Robust Inference Using the Exponential-Polynomial Divergence

Density-based minimum divergence procedures represent popular techniques in parametric statistical inference. They combine strong robustness properties with high (sometimes full) asymptotic efficiency. Among density-based minimum distance procedures, the methods based on the Brègman divergence have...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical theory and practice Ročník 15; číslo 2
Hlavní autoři: Singh, Pushpinder, Mandal, Abhijit, Basu, Ayanendranath
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2021
Témata:
ISSN:1559-8608, 1559-8616
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Density-based minimum divergence procedures represent popular techniques in parametric statistical inference. They combine strong robustness properties with high (sometimes full) asymptotic efficiency. Among density-based minimum distance procedures, the methods based on the Brègman divergence have the attractive property that the empirical formulation of the divergence does not require the use of any nonparametric smoothing technique such as kernel density estimation. The methods based on the density power divergence (DPD) represent the current standard in this area of research. In this paper, we will present a more generalized divergence which subsumes the DPD as a special case, and produces several new options providing better compromises between robustness and efficiency.
AbstractList Density-based minimum divergence procedures represent popular techniques in parametric statistical inference. They combine strong robustness properties with high (sometimes full) asymptotic efficiency. Among density-based minimum distance procedures, the methods based on the Brègman divergence have the attractive property that the empirical formulation of the divergence does not require the use of any nonparametric smoothing technique such as kernel density estimation. The methods based on the density power divergence (DPD) represent the current standard in this area of research. In this paper, we will present a more generalized divergence which subsumes the DPD as a special case, and produces several new options providing better compromises between robustness and efficiency.
ArticleNumber 29
Author Singh, Pushpinder
Basu, Ayanendranath
Mandal, Abhijit
Author_xml – sequence: 1
  givenname: Pushpinder
  surname: Singh
  fullname: Singh, Pushpinder
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
– sequence: 2
  givenname: Abhijit
  surname: Mandal
  fullname: Mandal, Abhijit
  organization: Department of Mathematical Sciences, University of Texas at El Paso
– sequence: 3
  givenname: Ayanendranath
  orcidid: 0000-0003-1416-9109
  surname: Basu
  fullname: Basu, Ayanendranath
  email: ayanbasu@isical.ac.in
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute
BookMark eNp9kMFOAjEQhhuDiYC-gKd9geq0pWWbeDGISkKiMXJuut0WS5aWtIsRnt5FjAcPnOZPZr6ZzDdAvRCDReiawA0BGN_mEeVEYqCAAYigeH-G-oRziUtBRO8vQ3mBBjmvAAQBxvro7i1W29wWs-BsssHYYpF9WBbthy2mX5vuSmi9bvBrbHYhrrtYPPhPm5aH2Ut07nST7dVvHaLF4_R98oznL0-zyf0cG8bHLa5qIEbXIy65oCWvoawlqypJrXaGMHBOMCINWDEuZUWpJbK2TvBDj5GasSEqj3tNijkn65TxrW59DG3SvlEE1MGCOlpQnQX1Y0HtO5T-QzfJr3XanYbYEcrdcFjapFZxm0L34inqG1nJcpw
CitedBy_id crossref_primary_10_1109_TIT_2024_3366538
crossref_primary_10_1080_00949655_2023_2283764
Cites_doi 10.1201/b10956
10.1214/aoms/1177729694
10.1007/978-1-4757-2769-2
10.1007/s10260-018-00444-8
10.1093/biomet/85.3.549
10.1016/0041-5553(67)90040-7
10.1080/02664763.2020.1736524
10.1093/biomet/74.3.609
10.1109/TR.1972.5216164
10.1109/TIT.2019.2937527
10.1214/13-EJS847
10.1214/aos/1176343997
10.1080/01621459.1989.10478744
10.1080/02664763.2015.1016901
10.1080/00949650412331299120
ContentType Journal Article
Copyright Grace Scientific Publishing 2021
Copyright_xml – notice: Grace Scientific Publishing 2021
DBID AAYXX
CITATION
DOI 10.1007/s42519-020-00162-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1559-8616
ExternalDocumentID 10_1007_s42519_020_00162_z
GroupedDBID -EM
.7F
0R~
4.4
406
8UJ
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABFIM
ABFTV
ABJNI
ABKCH
ABMQK
ABPEM
ABTAI
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACTIO
ACZOJ
ADCVX
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AIGIU
AIJEM
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AQRUH
AVBZW
AXYYD
BGNMA
CCCUG
CSCUP
DKSSO
DPUIP
EBLON
EBS
EJD
E~A
E~B
F5P
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GTTXZ
H13
HZ~
H~P
IKXTQ
IWAJR
J9A
JZLTJ
J~4
KOV
LLZTM
M4Y
M4Z
NPVJJ
NQJWS
NU0
O9-
P2P
PT4
ROL
RSV
S-T
SJN
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
STPWE
TDBHL
TFL
TFT
TFW
TSG
UOJIU
UT5
UTJUX
UU3
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
PHGZM
PHGZT
ID FETCH-LOGICAL-c357t-bd01cad45956285d08d93bb92eafc130ff6319c0e6789b22e19def65c13031d33
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000613737800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1559-8608
IngestDate Sat Nov 29 01:41:37 EST 2025
Tue Nov 18 22:34:06 EST 2025
Fri Feb 21 02:49:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Robustness
Density power divergence
Brègman divergence
M-estimator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-bd01cad45956285d08d93bb92eafc130ff6319c0e6789b22e19def65c13031d33
ORCID 0000-0003-1416-9109
ParticipantIDs crossref_citationtrail_10_1007_s42519_020_00162_z
crossref_primary_10_1007_s42519_020_00162_z
springer_journals_10_1007_s42519_020_00162_z
PublicationCentury 2000
PublicationDate 20210600
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 6
  year: 2021
  text: 20210600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Journal of statistical theory and practice
PublicationTitleAbbrev J Stat Theory Pract
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References JanaSBasuAA characterization of all single-integral, non-kernel divergence estimatorsIEEE Trans Inf Theory2019651279767984403891110.1109/TIT.2019.2937527
KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat195122179863996810.1214/aoms/1177729694
MaronnaRAMartinRDYohaiVJSalibián-BarreraMRobust statistics: theory and methods (with R)2019New JerseyJohn Wiley and Sons1409.62009
Basak S, Basu A, Jones M (2020) On the ‘optimal’ density power divergence tuning parameter. J Appl Stat. (in press)
BasuAShioyaHParkCStatistical inference: the minimum distance approach2011Boca RatonChapman and Hall10.1201/b10956
BasuAHarrisIRHjortNLJonesMRobust and efficient estimation by minimising a density power divergenceBiometrika1998853549559166587310.1093/biomet/85.3.549
WarwickJJonesMChoosing a robustness tuning parameterJ Stat Comput Simul2005757581588216254710.1080/00949650412331299120
MukherjeeTMandalABasuAThe B-exponential divergence and its generalizations with applications to parametric estimationStat Methods Appl2019282241257395440710.1007/s10260-018-00444-8
SimpsonDGHellinger deviance tests: efficiency, breakdown points, and examplesJ Am Stat Assoc19898440510711399966710.1080/01621459.1989.10478744
PardoLStatistical interference based on divergence measures2006Boca RatonChapman Hall/CRC1118.62008
StiglerSMDo robust estimators work with real data?Ann Stat1977561055109845520510.1214/aos/1176343997
BeranRMinimum hellinger distance estimates for parametric modelsAnn Stat1977534454634487000381.62028
GhoshABasuARobust estimation for independent non-homogeneous observations using density power divergence with applications to linear regressionElectron J Stat2013724202456311710210.1214/13-EJS847
LehmannELTheory of point estimation1983BerlinSpringer10.1007/978-1-4757-2769-2
SpiegelhalterDExact bayesian inference on the parameter of a cauchy distribution with vague prior informationBayesian Stat198527437498625170671.62026
HampelFRRonchettiEMRousseeuwPJStahelWARobust statistics: the approach based on influence functions2011New JerseyJohn Wiley and Sons0593.62027
RousseeuwPJLeroyAMRobust regression and outlier detection2005New JerseyJohn Wiley and Sons0711.62030
BrègmanLThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingComput Math Math Phys19677320021721561710.1016/0041-5553(67)90040-7
GhoshABasuARobust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approachJ Appl Stat201542920562072337104010.1080/02664763.2015.1016901
WelchWJRerandomizing the median in matched-pairs designsBiometrika198774360961490936510.1093/biomet/74.3.609
NelsonWGraphical analysis of accelerated life test data with the inverse power law modelIEEE Trans Reliab197221121110.1109/TR.1972.5216164
RA Maronna (162_CR12) 2019
A Ghosh (162_CR6) 2013; 7
EL Lehmann (162_CR11) 1983
W Nelson (162_CR14) 1972; 21
J Warwick (162_CR20) 2005; 75
D Spiegelhalter (162_CR18) 1985; 2
WJ Welch (162_CR21) 1987; 74
R Beran (162_CR4) 1977; 5
L Brègman (162_CR5) 1967; 7
A Ghosh (162_CR7) 2015; 42
162_CR1
S Kullback (162_CR10) 1951; 22
A Basu (162_CR2) 1998; 85
SM Stigler (162_CR19) 1977; 5
L Pardo (162_CR15) 2006
PJ Rousseeuw (162_CR16) 2005
DG Simpson (162_CR17) 1989; 84
A Basu (162_CR3) 2011
S Jana (162_CR9) 2019; 65
T Mukherjee (162_CR13) 2019; 28
FR Hampel (162_CR8) 2011
References_xml – reference: KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat195122179863996810.1214/aoms/1177729694
– reference: MukherjeeTMandalABasuAThe B-exponential divergence and its generalizations with applications to parametric estimationStat Methods Appl2019282241257395440710.1007/s10260-018-00444-8
– reference: RousseeuwPJLeroyAMRobust regression and outlier detection2005New JerseyJohn Wiley and Sons0711.62030
– reference: SpiegelhalterDExact bayesian inference on the parameter of a cauchy distribution with vague prior informationBayesian Stat198527437498625170671.62026
– reference: WelchWJRerandomizing the median in matched-pairs designsBiometrika198774360961490936510.1093/biomet/74.3.609
– reference: JanaSBasuAA characterization of all single-integral, non-kernel divergence estimatorsIEEE Trans Inf Theory2019651279767984403891110.1109/TIT.2019.2937527
– reference: BrègmanLThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programmingComput Math Math Phys19677320021721561710.1016/0041-5553(67)90040-7
– reference: SimpsonDGHellinger deviance tests: efficiency, breakdown points, and examplesJ Am Stat Assoc19898440510711399966710.1080/01621459.1989.10478744
– reference: BasuAShioyaHParkCStatistical inference: the minimum distance approach2011Boca RatonChapman and Hall10.1201/b10956
– reference: HampelFRRonchettiEMRousseeuwPJStahelWARobust statistics: the approach based on influence functions2011New JerseyJohn Wiley and Sons0593.62027
– reference: BasuAHarrisIRHjortNLJonesMRobust and efficient estimation by minimising a density power divergenceBiometrika1998853549559166587310.1093/biomet/85.3.549
– reference: LehmannELTheory of point estimation1983BerlinSpringer10.1007/978-1-4757-2769-2
– reference: MaronnaRAMartinRDYohaiVJSalibián-BarreraMRobust statistics: theory and methods (with R)2019New JerseyJohn Wiley and Sons1409.62009
– reference: NelsonWGraphical analysis of accelerated life test data with the inverse power law modelIEEE Trans Reliab197221121110.1109/TR.1972.5216164
– reference: WarwickJJonesMChoosing a robustness tuning parameterJ Stat Comput Simul2005757581588216254710.1080/00949650412331299120
– reference: StiglerSMDo robust estimators work with real data?Ann Stat1977561055109845520510.1214/aos/1176343997
– reference: GhoshABasuARobust estimation for independent non-homogeneous observations using density power divergence with applications to linear regressionElectron J Stat2013724202456311710210.1214/13-EJS847
– reference: PardoLStatistical interference based on divergence measures2006Boca RatonChapman Hall/CRC1118.62008
– reference: Basak S, Basu A, Jones M (2020) On the ‘optimal’ density power divergence tuning parameter. J Appl Stat. (in press)
– reference: BeranRMinimum hellinger distance estimates for parametric modelsAnn Stat1977534454634487000381.62028
– reference: GhoshABasuARobust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approachJ Appl Stat201542920562072337104010.1080/02664763.2015.1016901
– volume-title: Statistical inference: the minimum distance approach
  year: 2011
  ident: 162_CR3
  doi: 10.1201/b10956
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 162_CR10
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume-title: Theory of point estimation
  year: 1983
  ident: 162_CR11
  doi: 10.1007/978-1-4757-2769-2
– volume-title: Robust regression and outlier detection
  year: 2005
  ident: 162_CR16
– volume: 28
  start-page: 241
  issue: 2
  year: 2019
  ident: 162_CR13
  publication-title: Stat Methods Appl
  doi: 10.1007/s10260-018-00444-8
– volume: 85
  start-page: 549
  issue: 3
  year: 1998
  ident: 162_CR2
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.549
– volume: 7
  start-page: 200
  issue: 3
  year: 1967
  ident: 162_CR5
  publication-title: Comput Math Math Phys
  doi: 10.1016/0041-5553(67)90040-7
– ident: 162_CR1
  doi: 10.1080/02664763.2020.1736524
– volume: 74
  start-page: 609
  issue: 3
  year: 1987
  ident: 162_CR21
  publication-title: Biometrika
  doi: 10.1093/biomet/74.3.609
– volume: 5
  start-page: 445
  issue: 3
  year: 1977
  ident: 162_CR4
  publication-title: Ann Stat
– volume: 21
  start-page: 2
  issue: 1
  year: 1972
  ident: 162_CR14
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.1972.5216164
– volume: 65
  start-page: 7976
  issue: 12
  year: 2019
  ident: 162_CR9
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2019.2937527
– volume: 7
  start-page: 2420
  year: 2013
  ident: 162_CR6
  publication-title: Electron J Stat
  doi: 10.1214/13-EJS847
– volume-title: Statistical interference based on divergence measures
  year: 2006
  ident: 162_CR15
– volume: 5
  start-page: 1055
  issue: 6
  year: 1977
  ident: 162_CR19
  publication-title: Ann Stat
  doi: 10.1214/aos/1176343997
– volume: 84
  start-page: 107
  issue: 405
  year: 1989
  ident: 162_CR17
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1989.10478744
– volume: 2
  start-page: 743
  year: 1985
  ident: 162_CR18
  publication-title: Bayesian Stat
– volume: 42
  start-page: 2056
  issue: 9
  year: 2015
  ident: 162_CR7
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2015.1016901
– volume-title: Robust statistics: theory and methods (with R)
  year: 2019
  ident: 162_CR12
– volume-title: Robust statistics: the approach based on influence functions
  year: 2011
  ident: 162_CR8
– volume: 75
  start-page: 581
  issue: 7
  year: 2005
  ident: 162_CR20
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949650412331299120
SSID ssj0061033
Score 2.2176607
Snippet Density-based minimum divergence procedures represent popular techniques in parametric statistical inference. They combine strong robustness properties with...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Celebrating the Centenary of Professor C. R. Rao
Mathematics and Statistics
Original Article
Probability Theory and Stochastic Processes
Statistical Theory and Methods
Statistics
Title Robust Inference Using the Exponential-Polynomial Divergence
URI https://link.springer.com/article/10.1007/s42519-020-00162-z
Volume 15
WOSCitedRecordID wos000613737800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1559-8616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061033
  issn: 1559-8608
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1559-8616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061033
  issn: 1559-8608
  databaseCode: TFW
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcBgHHoOJ8VIP3CBSmyZdKnFBsAkOTNN4aLeqSdPTtE3rhmC_HidLK01Ck-BcN63cOLZrf58BrmmMTjEPOFEMMx0mopSkOgqJkoJjdJKyzA2baPd6YjiM-w4UVpTd7mVJ0p7UFdiNGZAlMemOiVMoWW7DDro7Ycxx8PpRnr8YD9gB8qbeRkTkCweV-X2NdXe0Xgu1LqZ78L-XO4R9F1J696s9cARbetyAvZeKj7VoQN3ElCtK5mO4G0zkoph7zyXWz7N9Ax7Ke52v6WRsGojSEelPRt8GtIxrP5ruDUvbeQLv3c7bwxNxQxSICnl7TmTmByrNGMdEiAqe-SKLQyljqtNcoQPL8witUPkavVYsKdVBnOk84uZaGGRh2ITaGJ98Ch4zXGWGj4YKzKtkkErJWM6pxJSHi7jdgqDUZaIcw7gZdDFKKm5kq6YE1ZRYNSXLFtxU90xX_BobpW9L9SfO1ooN4md_Ez-HOjUdK_YfywXU5rOFvoRd9YkfaHZlN9kPahLJqA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4omogP_kCN-HMPvmmTrWtHl_hiFAIRCEE0vC1rtz0RIAyM8td7LdsSEkOiz7t1y63t3a3f9x3AHfUxKCYOJ4phpcOEF5Iw9lyipOCYnYQsyppN1LpdMRz6vYwUluZo9_xI0uzUBdmNaZIl0eWOzlMoWW7DDsOIpYF8_bePfP_FfMA0kNfnbUR4tsioMr-PsR6O1s9CTYhpHP7v5Y7gIEsprafVHDiGrXhcgf1OoceaVqCsc8qVJPMJPPYncpHOrVbO9bMMbsBCe6v-NZ2MNYAoHJHeZPStScs49otGbxjZzlN4b9QHz02SNVEgyuW1OZGR7agwYhwLISp4ZIvId6X0aRwmCgNYkni4CpUdY9TyJaWx40dx4nF9zXUi1z2D0hiffA4W01plWo-GCqyrpBNKyVjCqcSShwu_VgUn92WgMoVx3ehiFBTayMZNAbopMG4KllW4L-6ZrvQ1Nlo_5O4PsrWWbjC_-Jv5Lew1B5120G51Xy-hTDV6xfxvuYLSfLaIr2FXfeLHmt2YCfcD6ADMjA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60itSDj6pYnzl408Vks5tuwIvYFotaii96C9lscippaVPR_np3NkmxIAXxnMkmzO5m5svO9w3ABfV1UEwcTiKmkQ4TXkjC2HNJJAXX2UnIVNFsotHtin7f7_1g8Ztq9_JIMuc0oEpTml2PVHI9J74xJFwShD6Ys1AyW4U1hk2DEK-_vJffYp0bmGbyePZGhGeLgjbz-xiLoWnxXNSEm_b2_190B7aKVNO6zdfGLqzEaQ02n-Y6rZMaVDHXzKWa9-DmeSink8zqlBxAy9QTWNrean2OhikWFoUD0hsOvpDMrMduYlWHkfPch7d26_XunhTNFUjk8kZGpLKdKFSMa4BEBVe2UL4rpU_jMIl0YEsST-_OyI51NPMlpbHjqzjxOF5zHeW6B1BJ9ZMPwWKoYYY6NVRovCWdUErGEk6lhkJc-I06OKVfg6hQHscGGINgrpls3BRoNwXGTcGsDpfze0a57sZS66tyKoJiD06WmB_9zfwcNnrNdvDY6T4cQ5ViUYv5DXMClWw8jU9hPfrQczU-M2vvG3EZ1XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Inference+Using+the+Exponential-Polynomial+Divergence&rft.jtitle=Journal+of+statistical+theory+and+practice&rft.au=Singh%2C+Pushpinder&rft.au=Mandal%2C+Abhijit&rft.au=Basu%2C+Ayanendranath&rft.date=2021-06-01&rft.issn=1559-8608&rft.eissn=1559-8616&rft.volume=15&rft.issue=2&rft_id=info:doi/10.1007%2Fs42519-020-00162-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42519_020_00162_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-8608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-8608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-8608&client=summon