Performance Impacts of Analog ReRAM Non-ideality on Neuromorphic Computing

Resistive random access memory (ReRAM) is often considered as a strong candidate for storing the weights in non-von Neumann neuromorphic computing systems. This paper studies how nonideal memory characteristics, which include programing error, read fluctuation, and retention, affect the inference ac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on electron devices Ročník 66; číslo 3; s. 1289 - 1295
Hlavní autoři: Lin, Yu-Hsuan, Wang, Chao-Hung, Lee, Ming-Hsiu, Lee, Dai-Ying, Lin, Yu-Yu, Lee, Feng-Min, Lung, Hsiang-Lan, Wang, Keh-Chung, Tseng, Tseung-Yuen, Lu, Chih-Yuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9383, 1557-9646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Resistive random access memory (ReRAM) is often considered as a strong candidate for storing the weights in non-von Neumann neuromorphic computing systems. This paper studies how nonideal memory characteristics, which include programing error, read fluctuation, and retention, affect the inference accuracy of the analog ReRAM neural networks by incorporating memory characteristics extracted from 1-Mb ReRAM into a simulated inference-only neural network. This paper also shows that the different layer in the network can tolerate different amount of such imperfects. We learned four key points: 1) the conductance range of memory with less relative fluctuation is preferred for designing the weight-conductance mapping; 2) the control of programing error is essential for high inference accuracy; 3) retention-induced conductance drift can be fatal to the neuromorphic system. A compensation scheme is proposed in this paper which can effectively recover the inference accuracy; and 4) for multilayer networks, avoiding weight errors in the front layers can help to maintain the inference accuracy by reducing calculation error which may otherwise accumulate and pass down the networks. The concepts and approaches of this paper can also be applied to evaluate other types of nonvolatile memories for artificial neural networks.
AbstractList Resistive random access memory (ReRAM) is often considered as a strong candidate for storing the weights in non-von Neumann neuromorphic computing systems. This paper studies how nonideal memory characteristics, which include programing error, read fluctuation, and retention, affect the inference accuracy of the analog ReRAM neural networks by incorporating memory characteristics extracted from 1-Mb ReRAM into a simulated inference-only neural network. This paper also shows that the different layer in the network can tolerate different amount of such imperfects. We learned four key points: 1) the conductance range of memory with less relative fluctuation is preferred for designing the weight-conductance mapping; 2) the control of programing error is essential for high inference accuracy; 3) retention-induced conductance drift can be fatal to the neuromorphic system. A compensation scheme is proposed in this paper which can effectively recover the inference accuracy; and 4) for multilayer networks, avoiding weight errors in the front layers can help to maintain the inference accuracy by reducing calculation error which may otherwise accumulate and pass down the networks. The concepts and approaches of this paper can also be applied to evaluate other types of nonvolatile memories for artificial neural networks.
Author Lin, Yu-Yu
Lung, Hsiang-Lan
Lu, Chih-Yuan
Lee, Ming-Hsiu
Lin, Yu-Hsuan
Wang, Keh-Chung
Wang, Chao-Hung
Tseng, Tseung-Yuen
Lee, Dai-Ying
Lee, Feng-Min
Author_xml – sequence: 1
  givenname: Yu-Hsuan
  orcidid: 0000-0001-8352-3584
  surname: Lin
  fullname: Lin, Yu-Hsuan
  email: yhlin.ee01g@nctu.edu.tw
  organization: Department of Electronics Engineering, Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan
– sequence: 2
  givenname: Chao-Hung
  surname: Wang
  fullname: Wang, Chao-Hung
  organization: Emerging Central Laboratory, Macronix International Co., Ltd., Hsinchu, Taiwan
– sequence: 3
  givenname: Ming-Hsiu
  surname: Lee
  fullname: Lee, Ming-Hsiu
  organization: Emerging Central Laboratory, Macronix International Co., Ltd., Hsinchu, Taiwan
– sequence: 4
  givenname: Dai-Ying
  surname: Lee
  fullname: Lee, Dai-Ying
  organization: Emerging Central Laboratory, Macronix International Co., Ltd., Hsinchu, Taiwan
– sequence: 5
  givenname: Yu-Yu
  surname: Lin
  fullname: Lin, Yu-Yu
  organization: Emerging Central Laboratory, Macronix International Co., Ltd., Hsinchu, Taiwan
– sequence: 6
  givenname: Feng-Min
  surname: Lee
  fullname: Lee, Feng-Min
  organization: Emerging Central Laboratory, Macronix International Co., Ltd., Hsinchu, Taiwan
– sequence: 7
  givenname: Hsiang-Lan
  surname: Lung
  fullname: Lung, Hsiang-Lan
  organization: Emerging Central Laboratory, Macronix International Co., Ltd., Hsinchu, Taiwan
– sequence: 8
  givenname: Keh-Chung
  surname: Wang
  fullname: Wang, Keh-Chung
  organization: Emerging Central Laboratory, Macronix International Co., Ltd., Hsinchu, Taiwan
– sequence: 9
  givenname: Tseung-Yuen
  orcidid: 0000-0003-1158-5289
  surname: Tseng
  fullname: Tseng, Tseung-Yuen
  organization: Department of Electronics Engineering, Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan
– sequence: 10
  givenname: Chih-Yuan
  surname: Lu
  fullname: Lu, Chih-Yuan
  organization: Emerging Central Laboratory, Macronix International Co., Ltd., Hsinchu, Taiwan
BookMark eNp9kM9LwzAUgINMcJveBS8Bz51J8_s45vzFnDJ2L2mazoy2qUl72H9vx4YHD54eD77v8fgmYNT4xgJwi9EMY6QetsvHWYqwmqVS0VSQCzDGjIlEccpHYIwQlokiklyBSYz7YeWUpmPw9mlD6UOtG2Pha91q00XoSzhvdOV3cGM383e49k3iCqsr1x2gb-Da9sHXPrRfzsCFr9u-c83uGlyWuor25jynYPu03C5ektXH8-tivkoMYaJLckOI1CznuhAF1lphW5RCWk2IFYgZw9Iy1zTXzBZYlIXKFS-QMFLmFHFMpuD-dLYN_ru3scv2vg_DuzFLsWSCYEr5QPETZYKPMdgyM67TnfNNF7SrMoyyY7ZsyJYds2XnbIOI_ohtcLUOh_-Uu5PirLW_uOQkVZSRH3wweks
CODEN IETDAI
CitedBy_id crossref_primary_10_1109_TED_2023_3308527
crossref_primary_10_1109_TED_2021_3118996
crossref_primary_10_1109_TCAD_2024_3514778
crossref_primary_10_1038_s41893_024_01352_4
crossref_primary_10_3390_electronics12153298
crossref_primary_10_1002_aisy_202200145
crossref_primary_10_3390_electronics10091063
crossref_primary_10_3389_fnins_2022_932270
crossref_primary_10_1038_s41598_021_00076_1
crossref_primary_10_1063_1_5124915
crossref_primary_10_1088_1361_6463_ac296d
crossref_primary_10_1109_TED_2023_3244509
crossref_primary_10_1002_aisy_202300586
crossref_primary_10_1002_aisy_202300784
crossref_primary_10_1002_aelm_202300508
crossref_primary_10_1109_TED_2021_3068696
crossref_primary_10_1002_aisy_202000040
crossref_primary_10_1016_j_mejo_2024_106189
crossref_primary_10_1109_TVLSI_2024_3409648
crossref_primary_10_1109_TDMR_2022_3182133
crossref_primary_10_1109_TED_2021_3089995
crossref_primary_10_1088_1674_4926_42_1_013104
crossref_primary_10_1145_3759918
crossref_primary_10_1016_j_memori_2023_100053
crossref_primary_10_1109_TNANO_2020_3010070
crossref_primary_10_1002_pssa_202100753
crossref_primary_10_1109_LED_2021_3091995
crossref_primary_10_1109_TED_2019_2963323
crossref_primary_10_1109_TVLSI_2020_3020286
crossref_primary_10_1109_TED_2022_3186965
crossref_primary_10_1039_D3MH00508A
crossref_primary_10_1088_2053_1583_acdfe1
crossref_primary_10_1109_TETC_2023_3237778
crossref_primary_10_3389_fnins_2021_749811
Cites_doi 10.1145/2749469.2750386
10.1109/IEDM.2017.8268369
10.1109/LED.2017.2732025
10.1109/IEDM.2012.6479105
10.1109/TED.2015.2439635
10.1109/TED.2014.2330200
10.1109/TED.2015.2477135
10.1038/nature14539
10.1109/IEDM.2015.7409622
10.1109/IEDM.2017.8268373
10.1109/TED.2015.2439812
10.1145/2897937.2898010
10.1109/IEDM.2017.8268522
10.1109/5.726791
10.1109/IEDM.2016.7838429
10.1109/IEDM.2017.8268313
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TED.2019.2894273
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9646
EndPage 1295
ExternalDocumentID 10_1109_TED_2019_2894273
8632945
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c357t-bc338a5b6ad7d1aa91edf78ea33e705cc52fba4ba5ed17fd9b96d07c88b40613
IEDL.DBID RIE
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460970400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9383
IngestDate Mon Jun 30 10:11:42 EDT 2025
Tue Nov 18 22:39:02 EST 2025
Sat Nov 29 03:02:19 EST 2025
Wed Aug 27 03:00:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-bc338a5b6ad7d1aa91edf78ea33e705cc52fba4ba5ed17fd9b96d07c88b40613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1158-5289
0000-0001-8352-3584
PQID 2185731446
PQPubID 85466
PageCount 7
ParticipantIDs crossref_citationtrail_10_1109_TED_2019_2894273
crossref_primary_10_1109_TED_2019_2894273
ieee_primary_8632945
proquest_journals_2185731446
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on electron devices
PublicationTitleAbbrev TED
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref11
ref10
ref17
piccolboni (ref19) 2014
ref18
chen (ref9) 2017
ref23
ref26
ref25
ref20
burr (ref7) 2016; 2
ref22
ref21
pedretti (ref2) 2017
chen (ref24) 2013
ref8
ref4
ho (ref14) 2016
ref3
ref6
hayakawa (ref13) 2015
ref5
kim (ref1) 2015
hsu (ref16) 2015
yan (ref12) 2017
References_xml – ident: ref8
  doi: 10.1145/2749469.2750386
– ident: ref3
  doi: 10.1109/IEDM.2017.8268369
– volume: 2
  start-page: 89
  year: 2016
  ident: ref7
  article-title: Neuromorphic computing using non-volatile memory
  publication-title: Adv Phys X
– ident: ref21
  doi: 10.1109/LED.2017.2732025
– start-page: 11.4.1
  year: 2017
  ident: ref12
  article-title: Understanding the trade-offs of device, circuit and application in ReRAM-based neuromorphic computing systems
  publication-title: IEDM Tech Dig
– start-page: 17.1.1
  year: 2015
  ident: ref1
  article-title: NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning
  publication-title: IEDM Tech Dig
– start-page: 14t
  year: 2015
  ident: ref13
  article-title: Highly reliable TaOxReRAM with centralized filament for 28-nm embedded application
  publication-title: Proc VLSI Symp Tech
– ident: ref25
  doi: 10.1109/IEDM.2012.6479105
– start-page: 28
  year: 2016
  ident: ref14
  article-title: Random soft error suppression by stoichiometric engineering: CMOS compatible and reliable 1Mb HfO2-ReRAM with 2 extra masks for embedded IoT systems
  publication-title: Proc VLSI Symp Tech
– start-page: 1
  year: 2014
  ident: ref19
  article-title: Investigation of HfO2/Ti based vertical RRAM-Performances and variability
  publication-title: Proc 14th Annu Non-Volatile Memory Technol Symp
– ident: ref4
  doi: 10.1109/TED.2015.2439635
– start-page: 1168
  year: 2015
  ident: ref16
  article-title: A study of array resistance distribution and a novel operation algorithm for WOx ReRAM memory
  publication-title: Proc Int Conf SSDM
– ident: ref18
  doi: 10.1109/TED.2014.2330200
– start-page: 10.1.1
  year: 2013
  ident: ref24
  article-title: Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low operating current
  publication-title: IEDM Tech Dig
– ident: ref20
  doi: 10.1109/TED.2015.2477135
– ident: ref5
  doi: 10.1038/nature14539
– start-page: 28.1.1
  year: 2017
  ident: ref2
  article-title: Modeling-based design of brain-inspired spiking neural networks with RRAM learning synapses
  publication-title: IEDM Tech Dig
– ident: ref6
  doi: 10.1109/IEDM.2015.7409622
– ident: ref11
  doi: 10.1109/IEDM.2017.8268373
– ident: ref22
  doi: 10.1109/TED.2015.2439812
– ident: ref15
  doi: 10.1145/2897937.2898010
– ident: ref26
  doi: 10.1109/IEDM.2017.8268522
– ident: ref17
  doi: 10.1109/5.726791
– ident: ref10
  doi: 10.1109/IEDM.2016.7838429
– ident: ref23
  doi: 10.1109/IEDM.2017.8268313
– start-page: 28.2.1
  year: 2017
  ident: ref9
  article-title: A 16Mb dual-mode ReRAM macro with sub-14ns computing-in-memory and memory functions enabled by self-write termination scheme
  publication-title: IEDM Tech Dig
SSID ssj0016442
Score 2.5147767
Snippet Resistive random access memory (ReRAM) is often considered as a strong candidate for storing the weights in non-von Neumann neuromorphic computing systems....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1289
SubjectTerms Accuracy
Analog memory
Artificial neural networks
Computation
Computer simulation
Error reduction
Inference
Mapping
Memory management
Multilayers
Neural networks
Neuromorphic computing
Neuromorphics
noise
Random access memory
reliability
Resistance
resistive random access memory (ReRAM)
stability
Synapses
Training
Variation
Weight
Title Performance Impacts of Analog ReRAM Non-ideality on Neuromorphic Computing
URI https://ieeexplore.ieee.org/document/8632945
https://www.proquest.com/docview/2185731446
Volume 66
WOSCitedRecordID wos000460970400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016442
  issn: 0018-9383
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrbIHL4Jpk2y2mz0WsahoKaWH3sI-paCJ9OHvd3eTVkURvCWwu4RvHzNfZucbgEttiY8iLAliwkNLUKgKuApNQBRPFRXYiNQnCj_S4TCdTtmoBtebXBittb98pjvu0cfyVSFX7ldZN-3hmCWkDnVKaZmrtYkYWLteKoNHdgNb2rUOSYasa48Ad4eLdSy5SGKKv5kgX1Plx0Hsrctg73_ftQ-7lReJ-uW0H0BN54ew80VbsAkPo8-UAHTvcyEXqDDIqZAUz2isx_0nNCzyYKa098VRkSMv1fFaWOxnEpUFH-xgRzAZ3E5u7oKqcEIgMaHLQEhLPDkRPa6oijhnkVaGpppjrGlIpCSxETwRnGgVUaOYYD0VUpmmwtv3Y2jkRa5PANm5M8wF66KQW8fKCGrfuHWqcBJrYngLumsoM1mJirvaFi-ZJxchyyz4mQM_q8BvwdWmx1spqPFH26YDe9OuwrkF7fVsZdWOW2SxE7XCjt2e_t7rDLbd2OX9sTY0lvOVPoct-b6cLeYXfjF9ABjwxvw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3sV5zYMvgnVt0yzN4xDHpnPI2MPeSq4y0Fbc9PebpN1UFMG3FpK2fGlyzpeT8x2Ac22JjyIsCWLCQ0tQqAq4Ck1AFE8VFdiI1CcK9-lgkI7H7KEGl4tcGK21P3ymr9ylj-WrQr65rbJm2sIxS8gSLJMkiaMyW2sRM7CWvdQGj-wUtsRrHpQMWdMuAu4UF7uy9CKJKf5mhHxVlR9Lsbcvnc3_fdkWbFR-JGqXA78NNZ3vwPoXdcFduH34TApAPZ8NOUWFQU6HpHhEQz1s36NBkQcTpb03joocebGO58KiP5GoLPlgH7YHo87N6LobVKUTAokJnQVCWurJiWhxRVXEOYu0MjTVHGNNQyIliY3gieBEq4gaxQRrqZDKNBXewu9DPS9yfQDIjp5hLlwXhdy6VkZQe8etW4WTWBPDG9CcQ5nJSlbcVbd4yjy9CFlmwc8c-FkFfgMuFj1eSkmNP9ruOrAX7SqcG3A8H62smnPTLHayVtjx28Pfe53Band038_6vcHdEay595SnyY6hPnt90yewIt9nk-nrqf-xPgCeMcpD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Impacts+of+Analog+ReRAM+Non-ideality+on+Neuromorphic+Computing&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Yu-Hsuan%2C+Lin&rft.au=Chao-Hung%2C+Wang&rft.au=Lee%2C+Ming-Hsiu&rft.au=Dai-Ying%2C+Lee&rft.date=2019-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9383&rft.eissn=1557-9646&rft.volume=66&rft.issue=3&rft.spage=1289&rft_id=info:doi/10.1109%2FTED.2019.2894273&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon