Maximum Number of Steps Taken by Modular Exponentiation and Euclidean Algorithm

In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers , , , “right–to–left binary algorithm” can calculate the natural...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Formalized mathematics Ročník 27; číslo 1; s. 87 - 91
Hlavní autoři: Okazaki, Hiroyuki, Nagao, Koh-ichi, Futa, Yuichi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bialystok Sciendo 01.04.2019
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Témata:
ISSN:1426-2630, 1898-9934
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers , , , “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), Algo ) := mod and for any integers , , “Euclidean algorithm” can calculate the non negative integer gcd( ). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7]. For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log ⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log min( ). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems.
AbstractList In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers a, b, n, “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), AlgoBPow(a, n, m) := ab mod n and for any integers a, b, “Euclidean algorithm” can calculate the non negative integer gcd(a, b). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7].For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log2n⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log10 min(|a|, |b|). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems.
In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers , , , “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), Algo ) := mod and for any integers , , “Euclidean algorithm” can calculate the non negative integer gcd( ). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7]. For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log ⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log min( ). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems.
In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers a , b , n , “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), Algo BPow ( a, n, m ) := a b mod n and for any integers a , b , “Euclidean algorithm” can calculate the non negative integer gcd( a, b ). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7]. For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log 2 n ⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log 10 min( |a|, |b| ). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems.
Author Futa, Yuichi
Nagao, Koh-ichi
Okazaki, Hiroyuki
Author_xml – sequence: 1
  givenname: Hiroyuki
  surname: Okazaki
  fullname: Okazaki, Hiroyuki
  organization: Shinshu University, Nagano, Japan
– sequence: 2
  givenname: Koh-ichi
  surname: Nagao
  fullname: Nagao, Koh-ichi
  organization: Kanto Gakuin University, Kanagawa, Japan
– sequence: 3
  givenname: Yuichi
  surname: Futa
  fullname: Futa, Yuichi
  organization: Tokyo University of Technology, Tokyo, Japan
BookMark eNp1kM1LwzAYxoMouE3PXgOe65K8bZqAlzHmB2zu4DyXNE1mZ5vUtMXtv7dzgidPz3N4PuA3RufOO4PQDSV3LE7F1PpQq4gRKiNCiDxDIyqkiKSE-HzwMeMR40Au0bhtd4RwJigbofVK7cu6r_FLX-cmYG_xa2eaFm_Uh3E4P-CVL_pKBbzYN8Oh60rVld5h5Qq86HVVFkY5PKu2PpTde32FLqyqWnP9qxP09rDYzJ-i5frxeT5bRhqStIuk0RCzQkqiIJdAi4IUVrGcUwGEcSu0AZ1bzmObE52ABtAMIDYqtlLzFCbo9rTbBP_Zm7bLdr4PbrjMgCYcBEsoH1LTU0oH37bB2KwJZa3CIaMkO1LLfqhlR2rZkdrQuD81vlTVmVCYbegPg_mb_6fJUipS-Aa2cnbb
Cites_doi 10.2478/v10037-006-0007-y
10.2478/v10037-012-0020-2
10.1007/978-3-319-20615-8_17
10.1007/s10817-017-9440-6
ContentType Journal Article
Copyright 2019. This work is published under https://creativecommons.org/licenses/by-sa/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under https://creativecommons.org/licenses/by-sa/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/forma-2019-0009
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1898-9934
EndPage 91
ExternalDocumentID 10_2478_forma_2019_0009
10_2478_forma_2019_000927187
GroupedDBID 0R~
4.4
5GY
5VS
9WM
AATOW
ABDBF
ABFKT
ACGFS
ACIPV
ACUHS
ADBBV
ADBLJ
AFFHD
AFKRA
AHGSO
AIKXB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
CCPQU
CS3
E0C
EBS
EJD
HZ~
KQ8
O9-
OK1
PHGZM
PHGZT
PIMPY
QD8
RNS
SA.
SLJYH
TR2
TUS
Y2W
AAYXX
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c357t-9ec342d990a3b931dd0dfa2b6183026f8ce3cbf664fb0c53c33c2334ea4f9c673
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468224400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1426-2630
IngestDate Sun Oct 19 01:40:33 EDT 2025
Sat Nov 29 07:37:27 EST 2025
Sat Nov 29 01:30:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Public License.
https://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-9ec342d990a3b931dd0dfa2b6183026f8ce3cbf664fb0c53c33c2334ea4f9c673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3156382516?pq-origsite=%requestingapplication%
PQID 3156382516
PQPubID 6775583
PageCount 5
ParticipantIDs proquest_journals_3156382516
crossref_primary_10_2478_forma_2019_0009
walterdegruyter_journals_10_2478_forma_2019_000927187
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Bialystok
PublicationPlace_xml – name: Bialystok
PublicationTitle Formalized mathematics
PublicationYear 2019
Publisher Sciendo
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Publisher_xml – name: Sciendo
– name: De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
References 2025083013101819187_j_forma-2019-0009_ref_001_w2aab3b7b8b1b6b1ab1ab1Aa
2025083013101819187_j_forma-2019-0009_ref_008_w2aab3b7b8b1b6b1ab1ab8Aa
2025083013101819187_j_forma-2019-0009_ref_003_w2aab3b7b8b1b6b1ab1ab3Aa
2025083013101819187_j_forma-2019-0009_ref_004_w2aab3b7b8b1b6b1ab1ab4Aa
2025083013101819187_j_forma-2019-0009_ref_006_w2aab3b7b8b1b6b1ab1ab6Aa
2025083013101819187_j_forma-2019-0009_ref_007_w2aab3b7b8b1b6b1ab1ab7Aa
2025083013101819187_j_forma-2019-0009_ref_002_w2aab3b7b8b1b6b1ab1ab2Aa
2025083013101819187_j_forma-2019-0009_ref_005_w2aab3b7b8b1b6b1ab1ab5Aa
References_xml – ident: 2025083013101819187_j_forma-2019-0009_ref_005_w2aab3b7b8b1b6b1ab1ab5Aa
– ident: 2025083013101819187_j_forma-2019-0009_ref_008_w2aab3b7b8b1b6b1ab1ab8Aa
  doi: 10.2478/v10037-006-0007-y
– ident: 2025083013101819187_j_forma-2019-0009_ref_003_w2aab3b7b8b1b6b1ab1ab3Aa
– ident: 2025083013101819187_j_forma-2019-0009_ref_006_w2aab3b7b8b1b6b1ab1ab6Aa
– ident: 2025083013101819187_j_forma-2019-0009_ref_007_w2aab3b7b8b1b6b1ab1ab7Aa
  doi: 10.2478/v10037-012-0020-2
– ident: 2025083013101819187_j_forma-2019-0009_ref_004_w2aab3b7b8b1b6b1ab1ab4Aa
– ident: 2025083013101819187_j_forma-2019-0009_ref_001_w2aab3b7b8b1b6b1ab1ab1Aa
  doi: 10.1007/978-3-319-20615-8_17
– ident: 2025083013101819187_j_forma-2019-0009_ref_002_w2aab3b7b8b1b6b1ab1ab2Aa
  doi: 10.1007/s10817-017-9440-6
SSID ssj0062812
Score 2.081683
Snippet In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Publisher
StartPage 87
SubjectTerms 03B35
11A05
11A15
68W40
Algorithms
Euclidean algorithm
power residues
Title Maximum Number of Steps Taken by Modular Exponentiation and Euclidean Algorithm
URI https://reference-global.com/article/10.2478/forma-2019-0009
https://www.proquest.com/docview/3156382516
Volume 27
WOSCitedRecordID wos000468224400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1898-9934
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062812
  issn: 1426-2630
  databaseCode: BENPR
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1898-9934
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062812
  issn: 1426-2630
  databaseCode: PIMPY
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DTDwRjwK8sDAYtHkHCeZUEGtQKKlQkWCKXL8KBU0LU3K499j50EREixMWSw78p3vu_Odv0PoOKSOwyQPCaU-IzRmHglZ4BAR8Fi7yiC2yNn1r_1OJ7i_D7vlhVtallVWNjE31HIk7B35KZhAA-w7S3Y2fiG2a5TNrpYtNObRomUqM3q-eN7sdG8rW8zcoMh3GhwiLoN6Qe7jUj84zX1CoyT2EU_d1iN-x6WZs7n6lqetpepPph9ZlSbN0ae19t__Xkerpd-JG4WibKA5lWyilfYXaWu6hW7a_H0wnA5xJ-8Sgkca2xqwFPf4k0pw_IHbI2mrVnHzfTxKbJlRLlbME4mbU_E8kIonuPHcN-tnj8NtdNdq9i4uSdlvgQjw_IyESgB1pcEnDnEIjpR1qbkbM8eShDEdCAUi1oxRHdeFBwJAuABUcapDwXzYQQuJWX4X4cDzgWtHeyBjajsXmjBSg6MZ-IJqFu6hk2q3o3FBqxGZcMQKJsoFE1nB2My4GVqrNjYqz1cazXZ1D3k_JDQb9cuMrsFjf__vaQ_QcqEatkanhhayyVQdoiXxmg3SyVGpZubbvWp3Hz4B8CHdQQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk4lFcRhQJ7AInLqvHOem0fUFVBqkaNQw5BKiez3keJaJwQO7T5U_2N7NoxQUhw64H7aqz1fJ6H55sZgNcJDwKhZUI5jwTluQhpIuKAqljmlhnnsVU9XX8QDYfx2Vky2oLrthfG0ypbm1gbaj1T_h_5AbpEA32fpTicf6d-a5SvrrYrNBpYnJrVpUvZynf9D06_bxg77o3fn9D1VgGqMIwqmhiFnGlnhSXmCQZad7WVLBeBH4UlbKwMqtwKwW3eVSEqRMUQuZHcJkpE6OTegm3uwd6B7VE_HX1ubb9gcVNfdX6PMoHdZpgQ41F8UMegDpS-aajr-Y-_-8FNcLtzWZfJtTlfLFdVW5atvd3x_f_tPT2AnXVcTY6aD-EhbJniEdxLfw2lLR_Dx1ReTabLKRnWW1DIzBLPcSvJWH4zBclXJJ1pz8olvav5rPA0qhq2RBaa9JbqYqKNLMjRxbm7b_V1ugufbuRGT6BTuMc_BRKHEUob2BB1zv1mRpcmWwyswEhxK5I9eNtqN5s3Y0Myl255IGQ1EDIPBF_5d0f3W0Vma_tRZhst7kH4ByI2p_4ikbl4I3r2b7Gv4M7JOB1kg_7w9DncbWDp-Uj70KkWS_MCbqsf1aRcvFxDnMCXm0bLT08EOXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+Number+of+Steps+Taken+by+Modular+Exponentiation+and+Euclidean+Algorithm&rft.jtitle=Formalized+mathematics&rft.au=Okazaki%2C+Hiroyuki&rft.au=Nagao%2C+Koh-ichi&rft.au=Futa%2C+Yuichi&rft.date=2019-04-01&rft.pub=Sciendo&rft.issn=1426-2630&rft.eissn=1898-9934&rft.volume=27&rft.issue=1&rft.spage=87&rft.epage=91&rft_id=info:doi/10.2478%2Fforma-2019-0009&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_forma_2019_000927187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1426-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1426-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1426-2630&client=summon