: 53
  start-page: 149
  issue: 1
  year: 2007
  ident: 10.1016/j.cor.2020.104951_bib0009
  article-title: A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2007.04.010
SSID ssj0000721
Score 2.615314
Snippet •Chain encoding scheme efficiently describes FJSP.•Novel decoding scheme makes further local searching with a decoding process.•Improved communication...
The flexible job shop scheduling problem (FJSP) is a typical scheduling problem in practical production and has been proven to be a NP-hard problem. The study...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104951
SubjectTerms Algorithms
Chains
Critical path
Encoding and decoding schemes
Encoding-Decoding
Flexible job shop scheduling problem
Innovations
Job shop scheduling
Job shops
Local search
Mathematical analysis
Operations research
Parameters
Particle swarm optimization
Particle swarm optimization algorithm
Production scheduling
Solution space
Tuning
Title Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem
URI https://dx.doi.org/10.1016/j.cor.2020.104951
https://www.proquest.com/docview/2505414509
Volume 121
WOSCitedRecordID wos000540716700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-765X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKhxAc-ChDbAzkAyeiSPl2fJzYxuAwcRhSb1Ecu7RVm0RJO3bdf75n5zktnTaxA5eodWLLyvvl-T37vd8j5HMaFUUae5Gb-1y6URwINw194RY8h_VIH5wluSk2wS4u0vGY_xwM1jYX5mrByjK9vub1fxU1tIGwdersI8TdDwoN8BuEDlcQO1z_SfDdNgHYkTXedNo_ebN0KlAOS8y6dPLF76qZraZLRy9j0imhx8LRpJbSZi1KhX_A_1Wa0kkHJE40f6ZOtppXwmmnVW3uyjUmtZviNNv2ri0a0RqIVbVqMPQOSYb6zegTrK1ynlfzWQ-2b2vdNta7-VOFayxuUYA_amOw-tQsHSEYd5SavdrtMqNRcYJXyDvm2Ts6vdtemININH9rYI6l8dm_-bN31rU-2tAGss0zGCLTQ2TdEE_IHsCRp0Oyd_z9dPxjs4Qzk7DXz9seh5vAwJ153GfQ7Cztxl65fE1eoqNBjzsMvCEDVY7IM5vnMCKvrGgoqvcRebFFTvmW3FggUQskaoBEt4FEeyBRAyRqgEQtkCgAiVogUQQSBSBRCyQKQKIaSHQDJIpA2ie_zk4vv567WLDDLcKYrdwiYEoE-lv3VSiZSFkYR0LkqQq8RCSaDDBO-SRnXp4oyWUAzgcYqEIpVcRSqfAdGZZVqd4TGiQTKZknIhlyMCILEfqTmDGZBFyGMmEHxLNvPSuQzV4XVVlk90r7gHzpu9QdlctDD0dWlBnaop2NmQEsH-p2ZMWeoU5oM-1lRH4EpvnhY6bwgTzffExHZLhq1uojeVpcrWZt8wkhewtpkbhX
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+particle+swarm+optimization+algorithm+based+novel+encoding+and+decoding+schemes+for+flexible+job+shop+scheduling+problem&rft.jtitle=Computers+%26+operations+research&rft.au=Ding%2C+Haojie&rft.au=Gu%2C+Xingsheng&rft.date=2020-09-01&rft.issn=0305-0548&rft.volume=121&rft.spage=104951&rft_id=info:doi/10.1016%2Fj.cor.2020.104951&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2020_104951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon