Maximum Number of Steps Taken by Modular Exponentiation and Euclidean Algorithm
In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers , , , “right–to–left binary algorithm” can calculate the natural...
Saved in:
| Published in: | Formalized mathematics Vol. 27; no. 1; pp. 87 - 91 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Bialystok
Sciendo
01.04.2019
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Subjects: | |
| ISSN: | 1426-2630, 1898-9934 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers
,
,
, “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), Algo
) :=
mod
and for any integers
,
, “Euclidean algorithm” can calculate the non negative integer gcd(
). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7].
For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log
⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log
min(
). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems. |
|---|---|
| AbstractList | In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers a, b, n, “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), AlgoBPow(a, n, m) := ab mod n and for any integers a, b, “Euclidean algorithm” can calculate the non negative integer gcd(a, b). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7].For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log2n⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log10 min(|a|, |b|). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems. In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers , , , “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), Algo ) := mod and for any integers , , “Euclidean algorithm” can calculate the non negative integer gcd( ). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7]. For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log ⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log min( ). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems. In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers a , b , n , “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), Algo BPow ( a, n, m ) := a b mod n and for any integers a , b , “Euclidean algorithm” can calculate the non negative integer gcd( a, b ). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7]. For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log 2 n ⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log 10 min( |a|, |b| ). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems. |
| Author | Futa, Yuichi Nagao, Koh-ichi Okazaki, Hiroyuki |
| Author_xml | – sequence: 1 givenname: Hiroyuki surname: Okazaki fullname: Okazaki, Hiroyuki organization: Shinshu University, Nagano, Japan – sequence: 2 givenname: Koh-ichi surname: Nagao fullname: Nagao, Koh-ichi organization: Kanto Gakuin University, Kanagawa, Japan – sequence: 3 givenname: Yuichi surname: Futa fullname: Futa, Yuichi organization: Tokyo University of Technology, Tokyo, Japan |
| BookMark | eNp1kM1LwzAYxoMouE3PXgOe65K8bZqAlzHmB2zu4DyXNE1mZ5vUtMXtv7dzgidPz3N4PuA3RufOO4PQDSV3LE7F1PpQq4gRKiNCiDxDIyqkiKSE-HzwMeMR40Au0bhtd4RwJigbofVK7cu6r_FLX-cmYG_xa2eaFm_Uh3E4P-CVL_pKBbzYN8Oh60rVld5h5Qq86HVVFkY5PKu2PpTde32FLqyqWnP9qxP09rDYzJ-i5frxeT5bRhqStIuk0RCzQkqiIJdAi4IUVrGcUwGEcSu0AZ1bzmObE52ABtAMIDYqtlLzFCbo9rTbBP_Zm7bLdr4PbrjMgCYcBEsoH1LTU0oH37bB2KwJZa3CIaMkO1LLfqhlR2rZkdrQuD81vlTVmVCYbegPg_mb_6fJUipS-Aa2cnbb |
| Cites_doi | 10.2478/v10037-006-0007-y 10.2478/v10037-012-0020-2 10.1007/978-3-319-20615-8_17 10.1007/s10817-017-9440-6 |
| ContentType | Journal Article |
| Copyright | 2019. This work is published under https://creativecommons.org/licenses/by-sa/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is published under https://creativecommons.org/licenses/by-sa/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.2478/forma-2019-0009 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1898-9934 |
| EndPage | 91 |
| ExternalDocumentID | 10_2478_forma_2019_0009 10_2478_forma_2019_000927187 |
| GroupedDBID | 0R~ 4.4 5GY 5VS 9WM AATOW ABDBF ABFKT ACGFS ACIPV ACUHS ADBBV ADBLJ AFFHD AFKRA AHGSO AIKXB ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR CCPQU CS3 E0C EBS EJD HZ~ KQ8 O9- OK1 PHGZM PHGZT PIMPY QD8 RNS SA. SLJYH TR2 TUS Y2W AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c357t-9ec342d990a3b931dd0dfa2b6183026f8ce3cbf664fb0c53c33c2334ea4f9c673 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468224400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1426-2630 |
| IngestDate | Sun Oct 19 01:40:33 EDT 2025 Sat Nov 29 07:37:27 EST 2025 Sat Nov 29 01:30:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Public License. https://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-9ec342d990a3b931dd0dfa2b6183026f8ce3cbf664fb0c53c33c2334ea4f9c673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3156382516?pq-origsite=%requestingapplication% |
| PQID | 3156382516 |
| PQPubID | 6775583 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_3156382516 crossref_primary_10_2478_forma_2019_0009 walterdegruyter_journals_10_2478_forma_2019_000927187 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Bialystok |
| PublicationPlace_xml | – name: Bialystok |
| PublicationTitle | Formalized mathematics |
| PublicationYear | 2019 |
| Publisher | Sciendo De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| Publisher_xml | – name: Sciendo – name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services |
| References | 2025083013101819187_j_forma-2019-0009_ref_001_w2aab3b7b8b1b6b1ab1ab1Aa 2025083013101819187_j_forma-2019-0009_ref_008_w2aab3b7b8b1b6b1ab1ab8Aa 2025083013101819187_j_forma-2019-0009_ref_003_w2aab3b7b8b1b6b1ab1ab3Aa 2025083013101819187_j_forma-2019-0009_ref_004_w2aab3b7b8b1b6b1ab1ab4Aa 2025083013101819187_j_forma-2019-0009_ref_006_w2aab3b7b8b1b6b1ab1ab6Aa 2025083013101819187_j_forma-2019-0009_ref_007_w2aab3b7b8b1b6b1ab1ab7Aa 2025083013101819187_j_forma-2019-0009_ref_002_w2aab3b7b8b1b6b1ab1ab2Aa 2025083013101819187_j_forma-2019-0009_ref_005_w2aab3b7b8b1b6b1ab1ab5Aa |
| References_xml | – ident: 2025083013101819187_j_forma-2019-0009_ref_005_w2aab3b7b8b1b6b1ab1ab5Aa – ident: 2025083013101819187_j_forma-2019-0009_ref_008_w2aab3b7b8b1b6b1ab1ab8Aa doi: 10.2478/v10037-006-0007-y – ident: 2025083013101819187_j_forma-2019-0009_ref_003_w2aab3b7b8b1b6b1ab1ab3Aa – ident: 2025083013101819187_j_forma-2019-0009_ref_006_w2aab3b7b8b1b6b1ab1ab6Aa – ident: 2025083013101819187_j_forma-2019-0009_ref_007_w2aab3b7b8b1b6b1ab1ab7Aa doi: 10.2478/v10037-012-0020-2 – ident: 2025083013101819187_j_forma-2019-0009_ref_004_w2aab3b7b8b1b6b1ab1ab4Aa – ident: 2025083013101819187_j_forma-2019-0009_ref_001_w2aab3b7b8b1b6b1ab1ab1Aa doi: 10.1007/978-3-319-20615-8_17 – ident: 2025083013101819187_j_forma-2019-0009_ref_002_w2aab3b7b8b1b6b1ab1ab2Aa doi: 10.1007/s10817-017-9440-6 |
| SSID | ssj0062812 |
| Score | 2.081683 |
| Snippet | In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for... |
| SourceID | proquest crossref walterdegruyter |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 87 |
| SubjectTerms | 03B35 11A05 11A15 68W40 Algorithms Euclidean algorithm power residues |
| Title | Maximum Number of Steps Taken by Modular Exponentiation and Euclidean Algorithm |
| URI | https://reference-global.com/article/10.2478/forma-2019-0009 https://www.proquest.com/docview/3156382516 |
| Volume | 27 |
| WOSCitedRecordID | wos000468224400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1898-9934 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062812 issn: 1426-2630 databaseCode: BENPR dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1898-9934 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062812 issn: 1426-2630 databaseCode: PIMPY dateStart: 20060101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBa6dIf1kHUvNH1Bhx12MeqYtiyfirZIsQJNFgzd0J0Mi5K6oI2Txk4f_76iH8swYL305IshGSRNUuLHj4x9FtK5RkTtgZDugAIZerIfWc9CaJMwjo2oOuR-nsejkby8TMbNhVvRwCpbn1g5aj1DuiM_AHfQAOqzFIfzW4-mRlF1tRmh8YqtE1OZs_P148Fo_L31xSKQdb3TxSEvEODX5D5BGMuDKid0RkJNPD7hEf-OS6tks3tfla21uVosH8u2TFpFn9O3L_3uTdZt8k5-VBvKO7Zm8vdsY_iHtLX4wL4Ns4fJdDnlo2pKCJ9ZThiwgl9k1ybn6pEPZ5pQq3zwMJ_lBDOq1MqzXPPBEm8m2mQ5P7q5cvuXv6cf2Y_TwcXJV6-Zt-AhRHHpJQYhDLSLTxmoBPpa-9pmgRJ9IgkTVqIBVFaI0CofI0AADABCkzm9oojhE-vkbvstxjXxzEdRhMZXTtiYKJqXp6TFSCghTY99aaWdzmtajdQdR0gxaaWYlBRDlfGkx3ZbwabN_1WkK6n2WPSPhlZv_WfFwMXjePv5ZXfYm9o0CKOzyzrlYmn22Gu8KyfFYr8xM_ccnw3Hv54AULjdnA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4tOUlAi3dA0hcrDq79np9qKqKpmrUOOQQUDkZ76tENE6IHdr8KX4jO3bcICS49cDdGns9n-fh-WYG4A0XzjQqpT3GhUtQWKY80QmtZ1lg4yCKDK865D71o8FAXFzEww342fTCIK2ysYmVodZThf_ID5hLNBj2WfKj2XcPt0ZhdbVZoVHD4twsr13KVhz2Tpx-31J62h29P_NWWwU8xcKo9GKjWEC1s8IZkzHraO1rm1HJOzgKi1uhDFPSch5Y6auQKcYUZSwwmXt6xSPm5N6DzQDB3oLNYS8Zfm5sP6eirq86v-dRzvx6mBANInFQxaAOlNg05CP_8Xc_uA5ut66rMrk2l_PFsmzKspW3O93-397TDmyt4mpyXH8Ij2HD5E_gUXI7lLZ4Ch-S7GY8WUzIoNqCQqaWIMetIKPsm8mJXJJkqpGVS7o3s2mONKoKtiTLNeku1NVYmywnx1eX7rzl18kz-HgnJ3oOrdzd_gUQjXP0wzBUxpdOuSqWuA9QCqtCLrkwbXjXaDed1WNDUpduIRDSCggpAgEr_3EbdhtFpiv7UaRrLbYh_AMR66v-IpG6eCN6-W-x-_DgbJT0035vcP4KHtawRD7SLrTK-cLswX31oxwX89criBP4ctdo-QXbKTnW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Number+of+Steps+Taken+by+Modular+Exponentiation+and+Euclidean+Algorithm&rft.jtitle=Formalized+mathematics&rft.au=Okazaki%2C+Hiroyuki&rft.au=Koh-ichi+Nagao&rft.au=Futa%2C+Yuichi&rft.date=2019-04-01&rft.pub=De+Gruyter+Brill+Sp.+z+o.o.%2C+Paradigm+Publishing+Services&rft.issn=1426-2630&rft.eissn=1898-9934&rft.volume=27&rft.issue=1&rft.spage=87&rft.epage=91&rft_id=info:doi/10.2478%2Fforma-2019-0009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1426-2630&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1426-2630&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1426-2630&client=summon |