BL-JUNIPER: A CNN-Assisted Framework for Perceptual Video Coding Leveraging Block-Level JND

Just Noticeable Distortion (JND) finds the minimum distortion level perceivable by humans. This can be a natural solution for setting the compression for each video region in perceptual video coding. However, existing JND-based solutions estimate JND levels for each video frame and ignore the fact t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on multimedia Ročník 25; s. 5077 - 5092
Hlavní autori: Nami, Sanaz, Pakdaman, Farhad, Hashemi, Mahmoud Reza, Shirmohammadi, Shervin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1520-9210, 1941-0077
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Just Noticeable Distortion (JND) finds the minimum distortion level perceivable by humans. This can be a natural solution for setting the compression for each video region in perceptual video coding. However, existing JND-based solutions estimate JND levels for each video frame and ignore the fact that different video regions have different perceptual importance. To address this issue, we propose a Block-Level Just Noticeable Distortion-based Perceptual (BL-JUNIPER) framework for video coding. The proposed four-stage framework combines different perceptual information to further improve the prediction accuracy. The JND mapping in the first stage derives block-level JNDs from frame-level information without the need to collect a new bock-level JND dataset. In the second stage, an efficient CNN-based model is proposed to predict JND levels for each block according to spatial and temporal characteristics. Unlike existing methods, BL-JUNIPER works on raw video frames and avoids re-encoding each frame several times, making it computationally practical. Third, the visual importance of each block is measured using a visual attention model. Finally, a proposed quantization control algorithm uses both JND levels and visual importance to adjust the Quantization Parameter (QP) for each block. The specific algorithm for each stage of the proposed framework can be changed, as long as the input and output formats of each block are followed, without the need to change other stages, based on any current or future methods, providing a flexible and robust solution. Extensive experimental results demonstrate that BL-JUNIPER achieves a mean bitrate reduction of 27.75% with a Delta Mean Opinion Score (DMOS) close to zero and BD-Rate gains of 25.44% based on MOS, compared to the baseline encoding, and also gains a better performance compared to competing methods.
AbstractList Just Noticeable Distortion (JND) finds the minimum distortion level perceivable by humans. This can be a natural solution for setting the compression for each video region in perceptual video coding. However, existing JND-based solutions estimate JND levels for each video frame and ignore the fact that different video regions have different perceptual importance. To address this issue, we propose a Block-Level Just Noticeable Distortion-based Perceptual (BL-JUNIPER) framework for video coding. The proposed four-stage framework combines different perceptual information to further improve the prediction accuracy. The JND mapping in the first stage derives block-level JNDs from frame-level information without the need to collect a new bock-level JND dataset. In the second stage, an efficient CNN-based model is proposed to predict JND levels for each block according to spatial and temporal characteristics. Unlike existing methods, BL-JUNIPER works on raw video frames and avoids re-encoding each frame several times, making it computationally practical. Third, the visual importance of each block is measured using a visual attention model. Finally, a proposed quantization control algorithm uses both JND levels and visual importance to adjust the Quantization Parameter (QP) for each block. The specific algorithm for each stage of the proposed framework can be changed, as long as the input and output formats of each block are followed, without the need to change other stages, based on any current or future methods, providing a flexible and robust solution. Extensive experimental results demonstrate that BL-JUNIPER achieves a mean bitrate reduction of 27.75% with a Delta Mean Opinion Score (DMOS) close to zero and BD-Rate gains of 25.44% based on MOS, compared to the baseline encoding, and also gains a better performance compared to competing methods.
Author Hashemi, Mahmoud Reza
Shirmohammadi, Shervin
Nami, Sanaz
Pakdaman, Farhad
Author_xml – sequence: 1
  givenname: Sanaz
  orcidid: 0000-0002-4826-1168
  surname: Nami
  fullname: Nami, Sanaz
  email: snami@ut.ac.ir
  organization: School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Farhad
  orcidid: 0000-0001-6526-3811
  surname: Pakdaman
  fullname: Pakdaman, Farhad
  email: farhad.pakdaman@umz.ac.ir
  organization: Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran
– sequence: 3
  givenname: Mahmoud Reza
  orcidid: 0000-0002-3518-9195
  surname: Hashemi
  fullname: Hashemi, Mahmoud Reza
  email: rhashemi@ut.ac.ir
  organization: School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
– sequence: 4
  givenname: Shervin
  orcidid: 0000-0002-3973-4445
  surname: Shirmohammadi
  fullname: Shirmohammadi, Shervin
  email: shervin@eecs.uottawa.ca
  organization: DISCOVER Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
BookMark eNp9kDtPwzAUhS0EEuWxI7FYYk65dh622UpogSotCLUsDJHr3qC0IS52CuLfk6iIgYHpHl2dh_Qdkf3a1kjIGYM-Y6AuZ5NJnwPn_ZBJwWO1R3pMRSwAEGK_1TGHQHEGh-TI-xUAi2IQPfJynQXj-fT-cfh0RQc0nU6Dgfelb3BJR06_4ad1a1pYRx_RGdw0W13R53KJlqZ2WdavNMMPdPq1k9eVNeuge1R0PL05IQeFrjye_txjMh8NZ-ldkD3c3qeDLDBhLJrA8MhoFbKowFDrREUcQmNAcC3QaKaUiFFIBcsYWcJlseASFwp4ESZJggbDY3Kx6904-75F3-Qru3V1O5lzKSPZdcvWBTuXcdZ7h0W-ceWbdl85g7xDmLcI8w5h_oOwjSR_IqZsdFPaunG6rP4Lnu-CJSL-7ijJoIUefgOLc311
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3402363
crossref_primary_10_1145_3571727
crossref_primary_10_1016_j_engappai_2024_109806
crossref_primary_10_1109_JETCAS_2024_3524260
crossref_primary_10_3390_electronics13244977
crossref_primary_10_3390_s23052634
crossref_primary_10_1109_TMM_2023_3340882
crossref_primary_10_1109_TCE_2025_3526479
crossref_primary_10_1109_TCSVT_2024_3389988
Cites_doi 10.1109/ACCESS.2019.2901342
10.1109/TIP.2017.2685682
10.1145/3304112.3325604
10.1007/s11045-016-0395-2
10.1109/TCSVT.2016.2539862
10.1109/TBC.2020.2977542
10.1109/ICIP.2019.8803454
10.1109/TIP.2013.2279934
10.1109/ACCESS.2021.3050489
10.1109/TIP.2018.2818439
10.1109/ICCV.2013.370
10.1109/TIP.2019.2933743
10.1109/JSTSP.2020.3034501
10.2352/ISSN.2470-1173.2016.13.IQSP-222
10.1109/TIP.2003.819861
10.1145/3394171.3413536
10.1109/ICMEW46912.2020.9106036
10.1109/CVPR.2018.00068
10.1109/ICIP.2016.7532610
10.1016/j.jvcir.2017.04.009
10.1109/TMM.2013.2268053
10.1109/TIP.2020.3029428
10.1109/ICIP40778.2020.9190983
10.1109/TIP.2016.2568459
10.1109/LSP.2016.2641456
10.1109/ACCESS.2019.2910245
10.1109/TBC.2018.2823909
10.1109/TIP.2017.2760518
10.1109/TIP.2018.2815842
10.1109/TCSVT.2009.2013518
10.1109/ICASSP40776.2020.9053580
10.1007/s00530-014-0381-1
10.1145/3397227
10.1016/j.jvcir.2012.04.010
10.1109/PCS.2018.8456297
10.1109/WPMC.2014.7014800
10.3390/e21020165
10.1016/j.neucom.2017.08.054
10.1016/j.neucom.2020.06.003
10.1109/TMM.2019.2931807
10.1145/3386292.3397120
10.1109/TIP.2016.2573597
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2022.3187259
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 5092
ExternalDocumentID 10_1109_TMM_2022_3187259
9810507
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-c24ca9314fe3aa694203cc072a7eca19975e7890d5e1628fb28eb902f3666ece3
IEDL.DBID RIE
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001097340300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9210
IngestDate Wed Nov 26 03:47:41 EST 2025
Sat Nov 29 03:10:09 EST 2025
Tue Nov 18 21:43:03 EST 2025
Wed Aug 27 02:24:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-c24ca9314fe3aa694203cc072a7eca19975e7890d5e1628fb28eb902f3666ece3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3518-9195
0000-0001-6526-3811
0000-0002-4826-1168
0000-0002-3973-4445
PQID 2884893148
PQPubID 75737
PageCount 16
ParticipantIDs crossref_primary_10_1109_TMM_2022_3187259
proquest_journals_2884893148
ieee_primary_9810507
crossref_citationtrail_10_1109_TMM_2022_3187259
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
(ref48) 2002
ref11
ref10
achanta (ref45) 2010
nair (ref43) 2010
ref17
ref16
ref19
ref18
ref50
(ref42) 2021
ref41
(ref1) 2019
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
kingma (ref44) 2015
ref36
bossen (ref47) 2012
ref31
ref30
ref33
ref32
ref2
ref39
ref38
wei (ref29) 2009; 19
rosewarne (ref46) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
bjontegaard (ref51) 2001
References_xml – ident: ref14
  doi: 10.1109/ACCESS.2019.2901342
– ident: ref25
  doi: 10.1109/TIP.2017.2685682
– ident: ref23
  doi: 10.1145/3304112.3325604
– ident: ref37
  doi: 10.1007/s11045-016-0395-2
– ident: ref31
  doi: 10.1109/TCSVT.2016.2539862
– year: 2015
  ident: ref44
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– ident: ref2
  doi: 10.1109/TBC.2020.2977542
– ident: ref11
  doi: 10.1109/ICIP.2019.8803454
– ident: ref26
  doi: 10.1109/TIP.2013.2279934
– ident: ref5
  doi: 10.1109/ACCESS.2021.3050489
– ident: ref12
  doi: 10.1109/TIP.2018.2818439
– ident: ref41
  doi: 10.1109/ICCV.2013.370
– ident: ref3
  doi: 10.1109/TIP.2019.2933743
– ident: ref15
  doi: 10.1109/JSTSP.2020.3034501
– ident: ref34
  doi: 10.2352/ISSN.2470-1173.2016.13.IQSP-222
– ident: ref49
  doi: 10.1109/TIP.2003.819861
– ident: ref16
  doi: 10.1145/3394171.3413536
– start-page: 807
  year: 2010
  ident: ref43
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc Int Conf Mach Learn
– ident: ref10
  doi: 10.1109/ICMEW46912.2020.9106036
– year: 2010
  ident: ref45
  article-title: SLIC superpixels
– ident: ref50
  doi: 10.1109/CVPR.2018.00068
– ident: ref35
  doi: 10.1109/ICIP.2016.7532610
– ident: ref36
  doi: 10.1016/j.jvcir.2017.04.009
– ident: ref24
  doi: 10.1109/TMM.2013.2268053
– start-page: 1
  year: 2001
  ident: ref51
  article-title: Calculation of average PSNR differences between RD curves
  publication-title: Proc 13th Video Coding Expert Gr Meeting
– year: 2021
  ident: ref42
  article-title: Subjective video quality assessment methods for multimedia applications
– ident: ref38
  doi: 10.1109/TIP.2020.3029428
– ident: ref40
  doi: 10.1109/ICIP40778.2020.9190983
– ident: ref30
  doi: 10.1109/TIP.2016.2568459
– ident: ref39
  doi: 10.1109/LSP.2016.2641456
– ident: ref17
  doi: 10.1109/ACCESS.2019.2910245
– ident: ref7
  doi: 10.1109/TBC.2018.2823909
– ident: ref19
  doi: 10.1109/TIP.2017.2760518
– ident: ref20
  doi: 10.1109/TIP.2018.2815842
– volume: 19
  start-page: 337
  year: 2009
  ident: ref29
  article-title: Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2009.2013518
– ident: ref32
  doi: 10.1109/ICASSP40776.2020.9053580
– ident: ref4
  doi: 10.1007/s00530-014-0381-1
– ident: ref21
  doi: 10.1145/3397227
– year: 2002
  ident: ref48
  article-title: Methodology for the subjective assessment of the quality of television pictures
– year: 2012
  ident: ref47
  article-title: Common test conditions and software reference configurations
– ident: ref28
  doi: 10.1016/j.jvcir.2012.04.010
– ident: ref13
  doi: 10.1109/PCS.2018.8456297
– ident: ref33
  doi: 10.1109/WPMC.2014.7014800
– ident: ref8
  doi: 10.3390/e21020165
– year: 2016
  ident: ref46
  article-title: High efficiency video coding (HEVC) test model 16 (HM16) improved encoder description update 5
– year: 2019
  ident: ref1
  article-title: Cisco visual networking index: Global mobile data traffic forecast
– ident: ref9
  doi: 10.1016/j.neucom.2017.08.054
– ident: ref18
  doi: 10.1016/j.neucom.2020.06.003
– ident: ref6
  doi: 10.1109/TMM.2019.2931807
– ident: ref22
  doi: 10.1145/3386292.3397120
– ident: ref27
  doi: 10.1109/TIP.2016.2573597
SSID ssj0014507
Score 2.4594483
Snippet Just Noticeable Distortion (JND) finds the minimum distortion level perceivable by humans. This can be a natural solution for setting the compression for each...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5077
SubjectTerms Algorithms
Bit rate
Coding
Control algorithms
Control theory
Convolutional neural network (cnn)
Distortion
Encoding
just noticeable distortion (jnd)
Measurement
perceptual video coding (pvc)
Predictive models
quantization control algorithm
Robustness (mathematics)
Streaming media
Video coding
Video compression
visual attention
Visualization
Title BL-JUNIPER: A CNN-Assisted Framework for Perceptual Video Coding Leveraging Block-Level JND
URI https://ieeexplore.ieee.org/document/9810507
https://www.proquest.com/docview/2884893148
Volume 25
WOSCitedRecordID wos001097340300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH3-L6IgcvgnG7ado03nR1kUXLIiqCh9KmU1hcdmUf_n4zabsIiuCtlISWfklnJjPzfQCnEpXyRS54JtKASymJA9LLOImUe6HBXAfGiU2oOI5eX3W_AeeLXhhEdMVneEGXLpefj82cjspaOrLeALWOLykVlr1ai4yBDFxrtDVHHtc2jqlTkp5uPT082EBQCBufRkoQK-k3E-Q0VX78iJ116W787702Yb3yItlVCfsWNHC0DRu1QgOrNuw2rH2jG9yBt-t73rMBX__28ZJdsU4cc4sO4Zyzbl2kxawXy_plucvcPuNlkOOYdcZk49g92pXvdI3YtbWC75xuDFkvvtmF5-7tU-eOV-IK3PiBmnEjpEm135YF-mkaaik83xhPiVShSan8JEBqks0DbIciKjIRYaY9Ufg24EGD_h4sj8Yj3AcWpH4YKY2hypQMiV5G50XYNtp6d3agaEKr_t6JqZjHSQBjmLgIxNOJRSghhJIKoSacLWZ8lKwbf4zdIUQW4yowmnBUQ5pU23KaiCgish0bAh78PusQVklPvjxjOYLl2WSOx7BiPmeD6eTErbgvHE7PXg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5EBfXB3-J0ah58EYzr0rRpfNPp8MdWhkwRfChteoOhbOI2_35zWTsERfCtlISWfknvLnf3fQDHEpXyRS54JtKASymJA9LLOImUe6HBXAfGiU2oOI6en3VnDk5nvTCI6IrP8IwuXS4_H5oJHZXVdGS9AWodXyDlrKJba5YzkIFrjrYGyePaRjJlUtLTtW67bUNBIWyEGilBvKTfjJBTVfnxK3b2pbn2vzdbh9XCj2QXU-A3YA4Hm7BWajSwYstuwso3wsEteLls8Tsb8nWuH87ZBWvEMbf4ENI5a5ZlWsz6sawzLXiZ2Gc89XMcssaQrBxroV37TtmIXVo7-Mrpxhu7i6-24bF53W3c8EJegRs_UGNuhDSp9uuyh36ahloKzzfGUyJVaFIqQAmQ2mTzAOuhiHqZiDDTnuj5NuRBg_4OzA-GA9wFFqR-GCmNocqUDIlgRue9sG609e_sQFGBWvm9E1Nwj5MExlviYhBPJxahhBBKCoQqcDKb8T7l3fhj7BYhMhtXgFGBaglpUmzMUSKiiOh2bBC49_usI1i66bZbSes2vt-HZVKXn564VGF-_DHBA1g0n-P-6OPQrb4vFx7Spw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BL-JUNIPER%3A+A+CNN-Assisted+Framework+for+Perceptual+Video+Coding+Leveraging+Block-Level+JND&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Nami%2C+Sanaz&rft.au=Pakdaman%2C+Farhad&rft.au=Hashemi%2C+Mahmoud+Reza&rft.au=Shirmohammadi%2C+Shervin&rft.date=2023&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=25&rft.spage=5077&rft.epage=5092&rft_id=info:doi/10.1109%2FTMM.2022.3187259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2022_3187259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon