Geometric Back-Projection Network for Point Cloud Classification

As the basic task of point cloud analysis, classification is fundamental but always challenging. To address some unsolved problems of existing methods, we propose a network that captures geometric features of point clouds for better representations. To achieve this, on the one hand, we enrich the ge...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on multimedia Ročník 24; s. 1943 - 1955
Hlavní autoři: Qiu, Shi, Anwar, Saeed, Barnes, Nick
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1520-9210, 1941-0077
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As the basic task of point cloud analysis, classification is fundamental but always challenging. To address some unsolved problems of existing methods, we propose a network that captures geometric features of point clouds for better representations. To achieve this, on the one hand, we enrich the geometric information of points in low-level 3D space explicitly. On the other hand, we apply CNN-based structures in high-level feature spaces to learn local geometric context implicitly. Specifically, we leverage an idea of error-correcting feedback structure to capture the local features of point clouds comprehensively. Furthermore, an attention module based on channel affinity assists the feature map to avoid possible redundancy by emphasizing its distinct channels. The performance on both synthetic and real-world point clouds datasets demonstrate the superiority and applicability of our network. Comparing with other state-of-the-art methods, our approach balances accuracy and efficiency.
AbstractList As the basic task of point cloud analysis, classification is fundamental but always challenging. To address some unsolved problems of existing methods, we propose a network that captures geometric features of point clouds for better representations. To achieve this, on the one hand, we enrich the geometric information of points in low-level 3D space explicitly. On the other hand, we apply CNN-based structures in high-level feature spaces to learn local geometric context implicitly. Specifically, we leverage an idea of error-correcting feedback structure to capture the local features of point clouds comprehensively. Furthermore, an attention module based on channel affinity assists the feature map to avoid possible redundancy by emphasizing its distinct channels. The performance on both synthetic and real-world point clouds datasets demonstrate the superiority and applicability of our network. Comparing with other state-of-the-art methods, our approach balances accuracy and efficiency.
Author Barnes, Nick
Anwar, Saeed
Qiu, Shi
Author_xml – sequence: 1
  givenname: Shi
  orcidid: 0000-0001-9958-180X
  surname: Qiu
  fullname: Qiu, Shi
  email: shi.qiu@anu.edu.au
  organization: Data61, CSIRO (The Commonwealth Scientific and Industrial Research Organisation), and Research School of Engineering, Australian National University, Canberra, ACT, Australia
– sequence: 2
  givenname: Saeed
  orcidid: 0000-0002-0692-8411
  surname: Anwar
  fullname: Anwar, Saeed
  email: saeed.anwar@data61.csiro.au
  organization: Data61, CSIRO (The Commonwealth Scientific and Industrial Research Organisation), and Research School of Engineering, Australian National University, Canberra, ACT, Australia
– sequence: 3
  givenname: Nick
  orcidid: 0000-0002-9343-9535
  surname: Barnes
  fullname: Barnes, Nick
  email: nick.barnes@anu.edu.au
  organization: School of Computing, Australian National University, Canberra, ACT, Australia
BookMark eNp9kL1PwzAQxS1UJNrCjsQSiTnl7NhxsgEVFKQWOpTZctyL5H7ExXaF-O9xKWJgYHl3w3t3er8B6XWuQ0IuKYwohfpmMZuNGDA6KkByxuGE9GnNaQ4gZS_tgkFeMwpnZBDCCoByAbJPbifothi9Ndm9Nut87t0KTbSuy14wfji_zlrns7mzXczGG7dfJtUh2NYafbCdk9NWbwJe_MwheXt8WIyf8unr5Hl8N81NIWTMm6JCacqGLhlQ0VAmC9pyKSrZIqVaSF1qzWtEqRuJFS8YLusKBTSmTtIWQ3J9vLvz7n2PIaqV2_suvVSs5KmyKGuZXHB0Ge9C8Niqnbdb7T8VBXXgpBIndeCkfjilSPknYmz8rha9tpv_glfHoEXE3z-JOXAQxReowHYd
CODEN ITMUF8
CitedBy_id crossref_primary_10_1109_TPAMI_2021_3137794
crossref_primary_10_1016_j_jvcir_2024_104353
crossref_primary_10_1109_TMM_2024_3349912
crossref_primary_10_1016_j_knosys_2024_112715
crossref_primary_10_1109_TIP_2024_3486612
crossref_primary_10_3390_s22134878
crossref_primary_10_3390_rs16163045
crossref_primary_10_1016_j_jag_2025_104572
crossref_primary_10_1109_TGRS_2024_3393845
crossref_primary_10_3390_rs16111835
crossref_primary_10_1007_s00371_023_02816_y
crossref_primary_10_1371_journal_pone_0314086
crossref_primary_10_1109_TAI_2024_3429050
crossref_primary_10_1016_j_imavis_2024_105396
crossref_primary_10_1109_TMM_2023_3286981
crossref_primary_10_1109_TVCG_2023_3328354
crossref_primary_10_1109_TITS_2022_3198836
crossref_primary_10_1007_s11390_024_3521_x
crossref_primary_10_1016_j_patcog_2025_112025
crossref_primary_10_1007_s00371_023_03091_7
crossref_primary_10_1109_TMM_2023_3318327
crossref_primary_10_1145_3679204
crossref_primary_10_3390_app12157384
crossref_primary_10_1109_TMM_2023_3317998
crossref_primary_10_1016_j_neucom_2024_128436
crossref_primary_10_1109_TMM_2023_3312855
crossref_primary_10_1109_TMM_2022_3198318
crossref_primary_10_1109_TIP_2025_3571680
crossref_primary_10_1016_j_neucom_2024_128435
crossref_primary_10_1088_1361_6560_ad953f
crossref_primary_10_1016_j_neucom_2025_130201
crossref_primary_10_1109_TMM_2022_3200851
crossref_primary_10_1145_3735560
crossref_primary_10_3390_s25030658
crossref_primary_10_1109_ACCESS_2023_3335607
crossref_primary_10_3390_s23125512
crossref_primary_10_1109_ACCESS_2023_3266340
crossref_primary_10_1007_s11227_025_07766_x
crossref_primary_10_3390_s23229042
crossref_primary_10_1109_TMM_2022_3189778
crossref_primary_10_1109_TMM_2024_3521735
crossref_primary_10_1109_TMM_2022_3198011
crossref_primary_10_1109_TMM_2024_3410117
crossref_primary_10_1007_s11760_025_04116_5
crossref_primary_10_1111_exsy_13831
crossref_primary_10_1109_TMM_2024_3374580
crossref_primary_10_1016_j_asoc_2024_111622
crossref_primary_10_1109_ACCESS_2022_3228044
crossref_primary_10_3390_math12233827
crossref_primary_10_3390_robotics12040100
crossref_primary_10_1007_s11227_024_06838_8
crossref_primary_10_3390_s22239488
crossref_primary_10_1109_TGRS_2022_3168555
crossref_primary_10_1109_TMM_2024_3521745
crossref_primary_10_1109_TGRS_2023_3331748
crossref_primary_10_1007_s12652_024_04879_8
crossref_primary_10_1109_ACCESS_2024_3470971
crossref_primary_10_1109_TIM_2023_3320732
crossref_primary_10_3389_frai_2024_1439340
crossref_primary_10_1109_LRA_2022_3224370
crossref_primary_10_3390_electronics13224355
crossref_primary_10_1109_TPAMI_2024_3400402
crossref_primary_10_1016_j_patcog_2025_111351
crossref_primary_10_1109_TMM_2023_3248150
crossref_primary_10_1007_s11831_024_10108_4
crossref_primary_10_1109_TMM_2023_3236212
crossref_primary_10_1109_LRA_2022_3223558
crossref_primary_10_1109_LRA_2023_3301278
crossref_primary_10_1109_TMM_2023_3277281
crossref_primary_10_1007_s11042_024_18658_2
crossref_primary_10_1109_TPAMI_2023_3298711
crossref_primary_10_1016_j_cag_2025_104238
crossref_primary_10_1109_TGRS_2023_3337088
crossref_primary_10_1109_TMM_2024_3443613
crossref_primary_10_1007_s10489_023_04498_4
crossref_primary_10_1016_j_compeleceng_2022_108463
crossref_primary_10_1016_j_neucom_2021_10_098
crossref_primary_10_1109_TMM_2022_3154927
crossref_primary_10_1016_j_displa_2023_102610
crossref_primary_10_1016_j_engappai_2025_111474
crossref_primary_10_1109_ACCESS_2023_3322433
crossref_primary_10_1109_TNNLS_2024_3409891
crossref_primary_10_1109_JAS_2023_123432
crossref_primary_10_1109_LRA_2022_3147907
crossref_primary_10_1109_TMM_2022_3216951
crossref_primary_10_1016_j_knosys_2022_108887
crossref_primary_10_1016_j_compag_2025_110857
crossref_primary_10_1088_1361_6501_ad1fce
crossref_primary_10_1016_j_autcon_2025_106387
crossref_primary_10_1016_j_patcog_2024_110624
crossref_primary_10_1109_TIM_2024_3451587
crossref_primary_10_1371_journal_pone_0329146
crossref_primary_10_7717_peerj_cs_1738
crossref_primary_10_1016_j_cag_2025_104221
crossref_primary_10_1109_TMM_2023_3275366
crossref_primary_10_1109_TMM_2024_3412330
crossref_primary_10_1007_s00530_023_01100_2
crossref_primary_10_1016_j_neucom_2024_127940
crossref_primary_10_1109_TCDS_2024_3403900
crossref_primary_10_1155_2022_5417440
crossref_primary_10_1016_j_cag_2025_104222
crossref_primary_10_1109_JSEN_2024_3436834
crossref_primary_10_1109_TMM_2025_3535341
crossref_primary_10_1016_j_patrec_2025_04_037
crossref_primary_10_1108_DTA_06_2022_0243
crossref_primary_10_1109_TCSVT_2025_3553537
crossref_primary_10_1109_ACCESS_2024_3442928
crossref_primary_10_1007_s11263_024_02248_8
crossref_primary_10_3390_machines10070517
crossref_primary_10_1109_ACCESS_2025_3525739
crossref_primary_10_1109_TMM_2023_3314973
crossref_primary_10_1016_j_jvcir_2023_103769
crossref_primary_10_1109_TIM_2025_3551981
crossref_primary_10_1016_j_patrec_2024_05_016
crossref_primary_10_1016_j_engappai_2024_109224
crossref_primary_10_1109_TIP_2023_3333191
crossref_primary_10_1109_TMM_2023_3304892
crossref_primary_10_1109_TMM_2024_3358695
crossref_primary_10_1016_j_engappai_2025_111417
crossref_primary_10_1109_TMM_2023_3304896
crossref_primary_10_1109_TPAMI_2023_3238516
crossref_primary_10_1109_ACCESS_2023_3323428
crossref_primary_10_1007_s00371_025_04171_6
crossref_primary_10_1109_TGRS_2023_3336053
crossref_primary_10_1109_TMM_2023_3321535
crossref_primary_10_1007_s00371_024_03380_9
crossref_primary_10_1109_TCSVT_2023_3263952
crossref_primary_10_3233_JIFS_231997
crossref_primary_10_1109_TVCG_2025_3591189
crossref_primary_10_3390_s24237861
crossref_primary_10_1016_j_imavis_2023_104890
crossref_primary_10_1016_j_eswa_2023_122438
crossref_primary_10_1016_j_asoc_2025_112801
crossref_primary_10_1016_j_ins_2025_122474
crossref_primary_10_1016_j_neucom_2024_128413
crossref_primary_10_1016_j_cagd_2024_102311
Cites_doi 10.1109/ICCV.2019.00167
10.1111/j.1467-8659.2007.01016.x
10.1145/777792.777840
10.1145/3326362
10.1109/ICCV.2017.99
10.1145/2980179.2980238
10.1109/CVPR.2019.01272
10.1109/TPAMI.2016.2644615
10.1109/CVPR.2018.00979
10.1109/CVPR.2019.00326
10.1109/CVPR.2015.7298655
10.1109/JRA.1987.1087115
10.1109/CVPR.2018.00484
10.1109/TMM.2019.2963592
10.1109/CVPR42600.2020.01297
10.1109/ICCV.2019.00937
10.1109/ICCV.2019.00730
10.1109/TPAMI.2020.3005434
10.1007/978-3-030-01240-3_17
10.1109/CVPR.2018.00179
10.1109/LRA.2018.2850061
10.1109/CVPRW.2019.00256
10.1109/CVPR.2015.7298965
10.1109/CVPR.2018.00029
10.1109/IROS.2015.7353481
10.1145/3197517.3201301
10.1109/CVPR.2019.01054
10.1109/CVPR42600.2020.00563
10.1109/ROBOT.2009.5152473
10.1109/ICCV.2019.00325
10.1145/3343031.3350960
10.1109/ICCV.2019.00069
10.1109/CVPR.2009.5206848
10.1145/3240508.3240621
10.1109/CVPR42600.2020.01112
10.1109/TMM.2020.2976627
10.1109/CVPR.2018.00243
10.1117/1.1631921
10.1109/ICCV.2015.114
10.1109/CVPR.2018.00745
10.1109/ICCV.2019.00534
10.1109/TMM.2018.2859591
10.1109/ICRA40945.2020.9197503
10.1109/CVPR.2017.11
10.1109/CVPR.2018.00439
10.1109/TMM.2013.2286580
10.1109/CVPR.2019.00910
10.1109/CVPRW.2019.00169
10.1109/CVPR.2015.7298801
10.1016/j.patcog.2020.107446
10.1609/aaai.v33i01.33018778
10.1016/j.neucom.2021.01.095
10.1109/ICCV.2019.00812
10.1109/ICRA.2018.8461095
10.1145/1057432.1057435
10.1109/TMM.2016.2612761
10.1109/ICCV.2019.00651
10.1007/s11263-015-0816-y
10.1109/WACV45572.2020.9093430
10.1007/s11069-010-9634-2
10.1109/CVPR42600.2020.00641
10.1145/3072959.3073608
10.1109/TVCG.2010.261
10.1007/978-3-030-01237-3_6
10.1038/nature01254
10.1109/CVPR.2018.00813
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2016.512
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2021.3074240
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 1955
ExternalDocumentID 10_1109_TMM_2021_3074240
9410405
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-b38e7c6b1d2015b12731f47587fe11a57a6aa49ee7ab7e8432ed98e50bc950bf3
IEDL.DBID RIE
ISICitedReferencesCount 189
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778959200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9210
IngestDate Mon Jun 30 06:57:08 EDT 2025
Tue Nov 18 22:28:52 EST 2025
Sat Nov 29 03:10:07 EST 2025
Wed Aug 27 02:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-b38e7c6b1d2015b12731f47587fe11a57a6aa49ee7ab7e8432ed98e50bc950bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0692-8411
0000-0002-9343-9535
0000-0001-9958-180X
PQID 2647425697
PQPubID 75737
PageCount 13
ParticipantIDs crossref_primary_10_1109_TMM_2021_3074240
ieee_primary_9410405
proquest_journals_2647425697
crossref_citationtrail_10_1109_TMM_2021_3074240
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Krtgen (ref45) 2003; 3
ref51
ref50
ref46
Vaswani (ref34) 2017
ref42
ref41
ref44
HKUST-VGD (ref72) 2020
ref43
ref49
ref8
Qi (ref47) 2017
ref7
ref9
ref4
ref3
ref6
ref5
Loshchilov (ref63) 2016
ref40
ref35
ref79
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref2
ref1
ref39
Li (ref48) 2018; 31
ref38
Qi (ref22) 2017
Velikovi (ref61) 2017
ref71
ref70
Kang (ref58) 2019; 16
ref73
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref66
ref21
ref65
ref28
ref27
ref29
Vosselman (ref18) 2001; 34
ref60
ref62
Chang (ref76) 2015
References_xml – ident: ref12
  doi: 10.1109/ICCV.2019.00167
– ident: ref15
  doi: 10.1111/j.1467-8659.2007.01016.x
– ident: ref43
  doi: 10.1145/777792.777840
– ident: ref49
  doi: 10.1145/3326362
– ident: ref65
  doi: 10.1109/ICCV.2017.99
– ident: ref75
  doi: 10.1145/2980179.2980238
– ident: ref56
  doi: 10.1109/CVPR.2019.01272
– year: 2020
  ident: ref72
  article-title: 3D Scene understanding benchmark
– ident: ref62
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref26
  doi: 10.1109/CVPR.2018.00979
– ident: ref37
  doi: 10.1109/CVPR.2019.00326
– ident: ref77
  doi: 10.1109/CVPR.2015.7298655
– start-page: 5998
  volume-title: NeurIPS
  year: 2017
  ident: ref34
  article-title: Attention is all you need
– year: 2015
  ident: ref76
  article-title: ShapeNet: An information-rich 3D model repository
– ident: ref28
  doi: 10.1109/JRA.1987.1087115
– ident: ref40
  doi: 10.1109/CVPR.2018.00484
– year: 2016
  ident: ref63
  article-title: SGDR: Stochastic gradient descent with warm restarts
– ident: ref5
  doi: 10.1109/TMM.2019.2963592
– ident: ref14
  doi: 10.1109/CVPR42600.2020.01297
– ident: ref78
  doi: 10.1109/ICCV.2019.00937
– ident: ref33
  doi: 10.1109/ICCV.2019.00730
– ident: ref19
  doi: 10.1109/TPAMI.2020.3005434
– ident: ref73
  doi: 10.1007/978-3-030-01240-3_17
– ident: ref31
  doi: 10.1109/CVPR.2018.00179
– ident: ref70
  doi: 10.1109/LRA.2018.2850061
– ident: ref32
  doi: 10.1109/CVPRW.2019.00256
– start-page: 652
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  year: 2017
  ident: ref22
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– ident: ref79
  doi: 10.1109/CVPR.2015.7298965
– ident: ref9
  doi: 10.1109/CVPR.2018.00029
– ident: ref21
  doi: 10.1109/IROS.2015.7353481
– ident: ref66
  doi: 10.1145/3197517.3201301
– ident: ref59
  doi: 10.1109/CVPR.2019.01054
– year: 2017
  ident: ref61
  article-title: Graph attention networks
– ident: ref46
  doi: 10.1109/CVPR42600.2020.00563
– ident: ref17
  doi: 10.1109/ROBOT.2009.5152473
– ident: ref39
  doi: 10.1109/ICCV.2019.00325
– ident: ref42
  doi: 10.1145/3343031.3350960
– ident: ref74
  doi: 10.1109/ICCV.2019.00069
– ident: ref8
  doi: 10.1109/CVPR.2009.5206848
– volume: 31
  start-page: 820
  year: 2018
  ident: ref48
  article-title: PoinTCNN: Convolution on X-transformed points
  publication-title: NeurIPS
– ident: ref69
  doi: 10.1145/3240508.3240621
– ident: ref27
  doi: 10.1109/CVPR42600.2020.01112
– volume: 34
  start-page: 37
  issue: 3/W4
  year: 2001
  ident: ref18
  article-title: 3D building model reconstruction from point clouds and ground plans,
  publication-title: Int. Archives Photogrammetry Remote Sensing Spatial Inform. Sciences
– ident: ref4
  doi: 10.1109/TMM.2020.2976627
– start-page: 5099
  volume-title: NeurIPS
  year: 2017
  ident: ref47
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: ref53
  doi: 10.1109/CVPR.2018.00243
– ident: ref6
  doi: 10.1117/1.1631921
– ident: ref20
  doi: 10.1109/ICCV.2015.114
– ident: ref36
  doi: 10.1109/CVPR.2018.00745
– ident: ref67
  doi: 10.1109/ICCV.2019.00534
– ident: ref3
  doi: 10.1109/TMM.2018.2859591
– ident: ref50
  doi: 10.1109/ICRA40945.2020.9197503
– ident: ref64
  doi: 10.1109/CVPR.2017.11
– ident: ref10
  doi: 10.1109/CVPR.2018.00439
– ident: ref1
  doi: 10.1109/TMM.2013.2286580
– ident: ref23
  doi: 10.1109/CVPR.2019.00910
– ident: ref54
  doi: 10.1109/CVPRW.2019.00169
– ident: ref71
  doi: 10.1109/CVPR.2015.7298801
– ident: ref41
  doi: 10.1016/j.patcog.2020.107446
– ident: ref57
  doi: 10.1609/aaai.v33i01.33018778
– ident: ref60
  doi: 10.1016/j.neucom.2021.01.095
– ident: ref38
  doi: 10.1109/ICCV.2019.00812
– volume: 3
  start-page: 5
  volume-title: Proc. 7th Central Eur. Seminar Comput. Graphics
  year: 2003
  ident: ref45
  article-title: 3D Shape matching with 3D shape contexts
– ident: ref11
  doi: 10.1109/ICRA.2018.8461095
– ident: ref16
  doi: 10.1145/1057432.1057435
– volume: 16
  start-page: 35
  issue: 2
  year: 2019
  ident: ref58
  article-title: PyramNet: Point cloud pyramid attention network and graph embedding module for classification and segmentation
  publication-title: Aust. J. Intell. Inf. Process. Syst.
– ident: ref2
  doi: 10.1109/TMM.2016.2612761
– ident: ref68
  doi: 10.1109/ICCV.2019.00651
– ident: ref51
  doi: 10.1007/s11263-015-0816-y
– ident: ref55
  doi: 10.1109/WACV45572.2020.9093430
– ident: ref7
  doi: 10.1007/s11069-010-9634-2
– ident: ref13
  doi: 10.1109/CVPR42600.2020.00641
– ident: ref24
  doi: 10.1145/3072959.3073608
– ident: ref44
  doi: 10.1109/TVCG.2010.261
– ident: ref25
  doi: 10.1007/978-3-030-01237-3_6
– ident: ref29
  doi: 10.1038/nature01254
– ident: ref35
  doi: 10.1109/CVPR.2018.00813
– ident: ref52
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref30
  doi: 10.1109/CVPR.2016.512
SSID ssj0014507
Score 2.6890345
Snippet As the basic task of point cloud analysis, classification is fundamental but always challenging. To address some unsolved problems of existing methods, we...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1943
SubjectTerms 3D Deep Learning
Attention Mechanism
Classification
Error correction
Error-correcting Feedback
Feature extraction
Feature maps
Geometric Features
Geometry
Microbalances
Point Cloud Classification
Redundancy
Shape
Task analysis
Three-dimensional displays
Visualization
Title Geometric Back-Projection Network for Point Cloud Classification
URI https://ieeexplore.ieee.org/document/9410405
https://www.proquest.com/docview/2647425697
Volume 24
WOSCitedRecordID wos000778959200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60eNCD1VaxvtiDF8HYJLubzd7UYvVi6UHBW9jHBIq1EW39_e5u0iIogpeQww6E-XYzj52ZD-AsNSXPqPGtWzaNmI5NlGfKRpko_YZCntiabEKMRvnzsxyvwcWqFwYRQ_EZXvrXcJdvK7PwqbK-ZC548ANL14XI6l6t1Y0B46E12pmjOJIujlleScay__jw4ALBNLmkPhD0aY5vJihwqvz4EQfrMmz_77t2YLvxIsl1DfsurOGsA-0lQwNpDmwHtr6NG-zC1R1Wr55By5AbZV6icZ2FcciQUV0NTpwLS8bVZDYng2m1sCRwZvpqogDgHjwNbx8H91HDoBAZysU80jRHYTKdWGfnuU6cr5KUzIUIosQkUVyoTCkmEYXSAnNGU7QyRx5rI92jpPvQmlUzPAAiTV4qZZlVaJjRVDs_DBPKlaTMlFr0oL9UamGa8eKe5WJahDAjloWDofAwFA0MPThfSbzVozX-WNv1al-tazTeg-MlbkVz9j4K5-I5GZ5Jcfi71BFspr6JISRSjqE1f1_gCWyYz_nk4_00bKsvhAHJyg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgW1yfOXgRrNs2SdPcfOAL3WUPK3greUxhUbeiu_5-k7S7CIrgpfSQgTJf0nlkZj6Ao9SUPKPGt27ZNGI6NlGeKRtlovQbCnlia7IJ0e3mT0-yNwMn014YRAzFZ3jqX8Ndvq3M2KfK2pK54MEPLJ3jjKVx3a01vTNgPDRHO4MUR9JFMpNLyVi2-52OCwXT5JT6UNAnOr4ZocCq8uNXHOzL9cr_vmwVlhs_kpzXwK_BDA7XYWXC0UCaI7sOS98GDm7A2Q1Wr55Dy5ALZZ6jXp2HcdiQbl0PTpwTS3rVYDgily_V2JLAmunriQKEm_B4fdW_vI0aDoXIUC5GkaY5CpPpxDpLz3XivJWkZC5IECUmieJCZUoxiSiUFpgzmqKVOfJYG-keJd2C2WE1xG0g0uSlUpZZhYYZTbXzxDChXEnKTKlFC9oTpRamGTDueS5eihBoxLJwMBQehqKBoQXHU4m3erjGH2s3vNqn6xqNt2BvglvRnL6Pwjl5ToZnUuz8LnUIC7f9zkPxcNe934XF1Lc0hLTKHsyO3se4D_PmczT4eD8IW-wLLa3NEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+Back-Projection+Network+for+Point+Cloud+Classification&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Qiu%2C+Shi&rft.au=Anwar%2C+Saeed&rft.au=Barnes%2C+Nick&rft.date=2022&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=24&rft.spage=1943&rft.epage=1955&rft_id=info:doi/10.1109%2FTMM.2021.3074240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2021_3074240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon