Optimized ensemble model for wind power forecasting using hybrid whale and dipper-throated optimization algorithms

Introduction: Power generated by the wind is a viable renewable energy option. Forecasting wind power generation is particularly important for easing supply and demand imbalances in the smart grid. However, the biggest challenge with wind power is that it is unpredictable due to its intermittent and...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in energy research Vol. 11
Main Authors: Alhussan, Amel Ali, Farhan, Alaa Kadhim, Abdelhamid, Abdelaziz A., El-Kenawy, El-Sayed M., Ibrahim, Abdelhameed, Khafaga, Doaa Sami
Format: Journal Article
Language:English
Published: Frontiers Media S.A 21.06.2023
Subjects:
ISSN:2296-598X, 2296-598X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Introduction: Power generated by the wind is a viable renewable energy option. Forecasting wind power generation is particularly important for easing supply and demand imbalances in the smart grid. However, the biggest challenge with wind power is that it is unpredictable due to its intermittent and sporadic nature. The purpose of this research is to propose a reliable ensemble model that can predict future wind power generation. Methods: The proposed ensemble model comprises three reliable regression models: long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM models. To boost the performance of the proposed ensemble model, the outputs of each model are optimally weighted to form the final prediction output. The ensemble models’ weights are optimized in terms of a newly developed optimization algorithm based on the whale optimization algorithm and the dipper-throated optimization algorithm. On the other hand, the proposed optimization algorithm is converted to binary to be used in feature selection to boost the prediction results further. The proposed optimized ensemble model is tested in terms of a dataset publicly available on Kaggle. Results and discussion: The results of the proposed model are compared to the other six optimization algorithms to prove the superiority of the proposed optimization algorithm. In addition, statistical tests are performed to highlight the proposed approach’s performance and effectiveness in predicting future wind power values. The results are evaluated using a set of criteria such as root mean square error (RMSE), mean absolute error (MAE), and R 2 . The proposed approach could achieve the following results: RMSE = 0.0022, MAE = 0.0003, and R 2 = 0.9999, which outperform those results achieved by other methods.
AbstractList Introduction: Power generated by the wind is a viable renewable energy option. Forecasting wind power generation is particularly important for easing supply and demand imbalances in the smart grid. However, the biggest challenge with wind power is that it is unpredictable due to its intermittent and sporadic nature. The purpose of this research is to propose a reliable ensemble model that can predict future wind power generation.Methods: The proposed ensemble model comprises three reliable regression models: long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM models. To boost the performance of the proposed ensemble model, the outputs of each model are optimally weighted to form the final prediction output. The ensemble models’ weights are optimized in terms of a newly developed optimization algorithm based on the whale optimization algorithm and the dipper-throated optimization algorithm. On the other hand, the proposed optimization algorithm is converted to binary to be used in feature selection to boost the prediction results further. The proposed optimized ensemble model is tested in terms of a dataset publicly available on Kaggle.Results and discussion: The results of the proposed model are compared to the other six optimization algorithms to prove the superiority of the proposed optimization algorithm. In addition, statistical tests are performed to highlight the proposed approach’s performance and effectiveness in predicting future wind power values. The results are evaluated using a set of criteria such as root mean square error (RMSE), mean absolute error (MAE), and R2. The proposed approach could achieve the following results: RMSE = 0.0022, MAE = 0.0003, and R2 = 0.9999, which outperform those results achieved by other methods.
Introduction: Power generated by the wind is a viable renewable energy option. Forecasting wind power generation is particularly important for easing supply and demand imbalances in the smart grid. However, the biggest challenge with wind power is that it is unpredictable due to its intermittent and sporadic nature. The purpose of this research is to propose a reliable ensemble model that can predict future wind power generation. Methods: The proposed ensemble model comprises three reliable regression models: long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM models. To boost the performance of the proposed ensemble model, the outputs of each model are optimally weighted to form the final prediction output. The ensemble models’ weights are optimized in terms of a newly developed optimization algorithm based on the whale optimization algorithm and the dipper-throated optimization algorithm. On the other hand, the proposed optimization algorithm is converted to binary to be used in feature selection to boost the prediction results further. The proposed optimized ensemble model is tested in terms of a dataset publicly available on Kaggle. Results and discussion: The results of the proposed model are compared to the other six optimization algorithms to prove the superiority of the proposed optimization algorithm. In addition, statistical tests are performed to highlight the proposed approach’s performance and effectiveness in predicting future wind power values. The results are evaluated using a set of criteria such as root mean square error (RMSE), mean absolute error (MAE), and R 2 . The proposed approach could achieve the following results: RMSE = 0.0022, MAE = 0.0003, and R 2 = 0.9999, which outperform those results achieved by other methods.
Author Abdelhamid, Abdelaziz A.
Khafaga, Doaa Sami
Alhussan, Amel Ali
Ibrahim, Abdelhameed
Farhan, Alaa Kadhim
El-Kenawy, El-Sayed M.
Author_xml – sequence: 1
  givenname: Amel Ali
  surname: Alhussan
  fullname: Alhussan, Amel Ali
– sequence: 2
  givenname: Alaa Kadhim
  surname: Farhan
  fullname: Farhan, Alaa Kadhim
– sequence: 3
  givenname: Abdelaziz A.
  surname: Abdelhamid
  fullname: Abdelhamid, Abdelaziz A.
– sequence: 4
  givenname: El-Sayed M.
  surname: El-Kenawy
  fullname: El-Kenawy, El-Sayed M.
– sequence: 5
  givenname: Abdelhameed
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
– sequence: 6
  givenname: Doaa Sami
  surname: Khafaga
  fullname: Khafaga, Doaa Sami
BookMark eNp9kc9KJDEQxoMo6Oq8gKd-gZ7N_-k-iuyqIHhR8BYqSfVMhu5Ok2QZ3Ke3Z0ZBPHhJJan6fnzF94ucjnFEQq4ZXQrRtL87HNN6ySkXS8ZWsmX0hFxw3upatc3r6Zf7OVnkvKWUMsGVZPSCpKephCH8R1_hmHGwPVZD9NhXXUzVLoy-muIO0_6JDnIJ47r6l_fn5s2m4KvdBmYNzIM-TBOmumxShDID4xENJcSxgn4dUyibIV-Rsw76jIuPekle_v55vr2vH5_uHm5vHmsn1KrUQL1ddY1c-ZZxqRvdOKcdU7N5ySz1gNwrqZQHaRU6YZ2WLbVIoZ07GsQleThyfYStmVIYIL2ZCMEcPmJaG0gluB4NWkZdaxshbSeV1ha4YgDMcaGcoHpmNUeWSzHnhJ1xoRwWKwlCbxg1-yjMIQqzj8J8RDFL-Tfpp5UfRO8nOZMV
CitedBy_id crossref_primary_10_3389_fenrg_2023_1336675
crossref_primary_10_3390_math11224613
crossref_primary_10_1038_s41598_024_73076_6
crossref_primary_10_1080_23080477_2024_2370211
crossref_primary_10_1109_ACCESS_2023_3345342
crossref_primary_10_3389_fenrg_2024_1467637
Cites_doi 10.1016/j.advengsoft.2013.12.007
10.1016/j.renene.2020.10.119
10.3390/en13010184
10.1016/j.energy.2021.120069
10.1016/j.energy.2020.119397
10.1016/j.energy.2018.01.177
10.1371/journal.pone.0256381
10.32604/cmc.2022.026026
10.1016/j.renene.2022.08.134
10.1016/j.renene.2020.03.148
10.1016/j.apenergy.2021.118185
10.1016/j.enconman.2019.111823
10.1016/j.enconman.2021.115036
10.1016/j.apenergy.2021.117766
10.1002/2050-7038.13233
10.1016/j.enconman.2021.113917
10.1016/j.energy.2021.122561
10.1016/j.knosys.2021.106924
10.1109/access.2022.3166901
10.1016/j.renene.2021.09.048
10.3390/math10162912
10.1016/j.energy.2020.119692
10.1016/j.renene.2019.12.047
10.1007/978-3-319-78922-4_2
10.1007/978-3-319-67371-4_6
10.1016/j.enconman.2021.114002
10.3390/su131810453
10.1016/j.enconman.2021.114775
10.1016/j.apenergy.2021.117568
10.1016/j.advengsoft.2016.01.008
10.1016/j.enconman.2020.112824
10.3390/s21041224
10.1016/j.jclepro.2019.118447
10.1016/j.renene.2019.05.074
10.1016/j.apenergy.2019.03.044
10.1016/j.energy.2019.116300
10.1016/j.ijepes.2021.107365
10.1109/ACCESS.2022.3196660
10.1007/s10462-022-10173-w
10.1016/j.renene.2020.09.032
10.1016/j.apenergy.2021.118057
10.1016/j.engappai.2020.103573
10.1016/j.energy.2020.118980
10.1016/j.energy.2013.07.051
10.3390/math10173144
10.1109/ACCESS.2022.3190508
10.1016/j.neucom.2019.08.108
10.1080/21642583.2019.1708830
10.1016/j.energy.2022.124249
10.1016/j.enconman.2022.116022
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2023.1174910
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_eb10c9b834bf4566ba251aa1c235c306
10_3389_fenrg_2023_1174910
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-a0db7f847d91246868cc6c1500141b0dae2d5455da4b5ec3bc6490be0a9e2d6a3
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001024389700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-598X
IngestDate Fri Oct 03 12:46:18 EDT 2025
Tue Nov 18 22:13:33 EST 2025
Sat Nov 29 03:07:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-a0db7f847d91246868cc6c1500141b0dae2d5455da4b5ec3bc6490be0a9e2d6a3
OpenAccessLink https://doaj.org/article/eb10c9b834bf4566ba251aa1c235c306
ParticipantIDs doaj_primary_oai_doaj_org_article_eb10c9b834bf4566ba251aa1c235c306
crossref_citationtrail_10_3389_fenrg_2023_1174910
crossref_primary_10_3389_fenrg_2023_1174910
PublicationCentury 2000
PublicationDate 2023-06-21
PublicationDateYYYYMMDD 2023-06-21
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-21
  day: 21
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Li (B28) 2020; 242
Zhang (B51) 2021; 302
Zhang (B53) 2020; 156
Kumar Ganti (B25) 2022; 244
Mirjalili (B35) 2014; 69
Duan (B12); 217
Shahid (B39) 2021; 223
El-Kenawy (B15); 10
Azizi (B7) 2023; 56
El-kenawy (B13) 2022; 10
Kong (B23) 2020; 13
Majidi Nezhad (B32) 2020; 155
Li (B27) 2022; 199
Ariyaratne (B5) 2023
Qing (B38) 2018; 148
Alhussan (B3) 2022; 10
Duan (B11); 214
Demolli (B10) 2019; 198
Zhang (B52) 2019; 241
Kusiak (B26) 2013; 60
Neshat (B36) 2021; 236
El-Kenawy (B14); 10
Xiang (B46) 2022; 252
Peng (B37) 2021; 220
B8
Liu (B31) 2020; 397
Khafaga (B20) 2022; 10
Huang (B18) 2021; 31
Liu (B30); 233
Takieldeen (B40) 2022; 72
Tian (B42) 2020; 91
Zhang (B50) 2021; 220
Liu (B29); 21
Tian (B43) 2022; 254
Yang (B49) 2022; 307
Akhter (B2) 2022; 307
An (B4) 2021; 13
Ewees (B16) 2022; 268
Chen (B9) 2022; 134
Venkata Rao (B44) 2019
Khan (B21) 2021; 16
Abdelbaky (B1) 2020; 145
Han (B17) 2019; 189
Immanuel (B19) 2019
Tian (B41) 2021; 248
Wang (B45) 2021; 304
Kisvari (B22) 2021; 163
Memarzadeh (B33) 2020; 213
Awange (B6) 2018
Mirjalili (B34) 2016; 95
Xue (B48) 2020; 8
Kong (B24) 2022; 181
Xu (B47) 2021; 163
References_xml – start-page: 217
  volume-title: A comprehensive review of the firefly algorithms for data clustering
  year: 2023
  ident: B5
– start-page: 701
  year: 2019
  ident: B19
  article-title: Genetic algorithm: An approach on optimization
– volume: 69
  start-page: 46
  year: 2014
  ident: B35
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 163
  start-page: 1895
  year: 2021
  ident: B22
  article-title: Wind power forecasting – a data-driven method along with gated recurrent neural network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.10.119
– volume: 13
  start-page: 184
  year: 2020
  ident: B23
  article-title: Wind turbine control using nonlinear economic model predictive control over all operating regions
  publication-title: Energies
  doi: 10.3390/en13010184
– volume: 223
  start-page: 120069
  year: 2021
  ident: B39
  article-title: A novel genetic LSTM model for wind power forecast
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120069
– volume: 217
  start-page: 119397
  ident: B12
  article-title: Short-term wind speed forecasting using recurrent neural networks with error correction
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119397
– volume: 148
  start-page: 461
  year: 2018
  ident: B38
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– volume: 16
  start-page: e0256381
  year: 2021
  ident: B21
  article-title: Forecasting renewable energy for environmental resilience through computational intelligence
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0256381
– volume: 72
  start-page: 1465
  year: 2022
  ident: B40
  article-title: Dipper throated optimization algorithm for unconstrained function and feature selection
  publication-title: Comput. Mater. Continua
  doi: 10.32604/cmc.2022.026026
– volume: 199
  start-page: 560
  year: 2022
  ident: B27
  article-title: A novel hybrid model for multi-step ahead photovoltaic power prediction based on conditional time series generative adversarial networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.08.134
– volume: 155
  start-page: 212
  year: 2020
  ident: B32
  article-title: Wind source potential assessment using sentinel 1 satellite and a new forecasting model based on machine learning: A case study sardinia islands
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.148
– volume: 307
  start-page: 118185
  year: 2022
  ident: B2
  article-title: A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118185
– volume: 198
  start-page: 111823
  year: 2019
  ident: B10
  article-title: Wind power forecasting based on daily wind speed data using machine learning algorithms
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111823
– volume: 252
  start-page: 115036
  year: 2022
  ident: B46
  article-title: Ultra-short term wind power prediction applying a novel model named SATCN-LSTM
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.115036
– volume: 304
  start-page: 117766
  year: 2021
  ident: B45
  article-title: A review of wind speed and wind power forecasting with deep neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117766
– volume: 31
  start-page: 1
  year: 2021
  ident: B18
  article-title: A new wind power forecasting algorithm based on long short‐term memory neural network
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.13233
– volume: 233
  start-page: 113917
  ident: B30
  article-title: Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.113917
– volume: 244
  start-page: 122561
  year: 2022
  ident: B25
  article-title: Environmental impact analysis and enhancement of factors affecting the photovoltaic (PV) energy utilization in mining industry by sparrow search optimization based gradient boosting decision tree approach
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122561
– volume: 220
  start-page: 106924
  year: 2021
  ident: B50
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2021.106924
– volume: 10
  start-page: 40536
  ident: B15
  article-title: Novel meta-heuristic algorithm for feature selection, unconstrained functions and engineering problems
  publication-title: IEEE Access
  doi: 10.1109/access.2022.3166901
– volume: 181
  start-page: 581
  year: 2022
  ident: B24
  article-title: Large-scale wind farm control using distributed economic model predictive scheme
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.09.048
– volume: 10
  start-page: 2912
  ident: B14
  article-title: Meta-heuristic optimization and keystroke dynamics for authentication of smartphone users
  publication-title: Mathematics
  doi: 10.3390/math10162912
– volume: 220
  start-page: 119692
  year: 2021
  ident: B37
  article-title: EALSTM-QR: Interval wind-power prediction model based on numerical weather prediction and deep learning
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119692
– volume: 156
  start-page: 1373
  year: 2020
  ident: B53
  article-title: Short-term wind speed prediction model based on GA-ANN improved by VMD
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.12.047
– start-page: 9
  volume-title: Jaya: An advanced optimization algorithm and its engineering applications
  year: 2019
  ident: B44
  article-title: enJaya optimization algorithm and its variants
  doi: 10.1007/978-3-319-78922-4_2
– start-page: 167
  volume-title: Mathematical geosciences: Hybrid symbolic-numeric methods
  year: 2018
  ident: B6
  article-title: enParticle swarm optimization
  doi: 10.1007/978-3-319-67371-4_6
– volume: 236
  start-page: 114002
  year: 2021
  ident: B36
  article-title: A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the lillgrund offshore wind farm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114002
– volume: 13
  start-page: 10453
  year: 2021
  ident: B4
  article-title: Ultra short-term wind power forecasting based on sparrow search algorithm optimization deep extreme learning machine
  publication-title: Sustainability
  doi: 10.3390/su131810453
– volume: 248
  start-page: 114775
  year: 2021
  ident: B41
  article-title: A novel decomposition-ensemble prediction model for ultra-short-term wind speed
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114775
– volume: 302
  start-page: 117568
  year: 2021
  ident: B51
  article-title: Power prediction of a wind farm cluster based on spatiotemporal correlations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117568
– volume: 95
  start-page: 51
  year: 2016
  ident: B34
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 213
  start-page: 112824
  year: 2020
  ident: B33
  article-title: A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112824
– volume: 21
  start-page: 1224
  ident: B29
  article-title: A modified sparrow search algorithm with application in 3d route planning for UAV
  publication-title: Sensors
  doi: 10.3390/s21041224
– volume: 242
  start-page: 118447
  year: 2020
  ident: B28
  article-title: Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118447
– volume: 145
  start-page: 981
  year: 2020
  ident: B1
  article-title: Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.05.074
– volume: 241
  start-page: 229
  year: 2019
  ident: B52
  article-title: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.044
– volume: 189
  start-page: 116300
  year: 2019
  ident: B17
  article-title: Wind power forecast based on improved Long Short Term Memory network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116300
– volume: 134
  start-page: 107365
  year: 2022
  ident: B9
  article-title: Short-term wind speed forecasting based on long short-term memory and improved BP neural network
  publication-title: Int. J. Electr. Power and Energy Syst.
  doi: 10.1016/j.ijepes.2021.107365
– volume: 10
  start-page: 84188
  year: 2022
  ident: B3
  article-title: Pothole and plain road classification using adaptive mutation dipper throated optimization and transfer learning for self driving cars
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196660
– volume: 56
  start-page: 287
  year: 2023
  ident: B7
  article-title: Fire Hawk optimizer: A novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10173-w
– volume: 163
  start-page: 772
  year: 2021
  ident: B47
  article-title: Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.09.032
– ident: B8
– volume: 307
  start-page: 118057
  year: 2022
  ident: B49
  article-title: Combined heat and power economic dispatch using an adaptive cuckoo search with differential evolution mutation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118057
– volume: 91
  start-page: 103573
  year: 2020
  ident: B42
  article-title: Short-term wind speed prediction based on LMD and improved FA optimized combined kernel function LSSVM
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103573
– volume: 214
  start-page: 118980
  ident: B11
  article-title: Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118980
– volume: 60
  start-page: 1
  year: 2013
  ident: B26
  article-title: Prediction, operations, and condition monitoring in wind energy
  publication-title: Energy
  doi: 10.1016/j.energy.2013.07.051
– volume: 10
  start-page: 3144
  year: 2022
  ident: B13
  article-title: Feature selection and classification of transformer faults based on novel meta-heuristic algorithm
  publication-title: Mathematics
  doi: 10.3390/math10173144
– volume: 10
  start-page: 74449
  year: 2022
  ident: B20
  article-title: Solving optimization problems of metamaterial and double t-shape antennas using advanced meta-heuristics algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190508
– volume: 397
  start-page: 393
  year: 2020
  ident: B31
  article-title: Wind speed forecasting using deep neural network with feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.108
– volume: 8
  start-page: 22
  year: 2020
  ident: B48
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 254
  start-page: 124249
  year: 2022
  ident: B43
  article-title: Variable frequency wind speed trend prediction system based on combined neural network and improved multi-objective optimization algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124249
– volume: 268
  start-page: 116022
  year: 2022
  ident: B16
  article-title: HBO-LSTM: Optimized long short term memory with heap-based optimizer for wind power forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.116022
SSID ssj0001325410
Score 2.3111563
Snippet Introduction: Power generated by the wind is a viable renewable energy option. Forecasting wind power generation is particularly important for easing supply...
Introduction: Power generated by the wind is a viable renewable energy option. Forecasting wind power generation is particularly important for easing supply...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms bidirectional long short-term memory
dipper throated optimization
metaheuristic optimization
whale optimization algorithm
wind speed forecasting
Title Optimized ensemble model for wind power forecasting using hybrid whale and dipper-throated optimization algorithms
URI https://doaj.org/article/eb10c9b834bf4566ba251aa1c235c306
Volume 11
WOSCitedRecordID wos001024389700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4ine8sCGQu04L4-AWrFQGEDqFvnVNlIfURqoYOC3c5eEKhMsLJGSOJZ1d87d2efvI-QqsRpmjfA9V28zwlSUfiw9x0MbWqts6ExFNhEPBslwKJ9bVF9YE1bDA9eC68K_hBmpExHoETj7SCvwyEpx44vQiBpsm8WylUxVqysCEh_O6lMykIXJ7gjUMb5BsnDcpwwkHplteaIWYH_lWfq7ZKcJCeltPZQ9suHm-2S7BRR4QIonmNmz7NNZCmmnm-mpoxWHDYWYk64gr6Y50p3hrTNqibXMFEvax3TygWey6GoCnoAqaGizPHeFh_wIEGdauqi7rjRE1XS8KLJyMlsektd-7-X-wWvYEjwjwrj0FLM6HoGzsRJ8dpREiTGRgXgPSzk1s8r5FsKl0KpAgwKENlEgmXZMSXgTKXFEOvPF3B0TGkdGuMRyiN50wJVTiBHPuHahhQ5ieUL4j-RS00CJI6PFNIWUAqWdVtJOUdppI-0Tcr3-Jq-BNH5tfYcKWbdEEOzqAZhG2phG-pdpnP5HJ2dkCweG1WE-PyedsnhzF2TTvJfZsrisrA6uj1-9bxzI3-g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+ensemble+model+for+wind+power+forecasting+using+hybrid+whale+and+dipper-throated+optimization+algorithms&rft.jtitle=Frontiers+in+energy+research&rft.au=Amel+Ali+Alhussan&rft.au=Alaa+Kadhim+Farhan&rft.au=Abdelaziz+A.+Abdelhamid&rft.au=Abdelaziz+A.+Abdelhamid&rft.date=2023-06-21&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-598X&rft.volume=11&rft_id=info:doi/10.3389%2Ffenrg.2023.1174910&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eb10c9b834bf4566ba251aa1c235c306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon