BL-JUNIPER: A CNN-Assisted Framework for Perceptual Video Coding Leveraging Block-Level JND
Just Noticeable Distortion (JND) finds the minimum distortion level perceivable by humans. This can be a natural solution for setting the compression for each video region in perceptual video coding. However, existing JND-based solutions estimate JND levels for each video frame and ignore the fact t...
Uložené v:
| Vydané v: | IEEE transactions on multimedia Ročník 25; s. 5077 - 5092 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1520-9210, 1941-0077 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Just Noticeable Distortion (JND) finds the minimum distortion level perceivable by humans. This can be a natural solution for setting the compression for each video region in perceptual video coding. However, existing JND-based solutions estimate JND levels for each video frame and ignore the fact that different video regions have different perceptual importance. To address this issue, we propose a Block-Level Just Noticeable Distortion-based Perceptual (BL-JUNIPER) framework for video coding. The proposed four-stage framework combines different perceptual information to further improve the prediction accuracy. The JND mapping in the first stage derives block-level JNDs from frame-level information without the need to collect a new bock-level JND dataset. In the second stage, an efficient CNN-based model is proposed to predict JND levels for each block according to spatial and temporal characteristics. Unlike existing methods, BL-JUNIPER works on raw video frames and avoids re-encoding each frame several times, making it computationally practical. Third, the visual importance of each block is measured using a visual attention model. Finally, a proposed quantization control algorithm uses both JND levels and visual importance to adjust the Quantization Parameter (QP) for each block. The specific algorithm for each stage of the proposed framework can be changed, as long as the input and output formats of each block are followed, without the need to change other stages, based on any current or future methods, providing a flexible and robust solution. Extensive experimental results demonstrate that BL-JUNIPER achieves a mean bitrate reduction of 27.75% with a Delta Mean Opinion Score (DMOS) close to zero and BD-Rate gains of 25.44% based on MOS, compared to the baseline encoding, and also gains a better performance compared to competing methods. |
|---|---|
| AbstractList | Just Noticeable Distortion (JND) finds the minimum distortion level perceivable by humans. This can be a natural solution for setting the compression for each video region in perceptual video coding. However, existing JND-based solutions estimate JND levels for each video frame and ignore the fact that different video regions have different perceptual importance. To address this issue, we propose a Block-Level Just Noticeable Distortion-based Perceptual (BL-JUNIPER) framework for video coding. The proposed four-stage framework combines different perceptual information to further improve the prediction accuracy. The JND mapping in the first stage derives block-level JNDs from frame-level information without the need to collect a new bock-level JND dataset. In the second stage, an efficient CNN-based model is proposed to predict JND levels for each block according to spatial and temporal characteristics. Unlike existing methods, BL-JUNIPER works on raw video frames and avoids re-encoding each frame several times, making it computationally practical. Third, the visual importance of each block is measured using a visual attention model. Finally, a proposed quantization control algorithm uses both JND levels and visual importance to adjust the Quantization Parameter (QP) for each block. The specific algorithm for each stage of the proposed framework can be changed, as long as the input and output formats of each block are followed, without the need to change other stages, based on any current or future methods, providing a flexible and robust solution. Extensive experimental results demonstrate that BL-JUNIPER achieves a mean bitrate reduction of 27.75% with a Delta Mean Opinion Score (DMOS) close to zero and BD-Rate gains of 25.44% based on MOS, compared to the baseline encoding, and also gains a better performance compared to competing methods. |
| Author | Hashemi, Mahmoud Reza Shirmohammadi, Shervin Nami, Sanaz Pakdaman, Farhad |
| Author_xml | – sequence: 1 givenname: Sanaz orcidid: 0000-0002-4826-1168 surname: Nami fullname: Nami, Sanaz email: snami@ut.ac.ir organization: School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran – sequence: 2 givenname: Farhad orcidid: 0000-0001-6526-3811 surname: Pakdaman fullname: Pakdaman, Farhad email: farhad.pakdaman@umz.ac.ir organization: Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran – sequence: 3 givenname: Mahmoud Reza orcidid: 0000-0002-3518-9195 surname: Hashemi fullname: Hashemi, Mahmoud Reza email: rhashemi@ut.ac.ir organization: School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran – sequence: 4 givenname: Shervin orcidid: 0000-0002-3973-4445 surname: Shirmohammadi fullname: Shirmohammadi, Shervin email: shervin@eecs.uottawa.ca organization: DISCOVER Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada |
| BookMark | eNp9kDtPwzAUhS0EEuWxI7FYYk65dh622UpogSotCLUsDJHr3qC0IS52CuLfk6iIgYHpHl2dh_Qdkf3a1kjIGYM-Y6AuZ5NJnwPn_ZBJwWO1R3pMRSwAEGK_1TGHQHEGh-TI-xUAi2IQPfJynQXj-fT-cfh0RQc0nU6Dgfelb3BJR06_4ad1a1pYRx_RGdw0W13R53KJlqZ2WdavNMMPdPq1k9eVNeuge1R0PL05IQeFrjye_txjMh8NZ-ldkD3c3qeDLDBhLJrA8MhoFbKowFDrREUcQmNAcC3QaKaUiFFIBcsYWcJlseASFwp4ESZJggbDY3Kx6904-75F3-Qru3V1O5lzKSPZdcvWBTuXcdZ7h0W-ceWbdl85g7xDmLcI8w5h_oOwjSR_IqZsdFPaunG6rP4Lnu-CJSL-7ijJoIUefgOLc311 |
| CODEN | ITMUF8 |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3402363 crossref_primary_10_1145_3571727 crossref_primary_10_1016_j_engappai_2024_109806 crossref_primary_10_1109_JETCAS_2024_3524260 crossref_primary_10_3390_electronics13244977 crossref_primary_10_3390_s23052634 crossref_primary_10_1109_TMM_2023_3340882 crossref_primary_10_1109_TCE_2025_3526479 crossref_primary_10_1109_TCSVT_2024_3389988 |
| Cites_doi | 10.1109/ACCESS.2019.2901342 10.1109/TIP.2017.2685682 10.1145/3304112.3325604 10.1007/s11045-016-0395-2 10.1109/TCSVT.2016.2539862 10.1109/TBC.2020.2977542 10.1109/ICIP.2019.8803454 10.1109/TIP.2013.2279934 10.1109/ACCESS.2021.3050489 10.1109/TIP.2018.2818439 10.1109/ICCV.2013.370 10.1109/TIP.2019.2933743 10.1109/JSTSP.2020.3034501 10.2352/ISSN.2470-1173.2016.13.IQSP-222 10.1109/TIP.2003.819861 10.1145/3394171.3413536 10.1109/ICMEW46912.2020.9106036 10.1109/CVPR.2018.00068 10.1109/ICIP.2016.7532610 10.1016/j.jvcir.2017.04.009 10.1109/TMM.2013.2268053 10.1109/TIP.2020.3029428 10.1109/ICIP40778.2020.9190983 10.1109/TIP.2016.2568459 10.1109/LSP.2016.2641456 10.1109/ACCESS.2019.2910245 10.1109/TBC.2018.2823909 10.1109/TIP.2017.2760518 10.1109/TIP.2018.2815842 10.1109/TCSVT.2009.2013518 10.1109/ICASSP40776.2020.9053580 10.1007/s00530-014-0381-1 10.1145/3397227 10.1016/j.jvcir.2012.04.010 10.1109/PCS.2018.8456297 10.1109/WPMC.2014.7014800 10.3390/e21020165 10.1016/j.neucom.2017.08.054 10.1016/j.neucom.2020.06.003 10.1109/TMM.2019.2931807 10.1145/3386292.3397120 10.1109/TIP.2016.2573597 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TMM.2022.3187259 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0077 |
| EndPage | 5092 |
| ExternalDocumentID | 10_1109_TMM_2022_3187259 9810507 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c357t-c24ca9314fe3aa694203cc072a7eca19975e7890d5e1628fb28eb902f3666ece3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001097340300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-9210 |
| IngestDate | Wed Nov 26 03:47:41 EST 2025 Sat Nov 29 03:10:09 EST 2025 Tue Nov 18 21:43:03 EST 2025 Wed Aug 27 02:24:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-c24ca9314fe3aa694203cc072a7eca19975e7890d5e1628fb28eb902f3666ece3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3518-9195 0000-0001-6526-3811 0000-0002-4826-1168 0000-0002-3973-4445 |
| PQID | 2884893148 |
| PQPubID | 75737 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TMM_2022_3187259 proquest_journals_2884893148 ieee_primary_9810507 crossref_citationtrail_10_1109_TMM_2022_3187259 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on multimedia |
| PublicationTitleAbbrev | TMM |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 (ref48) 2002 ref11 ref10 achanta (ref45) 2010 nair (ref43) 2010 ref17 ref16 ref19 ref18 ref50 (ref42) 2021 ref41 (ref1) 2019 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 kingma (ref44) 2015 ref36 bossen (ref47) 2012 ref31 ref30 ref33 ref32 ref2 ref39 ref38 wei (ref29) 2009; 19 rosewarne (ref46) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 bjontegaard (ref51) 2001 |
| References_xml | – ident: ref14 doi: 10.1109/ACCESS.2019.2901342 – ident: ref25 doi: 10.1109/TIP.2017.2685682 – ident: ref23 doi: 10.1145/3304112.3325604 – ident: ref37 doi: 10.1007/s11045-016-0395-2 – ident: ref31 doi: 10.1109/TCSVT.2016.2539862 – year: 2015 ident: ref44 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Representations – ident: ref2 doi: 10.1109/TBC.2020.2977542 – ident: ref11 doi: 10.1109/ICIP.2019.8803454 – ident: ref26 doi: 10.1109/TIP.2013.2279934 – ident: ref5 doi: 10.1109/ACCESS.2021.3050489 – ident: ref12 doi: 10.1109/TIP.2018.2818439 – ident: ref41 doi: 10.1109/ICCV.2013.370 – ident: ref3 doi: 10.1109/TIP.2019.2933743 – ident: ref15 doi: 10.1109/JSTSP.2020.3034501 – ident: ref34 doi: 10.2352/ISSN.2470-1173.2016.13.IQSP-222 – ident: ref49 doi: 10.1109/TIP.2003.819861 – ident: ref16 doi: 10.1145/3394171.3413536 – start-page: 807 year: 2010 ident: ref43 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc Int Conf Mach Learn – ident: ref10 doi: 10.1109/ICMEW46912.2020.9106036 – year: 2010 ident: ref45 article-title: SLIC superpixels – ident: ref50 doi: 10.1109/CVPR.2018.00068 – ident: ref35 doi: 10.1109/ICIP.2016.7532610 – ident: ref36 doi: 10.1016/j.jvcir.2017.04.009 – ident: ref24 doi: 10.1109/TMM.2013.2268053 – start-page: 1 year: 2001 ident: ref51 article-title: Calculation of average PSNR differences between RD curves publication-title: Proc 13th Video Coding Expert Gr Meeting – year: 2021 ident: ref42 article-title: Subjective video quality assessment methods for multimedia applications – ident: ref38 doi: 10.1109/TIP.2020.3029428 – ident: ref40 doi: 10.1109/ICIP40778.2020.9190983 – ident: ref30 doi: 10.1109/TIP.2016.2568459 – ident: ref39 doi: 10.1109/LSP.2016.2641456 – ident: ref17 doi: 10.1109/ACCESS.2019.2910245 – ident: ref7 doi: 10.1109/TBC.2018.2823909 – ident: ref19 doi: 10.1109/TIP.2017.2760518 – ident: ref20 doi: 10.1109/TIP.2018.2815842 – volume: 19 start-page: 337 year: 2009 ident: ref29 article-title: Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2009.2013518 – ident: ref32 doi: 10.1109/ICASSP40776.2020.9053580 – ident: ref4 doi: 10.1007/s00530-014-0381-1 – ident: ref21 doi: 10.1145/3397227 – year: 2002 ident: ref48 article-title: Methodology for the subjective assessment of the quality of television pictures – year: 2012 ident: ref47 article-title: Common test conditions and software reference configurations – ident: ref28 doi: 10.1016/j.jvcir.2012.04.010 – ident: ref13 doi: 10.1109/PCS.2018.8456297 – ident: ref33 doi: 10.1109/WPMC.2014.7014800 – ident: ref8 doi: 10.3390/e21020165 – year: 2016 ident: ref46 article-title: High efficiency video coding (HEVC) test model 16 (HM16) improved encoder description update 5 – year: 2019 ident: ref1 article-title: Cisco visual networking index: Global mobile data traffic forecast – ident: ref9 doi: 10.1016/j.neucom.2017.08.054 – ident: ref18 doi: 10.1016/j.neucom.2020.06.003 – ident: ref6 doi: 10.1109/TMM.2019.2931807 – ident: ref22 doi: 10.1145/3386292.3397120 – ident: ref27 doi: 10.1109/TIP.2016.2573597 |
| SSID | ssj0014507 |
| Score | 2.4594483 |
| Snippet | Just Noticeable Distortion (JND) finds the minimum distortion level perceivable by humans. This can be a natural solution for setting the compression for each... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5077 |
| SubjectTerms | Algorithms Bit rate Coding Control algorithms Control theory Convolutional neural network (cnn) Distortion Encoding just noticeable distortion (jnd) Measurement perceptual video coding (pvc) Predictive models quantization control algorithm Robustness (mathematics) Streaming media Video coding Video compression visual attention Visualization |
| Title | BL-JUNIPER: A CNN-Assisted Framework for Perceptual Video Coding Leveraging Block-Level JND |
| URI | https://ieeexplore.ieee.org/document/9810507 https://www.proquest.com/docview/2884893148 |
| Volume | 25 |
| WOSCitedRecordID | wos001097340300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014507 issn: 1520-9210 databaseCode: RIE dateStart: 19990101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8aAH3-L6IgcvgnG7ado03nR1kUXLIiqCh9KmU1hcdmUf_n4zabsIiuCtlISWfklnJjPzfQCnEpXyRS54JtKASymJA9LLOImUe6HBXAfGiU2oOI5eX3W_AeeLXhhEdMVneEGXLpefj82cjspaOrLeALWOLykVlr1ai4yBDFxrtDVHHtc2jqlTkp5uPT082EBQCBufRkoQK-k3E-Q0VX78iJ116W787702Yb3yItlVCfsWNHC0DRu1QgOrNuw2rH2jG9yBt-t73rMBX__28ZJdsU4cc4sO4Zyzbl2kxawXy_plucvcPuNlkOOYdcZk49g92pXvdI3YtbWC75xuDFkvvtmF5-7tU-eOV-IK3PiBmnEjpEm135YF-mkaaik83xhPiVShSan8JEBqks0DbIciKjIRYaY9Ufg24EGD_h4sj8Yj3AcWpH4YKY2hypQMiV5G50XYNtp6d3agaEKr_t6JqZjHSQBjmLgIxNOJRSghhJIKoSacLWZ8lKwbf4zdIUQW4yowmnBUQ5pU23KaiCgish0bAh78PusQVklPvjxjOYLl2WSOx7BiPmeD6eTErbgvHE7PXg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5EBfXB3-J0ah58EYzr0rRpfNPp8MdWhkwRfChteoOhbOI2_35zWTsERfCtlISWfknvLnf3fQDHEpXyRS54JtKASymJA9LLOImUe6HBXAfGiU2oOI6en3VnDk5nvTCI6IrP8IwuXS4_H5oJHZXVdGS9AWodXyDlrKJba5YzkIFrjrYGyePaRjJlUtLTtW67bUNBIWyEGilBvKTfjJBTVfnxK3b2pbn2vzdbh9XCj2QXU-A3YA4Hm7BWajSwYstuwso3wsEteLls8Tsb8nWuH87ZBWvEMbf4ENI5a5ZlWsz6sawzLXiZ2Gc89XMcssaQrBxroV37TtmIXVo7-Mrpxhu7i6-24bF53W3c8EJegRs_UGNuhDSp9uuyh36ahloKzzfGUyJVaFIqQAmQ2mTzAOuhiHqZiDDTnuj5NuRBg_4OzA-GA9wFFqR-GCmNocqUDIlgRue9sG609e_sQFGBWvm9E1Nwj5MExlviYhBPJxahhBBKCoQqcDKb8T7l3fhj7BYhMhtXgFGBaglpUmzMUSKiiOh2bBC49_usI1i66bZbSes2vt-HZVKXn564VGF-_DHBA1g0n-P-6OPQrb4vFx7Spw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BL-JUNIPER%3A+A+CNN-Assisted+Framework+for+Perceptual+Video+Coding+Leveraging+Block-Level+JND&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Nami%2C+Sanaz&rft.au=Pakdaman%2C+Farhad&rft.au=Hashemi%2C+Mahmoud+Reza&rft.au=Shirmohammadi%2C+Shervin&rft.date=2023&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=25&rft.spage=5077&rft.epage=5092&rft_id=info:doi/10.1109%2FTMM.2022.3187259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2022_3187259 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |