Robust Inference Using the Exponential-Polynomial Divergence

Density-based minimum divergence procedures represent popular techniques in parametric statistical inference. They combine strong robustness properties with high (sometimes full) asymptotic efficiency. Among density-based minimum distance procedures, the methods based on the Brègman divergence have...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of statistical theory and practice Ročník 15; číslo 2
Hlavní autori: Singh, Pushpinder, Mandal, Abhijit, Basu, Ayanendranath
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.06.2021
Predmet:
ISSN:1559-8608, 1559-8616
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Density-based minimum divergence procedures represent popular techniques in parametric statistical inference. They combine strong robustness properties with high (sometimes full) asymptotic efficiency. Among density-based minimum distance procedures, the methods based on the Brègman divergence have the attractive property that the empirical formulation of the divergence does not require the use of any nonparametric smoothing technique such as kernel density estimation. The methods based on the density power divergence (DPD) represent the current standard in this area of research. In this paper, we will present a more generalized divergence which subsumes the DPD as a special case, and produces several new options providing better compromises between robustness and efficiency.
ISSN:1559-8608
1559-8616
DOI:10.1007/s42519-020-00162-z