On the proximal point algorithm and its Halpern-type variant for generalized monotone operators in Hilbert space

In a recent paper, Bauschke et al. study ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comono...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters Jg. 16; H. 2; S. 611 - 621
1. Verfasser: Kohlenbach, Ulrich
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin, Heidelberg Springer 01.03.2022
Springer Berlin Heidelberg
Schlagworte:
ISSN:1862-4480, 1862-4472, 1862-4480
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In a recent paper, Bauschke et al. study ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotonicity as a generalized notion of monotonicity of set-valued operators A in Hilbert space and characterize this condition on A in terms of the averagedness of its resolvent JA.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_A.$$\end{document} In this note we show that this result makes it possible to adapt many proofs of properties of the proximal point algorithm PPA and its strongly convergent Halpern-type variant HPPA to this more general class of operators. This also applies to quantitative results on the rates of convergence or metastability (in the sense of T. Tao). E.g. using this approach we get a simple proof for the convergence of the PPA in the boundedly compact case for ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotone operators and obtain an effective rate of metastability. If A has a modulus of regularity w.r.t. zerA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zer\, A$$\end{document} we also get a rate of convergence to some zero of A even without any compactness assumption. We also study a Halpern-type variant HPPA of the PPA for ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotone operators, prove its strong convergence (without any compactness or regularity assumption) and give a rate of metastability.
AbstractList In a recent paper, Bauschke et al. study $$\rho $$ ρ -comonotonicity as a generalized notion of monotonicity of set-valued operators A in Hilbert space and characterize this condition on A in terms of the averagedness of its resolvent $$J_A.$$ J A . In this note we show that this result makes it possible to adapt many proofs of properties of the proximal point algorithm PPA and its strongly convergent Halpern-type variant HPPA to this more general class of operators. This also applies to quantitative results on the rates of convergence or metastability (in the sense of T. Tao). E.g. using this approach we get a simple proof for the convergence of the PPA in the boundedly compact case for $$\rho $$ ρ -comonotone operators and obtain an effective rate of metastability. If A has a modulus of regularity w.r.t. $$zer\, A$$ z e r A we also get a rate of convergence to some zero of A even without any compactness assumption. We also study a Halpern-type variant HPPA of the PPA for $$\rho $$ ρ -comonotone operators, prove its strong convergence (without any compactness or regularity assumption) and give a rate of metastability.
In a recent paper, Bauschke et al. study ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotonicity as a generalized notion of monotonicity of set-valued operators A in Hilbert space and characterize this condition on A in terms of the averagedness of its resolvent JA.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_A.$$\end{document} In this note we show that this result makes it possible to adapt many proofs of properties of the proximal point algorithm PPA and its strongly convergent Halpern-type variant HPPA to this more general class of operators. This also applies to quantitative results on the rates of convergence or metastability (in the sense of T. Tao). E.g. using this approach we get a simple proof for the convergence of the PPA in the boundedly compact case for ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotone operators and obtain an effective rate of metastability. If A has a modulus of regularity w.r.t. zerA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zer\, A$$\end{document} we also get a rate of convergence to some zero of A even without any compactness assumption. We also study a Halpern-type variant HPPA of the PPA for ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-comonotone operators, prove its strong convergence (without any compactness or regularity assumption) and give a rate of metastability.
In a recent paper, Bauschke et al. study ρ -comonotonicity as a generalized notion of monotonicity of set-valued operators A in Hilbert space and characterize this condition on A in terms of the averagedness of its resolvent J A . In this note we show that this result makes it possible to adapt many proofs of properties of the proximal point algorithm PPA and its strongly convergent Halpern-type variant HPPA to this more general class of operators. This also applies to quantitative results on the rates of convergence or metastability (in the sense of T. Tao). E.g. using this approach we get a simple proof for the convergence of the PPA in the boundedly compact case for ρ -comonotone operators and obtain an effective rate of metastability. If A has a modulus of regularity w.r.t. z e r A we also get a rate of convergence to some zero of A even without any compactness assumption. We also study a Halpern-type variant HPPA of the PPA for ρ -comonotone operators, prove its strong convergence (without any compactness or regularity assumption) and give a rate of metastability.
Author Kohlenbach, Ulrich
Author_xml – sequence: 1
  givenname: Ulrich
  surname: Kohlenbach
  fullname: Kohlenbach, Ulrich
BookMark eNp9kM9KAzEQh4Mo2FZfQBDyAquTzf7JHqWoFQq96Dlks7NtyjZZkijWpze1HsRDTzOH-Wbm903JuXUWCblhcMcA6vvAWNlABjnLgNVcZM0ZmTBR5VlRCDj_01-SaQhbgIqxppmQcWVp3CAdvfs0OzXQ0RkbqRrWzpu42VFlO2pioAs1jOhtFvcj0g_ljUpjvfN0jRa9GswXdnTnrIvpM-rSrIrOB2osXZihRR9pGJXGK3LRqyHg9W-dkbenx9f5Iluunl_mD8tM87KOWQtNzquiQ4alxpaxmpW805o3Oq-wZ4KLQhSFAui7XpVQdroXSkDBag1tqfiM5Me92rsQPPZy9Cmg30sG8uBMHp3J5Ez-OJNNgsQ_SJuoonE2emWG0yg_oiHdsWv0cuvevU0RT1O3Rwq1sybIQwnJm8xFDYLzbz0hj0k
CitedBy_id crossref_primary_10_1016_j_cnsns_2024_108010
crossref_primary_10_1080_02331934_2024_2390114
crossref_primary_10_1080_01630563_2023_2266762
crossref_primary_10_1080_02331934_2024_2371048
crossref_primary_10_1007_s10957_023_02355_5
Cites_doi 10.1007/978-3-319-48311-5
10.1137/0314056
10.1017/S0143385708000011
10.1007/s11856-019-1870-x
10.2168/LMCS-11(4:20)2015
10.1007/s10107-020-01500-6
10.1007/s11856-017-1511-1
10.1137/S0363012903427336
10.1007/978-94-010-1537-0
10.1137/0329022
10.1007/s11856-016-1408-4
10.1016/j.na.2008.01.005
10.1080/02331934.2016.1200577
10.3233/COM-180097
10.1007/s11784-019-0670-6
10.1007/s11590-021-01812-2
10.1142/S0219199717500158
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID OT2
C6C
AAYXX
CITATION
DOI 10.1007/s11590-021-01738-9
DatabaseName EconStor
Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 621
ExternalDocumentID 10_1007_s11590_021_01738_9
287083
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: KO 1737/6-1
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -Y2
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OT2
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
-5D
-5G
-BR
-EM
-~C
AAYZH
ADINQ
AESKC
C6C
GQ6
Z7R
Z7Y
Z83
Z88
AAYXX
CITATION
ID FETCH-LOGICAL-c357t-b092364de1e5ceb117153dcc39c26ef18384844a00fdfa505dcf8a80417c0b5a3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640755800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-4480
1862-4472
IngestDate Sat Nov 29 02:44:12 EST 2025
Tue Nov 18 21:34:34 EST 2025
Fri Feb 21 02:47:27 EST 2025
Fri Dec 05 12:07:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Halpern-type proximal point algorithm
Generalized monotone operators
Proximal point algorithm
Rates of convergence
Proof mining
Metastability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-b092364de1e5ceb117153dcc39c26ef18384844a00fdfa505dcf8a80417c0b5a3
OpenAccessLink https://link.springer.com/10.1007/s11590-021-01738-9
PageCount 11
ParticipantIDs crossref_primary_10_1007_s11590_021_01738_9
crossref_citationtrail_10_1007_s11590_021_01738_9
springer_journals_10_1007_s11590_021_01738_9
econis_econstor_287083
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2022
Publisher Springer
Springer Berlin Heidelberg
Publisher_xml – name: Springer
– name: Springer Berlin Heidelberg
References Aoyama, Toyoda (CR1) 2017; 220
Bauschke, Combettes (CR4) 2017
Kohlenbach (CR13) 2021; 28
CR14
Nakajo, Shimoji, Takahashi (CR18) 2007; 8
Kohlenbach (CR11) 2019; 8
Kohlenbach, López-Acedo, Nicolae (CR16) 2019; 232
Barbu (CR3) 1976
Bruck, Reich (CR6) 1977; 3
Rockafellar (CR20) 1976; 14
Bauschke, Moursi, Wang (CR5) 2020
Tao (CR25) 2008; 28
CR2
Takahashi (CR23) 2009; 70
Kohlenbach (CR12) 2020; 9
CR8
Martinet (CR17) 1970; 4
Takahashi (CR22) 2000
CR24
Güler (CR9) 1991; 29
Kohlenbach (CR10) 2016; 216
CR21
Combettes, Pennanen (CR7) 2004; 43
Neumann (CR19) 2015; 11
Kohlenbach, López-Acedo, Nicolae (CR15) 2017; 66
K Aoyama (1738_CR1) 2017; 220
1738_CR14
B Martinet (1738_CR17) 1970; 4
E Neumann (1738_CR19) 2015; 11
PL Combettes (1738_CR7) 2004; 43
U Kohlenbach (1738_CR15) 2017; 66
W Takahashi (1738_CR23) 2009; 70
O Güler (1738_CR9) 1991; 29
U Kohlenbach (1738_CR16) 2019; 232
U Kohlenbach (1738_CR13) 2021; 28
T Tao (1738_CR25) 2008; 28
U Kohlenbach (1738_CR12) 2020; 9
HH Bauschke (1738_CR4) 2017
RE Bruck (1738_CR6) 1977; 3
1738_CR21
1738_CR24
RT Rockafellar (1738_CR20) 1976; 14
W Takahashi (1738_CR22) 2000
V Barbu (1738_CR3) 1976
1738_CR8
U Kohlenbach (1738_CR10) 2016; 216
K Nakajo (1738_CR18) 2007; 8
1738_CR2
HH Bauschke (1738_CR5) 2020
U Kohlenbach (1738_CR11) 2019; 8
References_xml – year: 2017
  ident: CR4
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  doi: 10.1007/978-3-319-48311-5
– volume: 3
  start-page: 459
  year: 1977
  end-page: 470
  ident: CR6
  article-title: Nonexpansive projections and resolvents of accretive operators in Banach spaces
  publication-title: Houston J. Math.
– ident: CR14
– ident: CR2
– volume: 14
  start-page: 877
  year: 1976
  end-page: 898
  ident: CR20
  article-title: Monotone operators and the proximal point algorithm
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– volume: 28
  start-page: 657
  year: 2008
  end-page: 688
  ident: CR25
  article-title: Norm convergence of multiple ergodic averages for commuting transformations
  publication-title: Ergod. Theory. Dyn. Syst.
  doi: 10.1017/S0143385708000011
– volume: 232
  start-page: 261
  year: 2019
  end-page: 297
  ident: CR16
  article-title: Moduli of regularity and rates of convergence for Fejér monotone sequences
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-019-1870-x
– volume: 8
  start-page: 11
  year: 2007
  end-page: 34
  ident: CR18
  article-title: Strong convergence to common fixed points of families of nonexpansive mappings in Banach spaces
  publication-title: J. Nonlinear Convex Anal.
– volume: 4
  start-page: 154
  year: 1970
  end-page: 158
  ident: CR17
  article-title: Régularisation d’inéquations variationnelles par approximations successives
  publication-title: Rev. Française Inf. Recherche Opérationnelle
– ident: CR8
– volume: 11
  start-page: 1
  year: 2015
  end-page: 44
  ident: CR19
  article-title: Computational problems in metric fixed point theory and their Weihrauch degrees
  publication-title: Log. Method. Comput. Sci.
  doi: 10.2168/LMCS-11(4:20)2015
– year: 2020
  ident: CR5
  article-title: Generalized monotone operators and their averaged resolvents
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-020-01500-6
– volume: 220
  start-page: 803
  year: 2017
  end-page: 816
  ident: CR1
  article-title: Approximation of zeros of accretive operators in a Banach space
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-017-1511-1
– ident: CR21
– volume: 43
  start-page: 731
  year: 2004
  end-page: 742
  ident: CR7
  article-title: Proximal methods for cohypomonotone operators
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012903427336
– year: 2000
  ident: CR22
  publication-title: Nonlinear Functional Analysis
– year: 1976
  ident: CR3
  publication-title: Nonlinear Semigroups and Differential Equations in Banach Spaces
  doi: 10.1007/978-94-010-1537-0
– volume: 29
  start-page: 403
  year: 1991
  end-page: 419
  ident: CR9
  article-title: On the convergence of the proximal point algorithm for convex minimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0329022
– volume: 9
  start-page: 2125
  year: 2020
  end-page: 2138
  ident: CR12
  article-title: Quantitative analysis of a Halpern-type proximal point algorithm for accretive operators in Banach spaces
  publication-title: J. Nonlin. Convex Anal.
– volume: 216
  start-page: 215
  year: 2016
  end-page: 246
  ident: CR10
  article-title: On the quantitative asymptotic behavior of strongly nonexpansive mappings in Banach and geodesic spaces
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-016-1408-4
– volume: 70
  start-page: 719
  year: 2009
  end-page: 734
  ident: CR23
  article-title: Viscosity approximation methods for countable families of nonexpansive mappings in Banach spaces
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2008.01.005
– volume: 28
  start-page: 11
  year: 2021
  end-page: 18
  ident: CR13
  article-title: Quantitative results on the proximal point algorithm in uniformly convex Banach spaces
  publication-title: J. Convex Anal.
– volume: 66
  start-page: 1291
  year: 2017
  end-page: 1299
  ident: CR15
  article-title: Quantitative asymptotic regularity results for the composition of two mappings
  publication-title: Optimization
  doi: 10.1080/02331934.2016.1200577
– ident: CR24
– volume: 8
  start-page: 377
  year: 2019
  end-page: 387
  ident: CR11
  article-title: On the reverse mathematics and Weihrauch complexity of moduli of regularity and uniqueness
  publication-title: Computability
  doi: 10.3233/COM-180097
– ident: 1738_CR2
  doi: 10.1007/s11784-019-0670-6
– volume: 8
  start-page: 11
  year: 2007
  ident: 1738_CR18
  publication-title: J. Nonlinear Convex Anal.
– volume-title: Nonlinear Semigroups and Differential Equations in Banach Spaces
  year: 1976
  ident: 1738_CR3
  doi: 10.1007/978-94-010-1537-0
– ident: 1738_CR8
– year: 2020
  ident: 1738_CR5
  publication-title: Math. Program. Ser. B
  doi: 10.1007/s10107-020-01500-6
– volume: 4
  start-page: 154
  year: 1970
  ident: 1738_CR17
  publication-title: Rev. Française Inf. Recherche Opérationnelle
– volume: 9
  start-page: 2125
  year: 2020
  ident: 1738_CR12
  publication-title: J. Nonlin. Convex Anal.
– volume: 11
  start-page: 1
  year: 2015
  ident: 1738_CR19
  publication-title: Log. Method. Comput. Sci.
  doi: 10.2168/LMCS-11(4:20)2015
– volume: 29
  start-page: 403
  year: 1991
  ident: 1738_CR9
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0329022
– volume: 8
  start-page: 377
  year: 2019
  ident: 1738_CR11
  publication-title: Computability
  doi: 10.3233/COM-180097
– volume: 216
  start-page: 215
  year: 2016
  ident: 1738_CR10
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-016-1408-4
– ident: 1738_CR21
  doi: 10.1007/s11590-021-01812-2
– volume: 14
  start-page: 877
  year: 1976
  ident: 1738_CR20
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0314056
– volume: 28
  start-page: 657
  year: 2008
  ident: 1738_CR25
  publication-title: Ergod. Theory. Dyn. Syst.
  doi: 10.1017/S0143385708000011
– volume-title: Nonlinear Functional Analysis
  year: 2000
  ident: 1738_CR22
– volume: 66
  start-page: 1291
  year: 2017
  ident: 1738_CR15
  publication-title: Optimization
  doi: 10.1080/02331934.2016.1200577
– volume: 232
  start-page: 261
  year: 2019
  ident: 1738_CR16
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-019-1870-x
– ident: 1738_CR24
– volume: 43
  start-page: 731
  year: 2004
  ident: 1738_CR7
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012903427336
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2017
  ident: 1738_CR4
  doi: 10.1007/978-3-319-48311-5
– volume: 28
  start-page: 11
  year: 2021
  ident: 1738_CR13
  publication-title: J. Convex Anal.
– ident: 1738_CR14
  doi: 10.1142/S0219199717500158
– volume: 3
  start-page: 459
  year: 1977
  ident: 1738_CR6
  publication-title: Houston J. Math.
– volume: 220
  start-page: 803
  year: 2017
  ident: 1738_CR1
  publication-title: Israel J. Math.
  doi: 10.1007/s11856-017-1511-1
– volume: 70
  start-page: 719
  year: 2009
  ident: 1738_CR23
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2008.01.005
SSID ssj0061199
Score 2.354901
Snippet In a recent paper, Bauschke et al. study ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb}...
In a recent paper, Bauschke et al. study ρ -comonotonicity as a generalized notion of monotonicity of set-valued operators A in Hilbert space and characterize...
In a recent paper, Bauschke et al. study $$\rho $$ ρ -comonotonicity as a generalized notion of monotonicity of set-valued operators A in Hilbert space and...
SourceID crossref
springer
econis
SourceType Enrichment Source
Index Database
Publisher
StartPage 611
SubjectTerms Computational Intelligence
Generalized monotone operators
Halpern-type proximal point algorithm
Mathematics
Mathematics and Statistics
Metastability
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Proof mining
Proximal point algorithm
Rates of convergence
Simulation
Title On the proximal point algorithm and its Halpern-type variant for generalized monotone operators in Hilbert space
URI https://www.econstor.eu/handle/10419/287083
https://link.springer.com/article/10.1007/s11590-021-01738-9
Volume 16
WOSCitedRecordID wos000640755800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4480
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-Dnrwvbi-yMGbBtq03aZHEZc96Cr4wFtJk1QDu23ZVg_-emf68IEi6KmkJGnJTL5kMjNfCDlSAx6JRGgWJNJnvnAESzjXzPjKTQEbuK4phe4vwvFYPDxE121SWNlFu3cuyRqpP5LdYOV1GIYUgBbhNJ0niwGyzaCNfnPf4e_AbW6NdAXmA_khb1Nlfu7jy3K0hDaoLb85Reu1Zrj2v79cJ6vt3pKeNsqwQeZMtklWPjEOQunynaa13CLFVUahSDGWxU6haZHbrKJy8pjPbPU0pTLT1FYlHclJYWYZwwNb-gLmNciDwnaXPjas1fbVaAoKnSO1N80LUzvvS2ozOrLIolVRQC5ltsnd8Pz2bMTaKxiY8oKwYokTIcO8Nq4JFIjODQEhtVJepPjApIAHwhe-Lx0n1amE3ZRWqZDIaRQqJwmk1yMLGXx5h1DhuYMI4DV1Us_n3E2C1JNJGEQq0fDC9InbSSJWLT85XpMxiT-YlXFsYxjbuB7bOOqT4_c2RcPO8WvtXiPgGB8YfBqjm1d4fXLSCTNup3D5Sz-7f6u-R5Y55kzUgWv7ZKGaPZsDsqReKlvODmvdfQMKSehO
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BWwk40PKoWKDgQ29gKXGcjXNEiGpRt0sl2qo3y7GdYmmbjTZpD_31zOTRgkCV4BQ5sp3IM_78mJlvAPbtVOSqUI6nhZFcqkjxQgjHvbRxidggXEcpdDbPFgt1fp4fD0FhzejtPpokO6S-C3bDlTfi5FKAWkTT9CFsSkqzQ2f072cj_k7jPmtkrCgeSGZiCJX5ex-_LUdbdAYNzR9G0W6tOdj-v7_cgafD3pJ96pXhGTzw1XN48gvjIJaObmlamxdQf6sYFhn5soRLbFqvQtUys7xYrUP745KZyrHQNmxmlrVfV5wubNk1Hq9RHgy3u-yiZ60ON94xVOgVUXuzVe07433DQsVmgVi0WobIZf1LOD34cvJ5xocUDNwmadbyIsqJYd752KcWRRdniJDO2iS3YupLxAMllZQmikpXGtxNOVsqQ5xGmY2K1CS7sFHhl18BU0k8zRFey6hMpBBxkZaJKbI0t4XDF34C8SgJbQd-ckqTsdR3zMo0thrHVndjq_MJfLhtU_fsHPfW3u0FrOlBzqeazLwqmcDHUZh6mMLNPf28_rfq7-HR7ORorudfF4dv4LGg-InOie0tbLTrK78HW_a6Dc36XafHPwH2HOsy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BqRA98K5Ynj5wA6uJ42ycIwJWiyhLxaPqzXL8KJa22WiT9sCvZybJtkWgSohT5Mh2Is94Hp6ZzwAv7VSUqlKO55WRXKpE8UoIx720aUDZIFwPKXS4XywW6uioPLhUxd9nu29CkkNNA6E01d1e48LeReEbauGEU3oBchRt2etwQ6InQ0ldX74ebmTxNB1ukEwV1QbJQoxlM3-f4zfVtE3-aGz_CJD2emd25___-C7cHm1O9mZgkntwzdf3YecSEiG2Pp3Dt7YPoPlcM2wyynGJJzi0WcW6Y2Z5vFrH7scJM7VjsWvZ3Cwbv645HeSyM3S7kU4MzWB2PKBZx5_eMWT0FUF-s1Xj-6B-y2LN5pHQtTqGEs36h_B99v7b2zkfr2bgNsuLjldJScjzzqc-t0jStEDJ6azNSiumPqCcUFJJaZIkuGDQynI2KENYR4VNqtxku7BV45cfAVNZOi1R7IYkZFKItMpDZqoiL23l8IWfQLqhirYjbjldn7HUF4jLtLYa11b3a6vLCbw6H9MMqB1X9t4diK3pQUmpmsK_KpvA6w1h9bi12yvmefxv3V_AzYN3M73_YfHxCdwSVFbR57Y9ha1ufeqfwbY962K7ft6z9C-JK_QW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+proximal+point+algorithm+and+its+Halpern-type+variant+for+generalized+monotone+operators+in+Hilbert+space&rft.jtitle=Optimization+letters&rft.au=Kohlenbach%2C+Ulrich&rft.date=2022-03-01&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=16&rft.issue=2&rft.spage=611&rft.epage=621&rft_id=info:doi/10.1007%2Fs11590-021-01738-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11590_021_01738_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4480&client=summon