Subject-invariant feature learning for mTBI identification using LSTM-based variational autoencoder with adversarial regularization

Developing models for identifying mild traumatic brain injury (mTBI) has often been challenging due to large variations in data from subjects, resulting in difficulties for the mTBI-identification models to generalize to data from unseen subjects. To tackle this problem, we present a long short-term...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in signal processing (Lausanne) Ročník 2
Hlavní autoři: Salsabilian, Shiva, Najafizadeh, Laleh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 30.11.2022
Témata:
ISSN:2673-8198, 2673-8198
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Developing models for identifying mild traumatic brain injury (mTBI) has often been challenging due to large variations in data from subjects, resulting in difficulties for the mTBI-identification models to generalize to data from unseen subjects. To tackle this problem, we present a long short-term memory-based adversarial variational autoencoder (LSTM-AVAE) framework for subject-invariant mTBI feature extraction. In the proposed model, first, an LSTM variational autoencoder (LSTM-VAE) combines the representation learning ability of the variational autoencoder (VAE) with the temporal modeling characteristics of the LSTM to learn the latent space representations from neural activity. Then, to detach the subject’s individuality from neural feature representations, and make the model proper for cross-subject transfer learning, an adversary network is attached to the encoder in a discriminative setting. The model is trained using the 1 held-out approach. The trained encoder is then used to extract the representations from the held-out subject’s data. The extracted representations are then classified into normal and mTBI groups using different classifiers. The proposed model is evaluated on cortical recordings of Thy1-GCaMP6s transgenic mice obtained via widefield calcium imaging, prior to and after inducing injury. In cross-subject transfer learning experiment, the proposed LSTM-AVAE framework achieves classification accuracy results of 95.8% and 97.79%, without and with utilizing conditional VAE (cVAE), respectively, demonstrating that the proposed model is capable of learning invariant representations from mTBI data.
AbstractList Developing models for identifying mild traumatic brain injury (mTBI) has often been challenging due to large variations in data from subjects, resulting in difficulties for the mTBI-identification models to generalize to data from unseen subjects. To tackle this problem, we present a long short-term memory-based adversarial variational autoencoder (LSTM-AVAE) framework for subject-invariant mTBI feature extraction. In the proposed model, first, an LSTM variational autoencoder (LSTM-VAE) combines the representation learning ability of the variational autoencoder (VAE) with the temporal modeling characteristics of the LSTM to learn the latent space representations from neural activity. Then, to detach the subject’s individuality from neural feature representations, and make the model proper for cross-subject transfer learning, an adversary network is attached to the encoder in a discriminative setting. The model is trained using the 1 held-out approach. The trained encoder is then used to extract the representations from the held-out subject’s data. The extracted representations are then classified into normal and mTBI groups using different classifiers. The proposed model is evaluated on cortical recordings of Thy1-GCaMP6s transgenic mice obtained via widefield calcium imaging, prior to and after inducing injury. In cross-subject transfer learning experiment, the proposed LSTM-AVAE framework achieves classification accuracy results of 95.8% and 97.79%, without and with utilizing conditional VAE (cVAE), respectively, demonstrating that the proposed model is capable of learning invariant representations from mTBI data.
Developing models for identifying mild traumatic brain injury (mTBI) has often been challenging due to large variations in data from subjects, resulting in difficulties for the mTBI-identification models to generalize to data from unseen subjects. To tackle this problem, we present a long short-term memory-based adversarial variational autoencoder (LSTM-AVAE) framework for subject-invariant mTBI feature extraction. In the proposed model, first, an LSTM variational autoencoder (LSTM-VAE) combines the representation learning ability of the variational autoencoder (VAE) with the temporal modeling characteristics of the LSTM to learn the latent space representations from neural activity. Then, to detach the subject’s individuality from neural feature representations, and make the model proper for cross-subject transfer learning, an adversary network is attached to the encoder in a discriminative setting. The model is trained using the 1 held-out approach. The trained encoder is then used to extract the representations from the held-out subject’s data. The extracted representations are then classified into normal and mTBI groups using different classifiers. The proposed model is evaluated on cortical recordings of Thy1-GCaMP6s transgenic mice obtained via widefield calcium imaging, prior to and after inducing injury. In cross-subject transfer learning experiment, the proposed LSTM-AVAE framework achieves classification accuracy results of 95.8% and 97.79%, without and with utilizing conditional VAE (cVAE), respectively, demonstrating that the proposed model is capable of learning invariant representations from mTBI data.
Author Salsabilian, Shiva
Najafizadeh, Laleh
Author_xml – sequence: 1
  givenname: Shiva
  surname: Salsabilian
  fullname: Salsabilian, Shiva
– sequence: 2
  givenname: Laleh
  surname: Najafizadeh
  fullname: Najafizadeh, Laleh
BookMark eNp9kc1uFDEQhK0oSISQF-DkF5jFf_PjI0RAVlrEIcvZ6rHbG68mdmR7guDKi7MziSLEgVO3uqq-Q9cbch5TRELecbaRctDvfS7hYSOYEBvOuBatPCMXoutlM3A9nP-1vyZXpRwZY6IflGDdBfl9O49HtLUJ8RFygFipR6hzRjoh5BjigfqU6f3-45YGh7EGHyzUkCKdy6LubvdfmxEKOroSFgkmCnNNGG1ymOmPUO8ouEfMZXFMNONhnk7rr9X9lrzyMBW8ep6X5PvnT_vrm2b37cv2-sOusbLtawMaZAsDa7kdZeus7UcUTPuuax1zqneddU6B9Fpq7CXrTk4h3MAVjlY7Jy_J9onrEhzNQw73kH-aBMGsh5QPBnINdkKjWmSeI5OdZYqBH_noh15oJZX0qhcnlnhi2ZxKyehfeJyZpRWztmKWVsxzK6fQ8E_Ihrq-oGYI0_-ifwDMsZjy
CitedBy_id crossref_primary_10_1088_1741_2552_ad3eb3
crossref_primary_10_1109_TNSRE_2024_3391067
Cites_doi 10.1364/boe.9.003017
10.1162/neco_a_01199
10.1038/sj.jcbfm.9600497
10.1016/j.injury.2010.03.032
10.1038/s41598-021-02371-3
10.1038/s41536-020-00114-y
10.1093/arclin/acp006
10.1088/1741-2552/abce70
10.3389/fnbeh.2016.00200
10.1016/j.neucom.2021.04.089
10.1109/lsp.2020.3020215
10.1016/j.neuroimage.2015.02.015
10.1080/02699050050203559
10.4103/1673-5374.131568
10.1021/acs.jcim.9b00694
10.1109/jbhi.2021.3062335
10.1093/cercor/bhaa350
10.3390/math9182288
10.3389/fnins.2016.00430
10.3390/s20133738
10.14569/ijacsa.2017.081046
10.1088/1741-2552/abda0b
10.1364/BRAIN.2018.BTu2C.4
10.1016/j.ymssp.2019.05.005
10.1016/j.neuron.2015.11.031
10.1016/j.nicl.2013.12.009
10.1016/j.brainres.2019.146427
10.1364/BRAIN.2020.BW4C.3
10.1088/1741-2552/ab6df3
10.1109/EMBC46164.2021.9630205
10.1214/aoms/1177729694
10.1109/EMBC48229.2022.9871743
10.3390/s19030551
10.1007/978-3-319-59050-9_47
10.1242/dmm.026120
10.1109/tcds.2019.2949306
10.1088/1741-2552/ac1982
10.1016/s1474-4422(15)00002-2
10.1038/s42003-020-0961-x
10.1016/j.asoc.2019.105689
10.1016/j.eng.2019.03.010
10.1109/lra.2018.2801475
10.1088/1741-2552/ab9842
10.1109/access.2020.2971600
10.1016/j.patcog.2020.107335
10.1038/nrg.2017.19
10.1109/NER.2019.8716897
10.1016/j.neuroimage.2019.06.014
10.1109/tbme.2010.2082539
10.1109/EMBC44109.2020.9175800
10.1523/jneurosci.21-04-01370.2001
10.1016/j.neunet.2009.06.003
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/frsip.2022.1019253
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2673-8198
ExternalDocumentID oai_doaj_org_article_45e0f1e036c040afb1bf87294343f472
10_3389_frsip_2022_1019253
GroupedDBID 9T4
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c357t-a9a35a8051cb35dcc7be209f665d0d47d6cdd4a3f939e730605122d814ebc9dd3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001063226400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2673-8198
IngestDate Fri Oct 03 12:44:46 EDT 2025
Tue Nov 18 21:21:49 EST 2025
Sat Nov 29 05:55:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-a9a35a8051cb35dcc7be209f665d0d47d6cdd4a3f939e730605122d814ebc9dd3
OpenAccessLink https://doaj.org/article/45e0f1e036c040afb1bf87294343f472
ParticipantIDs doaj_primary_oai_doaj_org_article_45e0f1e036c040afb1bf87294343f472
crossref_primary_10_3389_frsip_2022_1019253
crossref_citationtrail_10_3389_frsip_2022_1019253
PublicationCentury 2000
PublicationDate 2022-11-30
PublicationDateYYYYMMDD 2022-11-30
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-30
  day: 30
PublicationDecade 2020
PublicationTitle Frontiers in signal processing (Lausanne)
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Cornblath (B7) 2020; 3
Wiltschko (B63) 2015; 88
Bethge (B5)
Higgins (B20)
Linkenkaer-Hansen (B33) 2001; 21
Breschi (B6) 2017; 18
Han (B17) 2021; 25
Kullback (B28) 1951; 22
Eierud (B11) 2014; 4
Zhu (B71) 2017
Morganti-Kossmann (B39) 2010; 41
Ming (B38) 2019; 84
Han (B18) 2020; 27
Salsabilian (B52)
Niu (B41) 2020; 20
Shamsi (B56) 2021; 18
Waytowich (B62) 2016; 10
Goodfellow (B15) 2014; 27
Fazli (B13) 2009; 22
Higgins (B19)
Salsabilian (B50) 2018
Bethge (B4)
Özdenizci (B42) 2020; 8
Marshall (B37) 2019; 1724
Salsabilian (B51)
Kou (B27) 2014; 9
Gu (B16) 2021; 31
Koochaki (B25) 2021
Dai (B9) 2019; 19
Srivastava (B58) 2015
Morioka (B40) 2015; 111
Salsabilian (B48) 2019
Makhzani (B36) 2015
Beauchamp (B3) 2022
Li (B32) 2019; 12
Lotte (B34) 2010; 58
Cramer (B59) 2022; 11
Cortes (B8) 2021; 6
Salsabilian (B53) 2020
Wu (B64) 2020
Cramer (B22) 2019; 199
Sohn (B57) 2015; 28
Lee (B30) 2020
Louppe (B35) 2017; 30
Ellenbroek (B12) 2016; 9
Salsabilian (B54)
Hong (B21) 2019; 60
Iverson (B23) 2000; 14
Du (B14) 2019; 5
Kamnitsas (B24) 2017
Angjelichinoski (B2) 2020; 17
Koochaki (B26) 2020
Zhou (B69) 2021; 453
You (B66) 2007; 27
Ruff (B47) 2009; 24
Xie (B65) 2017; 30
Park (B44) 2018; 3
Yu (B67); 129
Levin (B31) 2015; 14
Perich (B45) 2021
Lee (B29) 2016; 10
Alhagry (B1) 2017; 8
Özdenizci (B43) 2019
Schmid (B55) 2021; 18
Doersch (B10) 2016
Peterson (B46) 2021; 18
Tortora (B61) 2020; 17
Zhu (B70) 2018; 9
Yu (B68); 31
Salsabilian (B49)
Tahir (B60) 2021; 9
References_xml – volume-title: Tutorial on variational autoencoders
  year: 2016
  ident: B10
– volume: 9
  start-page: 3017
  year: 2018
  ident: B70
  article-title: Decoding cortical brain states from widefield calcium imaging data using visibility graph
  publication-title: Biomed. Opt. Express
  doi: 10.1364/boe.9.003017
– volume: 31
  start-page: 1235
  ident: B68
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– start-page: 467
  volume-title: Brain Struct. Funct.
  year: 2020
  ident: B30
  article-title: Investigating learning-related neural circuitry with chronic in vivo optical imaging
– volume: 27
  start-page: 1954
  year: 2007
  ident: B66
  article-title: Reduced tissue damage and improved recovery of motor function after traumatic brain injury in mice deficient in complement component c4
  publication-title: J. Cereb. Blood Flow. Metab.
  doi: 10.1038/sj.jcbfm.9600497
– start-page: 843
  volume-title: International conference on machine learning
  year: 2015
  ident: B58
  article-title: Unsupervised learning of video representations using LSTMs
– volume: 41
  start-page: S10
  year: 2010
  ident: B39
  article-title: Animal models of traumatic brain injury: Is there an optimal model to reproduce human brain injury in the laboratory?
  publication-title: Injury
  doi: 10.1016/j.injury.2010.03.032
– volume: 11
  start-page: 1
  year: 2022
  ident: B59
  article-title: Wide-field calcium imaging reveals widespread changes in cortical connectivity following repetitive, mild traumatic brain injury in the mouse
  publication-title: bioRxiv
  doi: 10.1038/s41598-021-02371-3
– year: 2015
  ident: B36
  article-title: Adversarial autoencoders
– volume: 6
  start-page: 5
  year: 2021
  ident: B8
  article-title: The genetic basis of inter-individual variation in recovery from traumatic brain injury
  publication-title: npj Regen. Med.
  doi: 10.1038/s41536-020-00114-y
– volume: 24
  start-page: 3
  year: 2009
  ident: B47
  article-title: Recommendations for diagnosing a mild traumatic brain injury: A national academy of neuropsychology education paper
  publication-title: Archives Clin. neuropsychology
  doi: 10.1093/arclin/acp006
– volume: 18
  start-page: 016015
  year: 2021
  ident: B56
  article-title: Early classification of motor tasks using dynamic functional connectivity graphs from EEG
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abce70
– volume: 10
  start-page: 200
  year: 2016
  ident: B29
  article-title: Pupil dynamics reflect behavioral choice and learning in a go/nogo tactile decision-making task in mice
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2016.00200
– volume: 453
  start-page: 131
  year: 2021
  ident: B69
  article-title: VAE-based deep SVDD for anomaly detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.089
– volume: 27
  start-page: 1565
  year: 2020
  ident: B18
  article-title: Disentangled adversarial autoencoder for subject-invariant physiological feature extraction
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/lsp.2020.3020215
– volume: 111
  start-page: 167
  year: 2015
  ident: B40
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.015
– volume: 14
  start-page: 1057
  year: 2000
  ident: B23
  article-title: Prevalence of abnormal CT-scans following mild head injury
  publication-title: Brain Inj.
  doi: 10.1080/02699050050203559
– volume: 30
  year: 2017
  ident: B35
  article-title: Learning to pivot with adversarial networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 693
  year: 2014
  ident: B27
  article-title: Imaging brain plasticity after trauma
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.131568
– volume: 60
  start-page: 29
  year: 2019
  ident: B21
  article-title: Molecular generative model based on an adversarially regularized autoencoder
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00694
– volume: 27
  year: 2014
  ident: B15
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  start-page: 2928
  year: 2021
  ident: B17
  article-title: Universal physiological representation learning with soft-disentangled rateless autoencoders
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/jbhi.2021.3062335
– volume: 31
  start-page: 2125
  year: 2021
  ident: B16
  article-title: Temporal dynamics of functional brain states underlie cognitive performance
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa350
– ident: B19
  article-title: Early visual concept learning with unsupervised deep learning
– volume: 9
  start-page: 2288
  year: 2021
  ident: B60
  article-title: Voxel-based 3D object reconstruction from single 2D image using variational autoencoders
  publication-title: Mathematics
  doi: 10.3390/math9182288
– volume: 10
  start-page: 430
  year: 2016
  ident: B62
  article-title: Spectral transfer learning using information geometry for a user-independent brain-computer interface
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00430
– volume: 20
  start-page: 3738
  year: 2020
  ident: B41
  article-title: LSTM-based VAE-GAN for time-series anomaly detection
  publication-title: Sensors
  doi: 10.3390/s20133738
– volume: 8
  year: 2017
  ident: B1
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: ijacsa.
  doi: 10.14569/ijacsa.2017.081046
– start-page: 412
  volume-title: 10th international IEEE/EMBS conference on neural engineering
  year: 2021
  ident: B25
  article-title: A convolutional autoencoder for identification of mild traumatic brain injury
– start-page: 408
  volume-title: 10th international IEEE/EMBS conference on neural engineering
  ident: B52
  article-title: An adversarial variational autoencoder approach toward transfer learning for mTBI identification
– volume: 18
  start-page: 026014
  year: 2021
  ident: B46
  article-title: Generalized neural decoders for transfer learning across participants and recording modalities
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abda0b
– start-page: 5217
  volume-title: 41st annual international conference of the IEEE engineering in medicine and Biology society
  year: 2019
  ident: B48
  article-title: Quantifying changes in brain function following injury via network measures
– volume: 30
  year: 2017
  ident: B65
  article-title: Controllable invariance through adversarial feature learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1236
  volume-title: ICASSP 2022 IEEE international conference on acoustics, speech and signal processing
  ident: B4
  article-title: Domain-invariant representation learning from EEG with private encoders
– volume-title: Optics and the brain
  year: 2018
  ident: B50
  article-title: Using connectivity to infer behavior from cortical activity recorded through widefield transcranial imaging
  doi: 10.1364/BRAIN.2018.BTu2C.4
– volume: 129
  start-page: 764
  ident: B67
  article-title: Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.005
– volume: 88
  start-page: 1121
  year: 2015
  ident: B63
  article-title: Mapping sub-second structure in mouse behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.11.031
– volume: 4
  start-page: 283
  year: 2014
  ident: B11
  article-title: Neuroimaging after mild traumatic brain injury: Review and meta-analysis
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2013.12.009
– volume: 1724
  start-page: 146427
  year: 2019
  ident: B37
  article-title: Mouse vs man: Organoid models of brain development & disease
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2019.146427
– volume-title: Optics and the brain
  ident: B49
  article-title: Study of functional network topology alterations after injury via embedding methods
  doi: 10.1364/BRAIN.2020.BW4C.3
– start-page: 103940C
  volume-title: Wavelets and sparsity XVII
  year: 2017
  ident: B71
  article-title: Probing the dynamics of spontaneous cortical activities via widefield Ca+2 imaging in GCaMP6 transgenic mice
– volume: 17
  start-page: 016067
  year: 2020
  ident: B2
  article-title: Cross-subject decoding of eye movement goals from local field potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab6df3
– volume-title: 43rd annual international Conference of the IEEE Engineering in medicine & Biology society (EMBC)
  ident: B51
  article-title: A variational encoder framework for decoding behavior choices from neural data
  doi: 10.1109/EMBC46164.2021.9630205
– ident: B20
  article-title: beta-vae: Learning basic visual concepts with a constrained variational framework
– volume: 22
  start-page: 79
  year: 1951
  ident: B28
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume-title: Exploiting multiple EEG data domains with adversarial learning
  ident: B5
  doi: 10.1109/EMBC48229.2022.9871743
– volume: 19
  start-page: 551
  year: 2019
  ident: B9
  article-title: EEG classification of motor imagery using a novel deep learning framework
  publication-title: Sensors
  doi: 10.3390/s19030551
– start-page: 597
  volume-title: International conference on information processing in medical imaging
  year: 2017
  ident: B24
  article-title: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks
  doi: 10.1007/978-3-319-59050-9_47
– start-page: 2917
  volume-title: 42nd annual international conference of the IEEE engineering in medicine & Biology society (EMBC)
  year: 2020
  ident: B26
  article-title: Detecting mTBI by learning spatio-temporal characteristics of widefield calcium imaging data using deep learning
– volume: 9
  start-page: 1079
  year: 2016
  ident: B12
  article-title: Rodent models in neuroscience research: Is it a rat race?
  publication-title: Dis. models Mech.
  doi: 10.1242/dmm.026120
– volume: 12
  start-page: 344
  year: 2019
  ident: B32
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/tcds.2019.2949306
– volume: 18
  start-page: 041006
  year: 2021
  ident: B55
  article-title: Review of wearable technologies and machine learning methodologies for systematic detection of mild traumatic brain injuries
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac1982
– year: 2022
  ident: B3
  article-title: Whole-brain comparison of rodent and human brains using spatial transcriptomics
  publication-title: bioRxiv
– volume: 14
  start-page: 506
  year: 2015
  ident: B31
  article-title: Diagnosis, prognosis, and clinical management of mild traumatic brain injury
  publication-title: Lancet Neurology
  doi: 10.1016/s1474-4422(15)00002-2
– volume: 28
  year: 2015
  ident: B57
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Adv. neural Inf. Process. Syst.
– volume: 3
  start-page: 1
  year: 2020
  ident: B7
  article-title: Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-0961-x
– volume: 84
  start-page: 105689
  year: 2019
  ident: B38
  article-title: Subject adaptation network for EEG data analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105689
– volume: 5
  start-page: 948
  year: 2019
  ident: B14
  article-title: Brain encoding and decoding in fMRI with bidirectional deep generative models
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.03.010
– volume: 3
  start-page: 1544
  year: 2018
  ident: B44
  article-title: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/lra.2018.2801475
– volume: 17
  start-page: 046011
  year: 2020
  ident: B61
  article-title: Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab9842
– volume: 8
  start-page: 27074
  year: 2020
  ident: B42
  article-title: Learning invariant representations from EEG via adversarial inference
  publication-title: IEEE access
  doi: 10.1109/access.2020.2971600
– volume-title: Modality-specific and shared generative adversarial network for cross-modal retrieval
  year: 2020
  ident: B64
  doi: 10.1016/j.patcog.2020.107335
– volume: 18
  start-page: 425
  year: 2017
  ident: B6
  article-title: Comparative transcriptomics in human and mouse
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2017.19
– volume-title: 2019 9th international IEEE/EMBS conference on neural engineering (NER)
  year: 2019
  ident: B43
  article-title: Transfer learning in brain-computer interfaces with adversarial variational autoencoders
  doi: 10.1109/NER.2019.8716897
– start-page: 1
  year: 2021
  ident: B45
  article-title: Inferring brain-wide interactions using data-constrained recurrent neural network models
  publication-title: BioRxiv
– volume: 199
  start-page: 570
  year: 2019
  ident: B22
  article-title: In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.014
– volume: 58
  start-page: 355
  year: 2010
  ident: B34
  article-title: Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2010.2082539
– volume-title: 42st annual international conference of the IEEE engineering in medicine and Biology society (EMBC)
  year: 2020
  ident: B53
  article-title: Detection of mild traumatic brain injury via topological graph embedding and 2D convolutional neural networks
  doi: 10.1109/EMBC44109.2020.9175800
– start-page: 1
  volume-title: IEEE international symposium on circuits and systems (ISCAS)
  ident: B54
  article-title: Identifying task-related brain functional states via cortical networks
– volume: 21
  start-page: 1370
  year: 2001
  ident: B33
  article-title: Long-range temporal correlations and scaling behavior in human brain oscillations
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.21-04-01370.2001
– volume: 22
  start-page: 1305
  year: 2009
  ident: B13
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.06.003
SSID ssj0002784206
Score 2.2170904
Snippet Developing models for identifying mild traumatic brain injury (mTBI) has often been challenging due to large variations in data from subjects, resulting in...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms adversarial regularization
cross-subject transfer learning
LSTM-long short-term memory
mild TBI (mTBI)
variational autoencoder (VAE)
Title Subject-invariant feature learning for mTBI identification using LSTM-based variational autoencoder with adversarial regularization
URI https://doaj.org/article/45e0f1e036c040afb1bf87294343f472
Volume 2
WOSCitedRecordID wos001063226400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2673-8198
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002784206
  issn: 2673-8198
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2673-8198
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002784206
  issn: 2673-8198
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSx0xFA1FXNRF8ROtVbJwJ8HJ12SyrPJEQUXwtbgbMvmQV-yzjM-37MY_3nszUZ4bu3EziyETwslNck8mOYeQg-Ar463TzFW-YSrUnDXSCaYazkPtdVdn2cWfF-bqqrm9tdcLVl94JmyQBx6AO1I6VolHmGg9xJtLHe9SAxkh3ohMyuTZF7KeBTL1q_xOE1U93JIBFmaPEnBv1KcUAgmrFVq-WYkWBPvzynK6Sr6UlJB-H5qyRj7F6TpZWRAK3CDPML5xw4RNpnMgt4AGTTFLctJi-3BHIfukv8fH53QSygmgDDrFk-139OJmfMlwyQo01zBsAVL3NHtAKcsQe4pbstShQfMjlrinffap78tNzU3y43Q0PjljxT6BeanNjDnrpHYNjDrfSR28N10UlU11rUMVlIGuCEE5may0EQY6EBsuRGi4ip23IcgtsjR9mMZtQoXxzilXNR4wV0q6Ds2GasGjS9oYuUP4C5StL9riaHFx3wLHQPjbDH-L8LcF_h1y-PrNn0FZ493Sx9hDryVRFTu_gFhpS6y0_4uVrx9RyS75jA0b5B-_kaVZ_xT3yLKfzyaP_X4OQ3he_h39A6TA5N4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-invariant+feature+learning+for+mTBI+identification+using+LSTM-based+variational+autoencoder+with+adversarial+regularization&rft.jtitle=Frontiers+in+signal+processing+%28Lausanne%29&rft.au=Shiva+Salsabilian&rft.au=Laleh+Najafizadeh&rft.date=2022-11-30&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-8198&rft.volume=2&rft_id=info:doi/10.3389%2Ffrsip.2022.1019253&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_45e0f1e036c040afb1bf87294343f472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-8198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-8198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-8198&client=summon