Estimation of Distribution Algorithm for Grammar-Guided Genetic Programming

Genetic variation operators in grammar-guided genetic programming are fundamental to guide the evolutionary process in search and optimization problems. However, they show some limitations, mainly derived from an unbalanced exploration and local-search trade-off. This paper presents an estimation of...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary computation Vol. 32; no. 4; p. 339
Main Authors: Criado, Pablo Ramos, Rolanía, D Barrios, de la Hoz, David, Manrique, Daniel
Format: Journal Article
Language:English
Published: United States 02.12.2024
Subjects:
ISSN:1530-9304, 1530-9304
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Genetic variation operators in grammar-guided genetic programming are fundamental to guide the evolutionary process in search and optimization problems. However, they show some limitations, mainly derived from an unbalanced exploration and local-search trade-off. This paper presents an estimation of distribution algorithm for grammar-guided genetic programming to overcome this difficulty and thus increase the performance of the evolutionary algorithm. Our proposal employs an extended dynamic stochastic context-free grammar to encode and calculate the estimation of the distribution of the search space from some promising individuals in the population. Unlike traditional estimation of distribution algorithms, the proposed approach improves exploratory behavior by smoothing the estimated distribution model. Therefore, this algorithm is referred to as SEDA, smoothed estimation of distribution algorithm. Experiments have been conducted to compare overall performance using a typical genetic programming crossover operator, an incremental estimation of distribution algorithm, and the proposed approach after tuning their hyperparameters. These experiments involve challenging problems to test the local search and exploration features of the three evolutionary systems. The results show that grammar-guided genetic programming with SEDA achieves the most accurate solutions with an intermediate convergence speed.
AbstractList Genetic variation operators in grammar-guided genetic programming are fundamental to guide the evolutionary process in search and optimization problems. However, they show some limitations, mainly derived from an unbalanced exploration and local-search trade-off. This paper presents an estimation of distribution algorithm for grammar-guided genetic programming to overcome this difficulty and thus increase the performance of the evolutionary algorithm. Our proposal employs an extended dynamic stochastic context-free grammar to encode and calculate the estimation of the distribution of the search space from some promising individuals in the population. Unlike traditional estimation of distribution algorithms, the proposed approach improves exploratory behavior by smoothing the estimated distribution model. Therefore, this algorithm is referred to as SEDA, smoothed estimation of distribution algorithm. Experiments have been conducted to compare overall performance using a typical genetic programming crossover operator, an incremental estimation of distribution algorithm, and the proposed approach after tuning their hyperparameters. These experiments involve challenging problems to test the local search and exploration features of the three evolutionary systems. The results show that grammar-guided genetic programming with SEDA achieves the most accurate solutions with an intermediate convergence speed.Genetic variation operators in grammar-guided genetic programming are fundamental to guide the evolutionary process in search and optimization problems. However, they show some limitations, mainly derived from an unbalanced exploration and local-search trade-off. This paper presents an estimation of distribution algorithm for grammar-guided genetic programming to overcome this difficulty and thus increase the performance of the evolutionary algorithm. Our proposal employs an extended dynamic stochastic context-free grammar to encode and calculate the estimation of the distribution of the search space from some promising individuals in the population. Unlike traditional estimation of distribution algorithms, the proposed approach improves exploratory behavior by smoothing the estimated distribution model. Therefore, this algorithm is referred to as SEDA, smoothed estimation of distribution algorithm. Experiments have been conducted to compare overall performance using a typical genetic programming crossover operator, an incremental estimation of distribution algorithm, and the proposed approach after tuning their hyperparameters. These experiments involve challenging problems to test the local search and exploration features of the three evolutionary systems. The results show that grammar-guided genetic programming with SEDA achieves the most accurate solutions with an intermediate convergence speed.
Genetic variation operators in grammar-guided genetic programming are fundamental to guide the evolutionary process in search and optimization problems. However, they show some limitations, mainly derived from an unbalanced exploration and local-search trade-off. This paper presents an estimation of distribution algorithm for grammar-guided genetic programming to overcome this difficulty and thus increase the performance of the evolutionary algorithm. Our proposal employs an extended dynamic stochastic context-free grammar to encode and calculate the estimation of the distribution of the search space from some promising individuals in the population. Unlike traditional estimation of distribution algorithms, the proposed approach improves exploratory behavior by smoothing the estimated distribution model. Therefore, this algorithm is referred to as SEDA, smoothed estimation of distribution algorithm. Experiments have been conducted to compare overall performance using a typical genetic programming crossover operator, an incremental estimation of distribution algorithm, and the proposed approach after tuning their hyperparameters. These experiments involve challenging problems to test the local search and exploration features of the three evolutionary systems. The results show that grammar-guided genetic programming with SEDA achieves the most accurate solutions with an intermediate convergence speed.
Author Rolanía, D Barrios
Manrique, Daniel
Criado, Pablo Ramos
de la Hoz, David
Author_xml – sequence: 1
  givenname: Pablo Ramos
  orcidid: 0000-0002-4765-1105
  surname: Criado
  fullname: Criado, Pablo Ramos
  email: pablo.ramos@aturing.com
  organization: Aturing Research, Salamanca, Spain pablo.ramos@aturing.com
– sequence: 2
  givenname: D Barrios
  orcidid: 0000-0002-4060-965X
  surname: Rolanía
  fullname: Rolanía, D Barrios
  email: dolores.barrios.rolania@upm.es
  organization: Depto. Matemática Aplicada a la Ingeniería Industrial, ETSI Industriales, Universidad Politécnica de Madrid, Spain dolores.barrios.rolania@upm.es
– sequence: 3
  givenname: David
  surname: de la Hoz
  fullname: de la Hoz, David
  email: david.delahoz.galiana@alumnos.upm.es
  organization: Depto. Inteligencia Artificial, ETSI Informáticos, Universidad Politécnica de Madrid, Spain david.delahoz.galiana@alumnos.upm.es
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0002-0792-4156
  surname: Manrique
  fullname: Manrique, Daniel
  email: daniel.manrique@upm.es
  organization: Depto. Inteligencia Artificial, ETSI Informáticos, Universidad Politécnica de Madrid, Spain daniel.manrique@upm.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38271634$$D View this record in MEDLINE/PubMed
BookMark eNpNUEtLw0AYXKRiH3rzLDl6iX77SjbHUmsUC3rQc9hX6kqSrbsbwX9v1QqeZoYZBmbmaDL4wSJ0juEK44Jc2w_tG9kAUMaP0AxzCnlFgU3-8Smax_gGgCkBfIKmVJASF5TN0MM6JtfL5PyQ-Ta7cTEFp8Yfvey2Prj02metD1kdZN_LkNejM9ZktR1scjp7Cn777bhhe4qOW9lFe3bABXq5XT-v7vLNY32_Wm5yTXmZcqm0AsyFLrgSzEBLQCgQglcVK00ltGJgSsKY5YqZwhgQHEpGNVWVMViTBbr87d0F_z7amJreRW27Tg7Wj7EhFamgEITCPnpxiI6qt6bZhf3Y8Nn8HUC-AIQWXt4
CitedBy_id crossref_primary_10_2478_amns_2024_1716
crossref_primary_10_1016_j_swevo_2024_101668
ContentType Journal Article
Copyright 2024 Massachusetts Institute of Technology.
Copyright_xml – notice: 2024 Massachusetts Institute of Technology.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/evco_a_00345
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
ExternalDocumentID 38271634
Genre Journal Article
GroupedDBID ---
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
ABAZT
ABDBF
ABJNI
ABVLG
ACM
ACUHS
ADL
AEBYY
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CGR
CS3
CUY
CVF
DU5
EAP
EBS
ECM
EIF
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
RMI
ZWS
.4S
7X8
I-F
TUS
ID FETCH-LOGICAL-c357t-abcb0158c65b84d0f208b08859947d98cb40d7244e5b4d6dd0850743c3b9dd1c2
IEDL.DBID 7X8
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001368000000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-9304
IngestDate Fri Sep 05 11:39:14 EDT 2025
Mon Jul 21 06:07:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords estimation of distribution algorithms
search-space exploration
Grammar-guided genetic programming
local search, locality
genetic variation operators
Language English
License 2024 Massachusetts Institute of Technology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-abcb0158c65b84d0f208b08859947d98cb40d7244e5b4d6dd0850743c3b9dd1c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4060-965X
0000-0002-4765-1105
0000-0002-0792-4156
OpenAccessLink https://direct.mit.edu/evco/article-pdf/doi/10.1162/evco_a_00345/2352334/evco_a_00345.pdf
PMID 38271634
PQID 2929068230
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2929068230
pubmed_primary_38271634
PublicationCentury 2000
PublicationDate 2024-12-02
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2024
SSID ssj0013201
Score 2.4244735
Snippet Genetic variation operators in grammar-guided genetic programming are fundamental to guide the evolutionary process in search and optimization problems....
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 339
SubjectTerms Algorithms
Biological Evolution
Computer Simulation
Genetic Variation
Humans
Models, Genetic
Stochastic Processes
Title Estimation of Distribution Algorithm for Grammar-Guided Genetic Programming
URI https://www.ncbi.nlm.nih.gov/pubmed/38271634
https://www.proquest.com/docview/2929068230
Volume 32
WOSCitedRecordID wos001368000000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMsBAobzKS0ZijWocu7EnVEFbJKDqAFK3KH4EKtGk9PX7OSeO6IKExJItcWTfnb_znb8PoRsjSOh4bQJOFCQokSIQB7mTBJSGaMcHogqe2edoMBCjkRz6A7e5b6usYmIRqE2u3Rl5i0pHTO7KQnfTr8CpRrnqqpfQ2ES1EKCMa-mKRutVBOL5UkkgIW-vGt_btGVXOo8Tx4zJ-O_gsthkevX__t4-2vPwEndKezhAGzZroHol3YC9JzfQ7hoP4SF66oKjl3cYcZ7iB0em63WwcOfzHcZZfEwwwFvcnyXuslvQX46NNdiRVsNIeFh2eU3ga0fordd9vX8MvMpCoEMeLYJEaQWYQOg2V4IZklIiFMQeWCcWGSm0YsREgAIsV8y0jXEkd4A7dKikMbeaHqOtLM_sKcKcaxVqSnQiBWPaAvaRSapIKhJIE03aRNfV5MVgxa40kWQ2X87jn-lropNyBeJpSbcRh4JCUheysz-8fY52KKCOot-EXqBaCj5sL9G2Xi3G89lVYR7wHAxfvgGgoMTk
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Distribution+Algorithm+for+Grammar-Guided+Genetic+Programming&rft.jtitle=Evolutionary+computation&rft.au=Criado%2C+Pablo+Ramos&rft.au=Rolan%C3%ADa%2C+D+Barrios&rft.au=de+la+Hoz%2C+David&rft.au=Manrique%2C+Daniel&rft.date=2024-12-02&rft.issn=1530-9304&rft.eissn=1530-9304&rft.volume=32&rft.issue=4&rft.spage=339&rft_id=info:doi/10.1162%2Fevco_a_00345&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon