Data-driven fuzzy logic control method for improved USV path planning

The parameters of the path planning algorithm for unmanned surface vehicles (USVs) usually rely on manual settings, which makes it difficult for the algorithm to achieve the optimal solution when considering multiple factors in path planning. This paper proposes a data-driven method to improve the U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 81; H. 7; S. 844
Hauptverfasser: Wang, Feng, Wang, Chenglong, Wang, Yuanhui, Chemori, Ahmed, Zhang, Xiaoyue, Zhang, Kun, Zhang, Yuxuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer Nature B.V 09.05.2025
Springer Verlag
Schlagworte:
ISSN:1573-0484, 0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The parameters of the path planning algorithm for unmanned surface vehicles (USVs) usually rely on manual settings, which makes it difficult for the algorithm to achieve the optimal solution when considering multiple factors in path planning. This paper proposes a data-driven method to improve the USV path planning algorithm in response to the problem of unreasonable control caused by manual experience parameter settings in traditional algorithms. Firstly, a dataset is constructed by extracting corresponding parameters from traditional fuzzy logic control algorithms. Then, using two existing fuzzy controllers as samples, a fuzzy neural network is designed. Finally, using this dataset, a new fuzzy logic controller is generated through a fuzzy neural network. Compared with traditional fuzzy logic controllers, data-driven controllers exhibit a more reasonable distribution of variable parameters, thus verifying the superiority of neural network-based controllers. Numerical simulations show that the proposed method improves both the path length and the navigation time, while ensuring safety in complex environments.
AbstractList The parameters of the path planning algorithm for unmanned surface vehicles (USVs) usually rely on manual settings, which makes it difficult for the algorithm to achieve the optimal solution when considering multiple factors in path planning. This paper proposes a data-driven method to improve the USV path planning algorithm in response to the problem of unreasonable control caused by manual experience parameter settings in traditional algorithms. Firstly, a dataset is constructed by extracting corresponding parameters from traditional fuzzy logic control algorithms. Then, using two existing fuzzy controllers as samples, a fuzzy neural network is designed. Finally, using this dataset, a new fuzzy logic controller is generated through a fuzzy neural network. Compared with traditional fuzzy logic controllers, data-driven controllers exhibit a more reasonable distribution of variable parameters, thus verifying the superiority of neural network-based controllers. Numerical simulations show that the proposed method improves both the path length and the navigation time, while ensuring safety in complex environments.
This paper proposes a data-driven fuzzy logic control method to improve the Dynamic Window Approach (DWA) for path planning of Unmanned Surface Vehicles (USVs). The proposed method aims to reduce the subjectivity introduced by human factors in the parameter settings of conventional fuzzy logic control. A data-driven dataset was constructed by extracting parameters from conventional fuzzy logic control algorithms, and a fuzzy neural network was employed to derive a new fuzzy logic controller from this dataset. The resulting controller exhibits a more rational distribution of variables compared to conventional fuzzy logic controllers, demonstrating the superiority of controllers generated by neural networks. Numerical simulations show that proposed the data-driven USVs path planning method offers improvements in terms of path length, navigation time, and reduced turning angles.
ArticleNumber 844
Author Wang, Yuanhui
Chemori, Ahmed
Zhang, Xiaoyue
Wang, Chenglong
Zhang, Kun
Zhang, Yuxuan
Wang, Feng
Author_xml – sequence: 1
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
– sequence: 2
  givenname: Chenglong
  surname: Wang
  fullname: Wang, Chenglong
– sequence: 3
  givenname: Yuanhui
  surname: Wang
  fullname: Wang, Yuanhui
– sequence: 4
  givenname: Ahmed
  surname: Chemori
  fullname: Chemori, Ahmed
– sequence: 5
  givenname: Xiaoyue
  surname: Zhang
  fullname: Zhang, Xiaoyue
– sequence: 6
  givenname: Kun
  surname: Zhang
  fullname: Zhang, Kun
– sequence: 7
  givenname: Yuxuan
  surname: Zhang
  fullname: Zhang, Yuxuan
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-05061978$$DView record in HAL
BookMark eNp9kD1PwzAQhi1UJNrCH2CyxIgC54_E8ViVQpEqMUBZLSexW1dJXJy0UvvrSQlIiIHpbnje03vPCA1qXxuErgncEQBx3xBCqYiAxhEIRtKInaEhiQWLgKd88Gu_QKOm2QAAZ4IN0exBtzoqgtubGtvd8XjApV-5HOe-boMvcWXatS-w9QG7ahv83hR4-fqOt7pd422p69rVq0t0bnXZmKvvOUbLx9nbdB4tXp6ep5NFlLNYtJEsMpPaIpOCM8tlnuRxJqXmQAwUmc5kYoByGRPJWKKthSylGRhuWfeUJYSN0W1_d61LtQ2u0uGgvHZqPlmo0oWqUhBDQqRI9yf6pqe72h8707Rq43eh7goqRuOES0Gp7Ki0p_LgmyYYq3LX6tad_teuVATUSbHqFatOsfpSrFgXpX-iP53-CX0CjPx_Qw
CitedBy_id crossref_primary_10_3390_s25175454
Cites_doi 10.1016/j.robot.2019.05.012
10.1007/s11227-023-05438-2
10.1109/TEVC.2024.3415368
10.1016/j.oceaneng.2024.117210
10.1109/ISMA.2018.8330141
10.1016/j.oceaneng.2024.117716
10.1109/TSMC.2024.3429467
10.1109/TNNLS.2021.3056444
10.1109/TITS.2021.3088935
10.1016/j.swevo.2024.101505
10.1109/JIOT.2023.3325234
10.1016/j.oceaneng.2024.118631
10.1109/100.580977
10.1016/j.eswa.2024.123539
10.1109/TAES.2024.3400923
10.1016/j.oceaneng.2022.111329
10.1016/j.neucom.2023.126316
10.3390/jmse11091831
10.1016/j.eswa.2024.124906
10.1145/3544558
10.1109/ACCESS.2022.3210251
10.1177/01423312211024798
10.1016/j.oceaneng.2022.112894
10.3390/jmse11071386
10.1109/CASE56687.2023.10260584
10.1109/MITS.2022.3229109
10.1016/j.oceaneng.2024.118705
10.1016/j.knosys.2024.111400
10.1145/3696206
10.1109/TSMC.2024.3370177
10.3390/jmse10070901
10.1109/IROS.2013.6696520
10.1109/TIV.2020.3000323
10.1016/j.oceaneng.2022.113435
10.1016/j.oceaneng.2024.117535
10.1016/j.oceaneng.2020.107043
10.1109/TRO.2020.3038693
10.1109/LRA.2019.2901898
10.1186/s40537-019-0197-0
10.1016/j.eswa.2022.117798
10.1109/ICRA48506.2021.9561462
10.1016/j.eswa.2023.121240
10.1609/aaai.v35i12.17315
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1007/s11227-025-07318-3
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
ExternalDocumentID oai:HAL:lirmm-05061978v1
10_1007_s11227_025_07318_3
GroupedDBID -~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CCPQU
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c357t-9dbe8fdb9743f49c6c5b99a401e0dbab96e0249519336aff0b82b0e4f3073f113
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485852100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-0484
0920-8542
IngestDate Wed Dec 10 08:45:49 EST 2025
Sun Nov 30 04:09:36 EST 2025
Sat Nov 29 07:55:42 EST 2025
Tue Nov 18 20:42:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Fuzzy logic control
Path planning
Data-driven
Neural network
Dynamic Window Approach
Unmanned Surface Vehicles (USVs)
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-9dbe8fdb9743f49c6c5b99a401e0dbab96e0249519336aff0b82b0e4f3073f113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9739-9473
OpenAccessLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-05061978
PQID 3256497229
PQPubID 2043774
ParticipantIDs hal_primary_oai_HAL_lirmm_05061978v1
proquest_journals_3256497229
crossref_citationtrail_10_1007_s11227_025_07318_3
crossref_primary_10_1007_s11227_025_07318_3
PublicationCentury 2000
PublicationDate 2025-05-09
PublicationDateYYYYMMDD 2025-05-09
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-09
  day: 09
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of supercomputing
PublicationYear 2025
Publisher Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Nature B.V
– name: Springer Verlag
References 7318_CR33
C Shorten (7318_CR32) 2019; 6
7318_CR15
M Bayer (7318_CR31) 2022; 55
G Xia (7318_CR6) 2022; 266
C Cao (7318_CR34) 2024; 57
B Ichter (7318_CR36) 2019; 4
A Mohammadzadeh (7318_CR30) 2023; 547
H Wu (7318_CR23) 2024; 80
Y Wang (7318_CR8) 2024; 301
D Fox (7318_CR10) 1997; 4
J Liang (7318_CR13) 2023; 11
D Yang (7318_CR19) 2022; 10
W Guan (7318_CR16) 2023; 15
7318_CR18
D Wang (7318_CR9) 2023; 11
D Gao (7318_CR26) 2022; 10
Z Cui (7318_CR17) 2024; 256
J Zhang (7318_CR24) 2021; 16
K Gao (7318_CR2) 2024; 86
H Yu (7318_CR42) 2024
Y Wang (7318_CR4) 2022; 253
CS Tan (7318_CR38) 2024; 249
J Zhang (7318_CR14) 2024; 310
7318_CR25
Z Lin (7318_CR27) 2022; 44
M Menner (7318_CR37) 2020; 6
Y Wang (7318_CR5) 2024; 310
N Wang (7318_CR43) 2024; 60
B Li (7318_CR7) 2024; 303
D Kanoulas (7318_CR35) 2019; 119
F Li (7318_CR44) 2024; 54
M Woźniak (7318_CR29) 2022; 207
D Bruder (7318_CR20) 2020; 37
X Yuan (7318_CR12) 2023; 11
C Zhou (7318_CR1) 2020; 200
Q Zhou (7318_CR39) 2024; 286
X Zhang (7318_CR3) 2023; 268
7318_CR28
Z Huang (7318_CR22) 2021; 23
Y Yu (7318_CR41) 2024; 55
D Xu (7318_CR11) 2024; 298
N Wang (7318_CR21) 2021; 32
A Puente-Castro (7318_CR40) 2024; 235
References_xml – volume: 119
  start-page: 13
  year: 2019
  ident: 7318_CR35
  publication-title: Robot Auton Syst
  doi: 10.1016/j.robot.2019.05.012
– volume: 80
  start-page: 202
  issue: 1
  year: 2024
  ident: 7318_CR23
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05438-2
– year: 2024
  ident: 7318_CR42
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2024.3415368
– volume: 298
  start-page: 117210
  year: 2024
  ident: 7318_CR11
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.117210
– ident: 7318_CR25
  doi: 10.1109/ISMA.2018.8330141
– volume: 303
  start-page: 117716
  year: 2024
  ident: 7318_CR7
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.117716
– volume: 54
  start-page: 6435
  year: 2024
  ident: 7318_CR44
  publication-title: IEEE Trans Syst, Man, Cybernet: Syst
  doi: 10.1109/TSMC.2024.3429467
– volume: 32
  start-page: 5456
  issue: 12
  year: 2021
  ident: 7318_CR21
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3056444
– volume: 23
  start-page: 10239
  issue: 8
  year: 2021
  ident: 7318_CR22
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3088935
– volume: 86
  start-page: 101505
  year: 2024
  ident: 7318_CR2
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2024.101505
– volume: 11
  start-page: 10084
  issue: 6
  year: 2023
  ident: 7318_CR9
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2023.3325234
– volume: 310
  start-page: 118631
  year: 2024
  ident: 7318_CR5
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.118631
– volume: 4
  start-page: 23
  issue: 1
  year: 1997
  ident: 7318_CR10
  publication-title: IEEE Robot Autom Mag
  doi: 10.1109/100.580977
– volume: 249
  start-page: 123539
  year: 2024
  ident: 7318_CR38
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.123539
– volume: 60
  start-page: 6224
  year: 2024
  ident: 7318_CR43
  publication-title: IEEE Trans Aerosp Electr Syst
  doi: 10.1109/TAES.2024.3400923
– volume: 253
  start-page: 111329
  year: 2022
  ident: 7318_CR4
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.111329
– volume: 547
  start-page: 126316
  year: 2023
  ident: 7318_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126316
– volume: 11
  start-page: 1831
  issue: 9
  year: 2023
  ident: 7318_CR12
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse11091831
– volume: 256
  start-page: 124906
  year: 2024
  ident: 7318_CR17
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2024.124906
– volume: 55
  start-page: 1
  issue: 7
  year: 2022
  ident: 7318_CR31
  publication-title: ACM Comput Surv
  doi: 10.1145/3544558
– volume: 10
  start-page: 104375
  year: 2022
  ident: 7318_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3210251
– volume: 44
  start-page: 121
  issue: 1
  year: 2022
  ident: 7318_CR27
  publication-title: Trans Inst Meas Control
  doi: 10.1177/01423312211024798
– volume: 266
  start-page: 112894
  year: 2022
  ident: 7318_CR6
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.112894
– volume: 11
  start-page: 1386
  issue: 7
  year: 2023
  ident: 7318_CR13
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse11071386
– ident: 7318_CR15
  doi: 10.1109/CASE56687.2023.10260584
– volume: 15
  start-page: 36
  issue: 3
  year: 2023
  ident: 7318_CR16
  publication-title: IEEE Intell Transp Syst Mag
  doi: 10.1109/MITS.2022.3229109
– volume: 310
  start-page: 118705
  year: 2024
  ident: 7318_CR14
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.118705
– volume: 286
  start-page: 111400
  year: 2024
  ident: 7318_CR39
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2024.111400
– volume: 57
  start-page: 1
  issue: 2
  year: 2024
  ident: 7318_CR34
  publication-title: ACM Comput Surv
  doi: 10.1145/3696206
– volume: 55
  start-page: 51
  year: 2024
  ident: 7318_CR41
  publication-title: IEEE Trans Syst, Man, Cybernet: Syst
  doi: 10.1109/TSMC.2024.3370177
– volume: 10
  start-page: 901
  issue: 7
  year: 2022
  ident: 7318_CR26
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse10070901
– ident: 7318_CR28
  doi: 10.1109/IROS.2013.6696520
– volume: 6
  start-page: 131
  issue: 1
  year: 2020
  ident: 7318_CR37
  publication-title: IEEE Trans Intell Veh
  doi: 10.1109/TIV.2020.3000323
– volume: 268
  start-page: 113435
  year: 2023
  ident: 7318_CR3
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.113435
– volume: 301
  start-page: 117535
  year: 2024
  ident: 7318_CR8
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.117535
– volume: 200
  start-page: 107043
  year: 2020
  ident: 7318_CR1
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.107043
– volume: 37
  start-page: 948
  issue: 3
  year: 2020
  ident: 7318_CR20
  publication-title: IEEE Trans Rob
  doi: 10.1109/TRO.2020.3038693
– volume: 4
  start-page: 2407
  issue: 3
  year: 2019
  ident: 7318_CR36
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2019.2901898
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 7318_CR32
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 16
  start-page: 10
  issue: 6
  year: 2021
  ident: 7318_CR24
  publication-title: Chin J Ship Res
– volume: 207
  start-page: 117798
  year: 2022
  ident: 7318_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117798
– ident: 7318_CR18
  doi: 10.1109/ICRA48506.2021.9561462
– volume: 235
  start-page: 121240
  year: 2024
  ident: 7318_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121240
– ident: 7318_CR33
  doi: 10.1609/aaai.v35i12.17315
SSID ssj0004373
Score 2.3874495
Snippet The parameters of the path planning algorithm for unmanned surface vehicles (USVs) usually rely on manual settings, which makes it difficult for the algorithm...
This paper proposes a data-driven fuzzy logic control method to improve the Dynamic Window Approach (DWA) for path planning of Unmanned Surface Vehicles...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 844
SubjectTerms Algorithms
Automatic
Automatic Control Engineering
Computer Science
Control algorithms
Control methods
Datasets
Engineering Sciences
Fuzzy control
Fuzzy logic
Kinematics
Neural networks
Parameters
Path planning
Robotics
Surface vehicles
Unmanned vehicles
Velocity
Title Data-driven fuzzy logic control method for improved USV path planning
URI https://www.proquest.com/docview/3256497229
https://hal-lirmm.ccsd.cnrs.fr/lirmm-05061978
Volume 81
WOSCitedRecordID wos001485852100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 1573-0484
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-QePAifkYUTQ_ctHFdt3U9EoVwIMSIEG5Nu3WRBJCMQSJ_va9jQDRqQrJjv_JeP35vff39EKorbTnCVUxin2riMW1I6HsRCTgEzYrxhOfZ7oMO73bD4VC8lNDDnzf4j3NABC4nVnYVpiMNiaX2pIFr5Qpee4PdI0iWXydTnzMC09IrXsj83sS3U-jg3eZA_tiK8_OlVdlvZCfouMCRuLF2_CkqmekZqmw0GnCxZM9R81llisSp3dRwslitPnG-2-EiRx2vJaQxYFc8yn8wmBj3ewNspYrxrJA0ukD9VvPtqU0K6QQSMZ9nRMTahEmsIVpgiSeiIPK1EAqCKePEWmkRGMsVaOEbC1SSODp0tWO8xC75hFJ2icrTj6m5QjhylPYBV5lAAHTyXE2ZCqCS4rELTfMqohtTyqjgFbfyFmO5Y0S2dpJgJ5nbSbIqut_Wma1ZNf4tXQcPbQtaQux2oyPHo3QykY4PiARC4SWtotrGhbJYiHPJANLBIF1XXO_V5w06cnPHwidqqJylC3OLDqNlNpqnd_nM-wJGmcxJ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+fuzzy+logic+control+method+for+improved+USV+path+planning&rft.jtitle=The+Journal+of+supercomputing&rft.au=Wang%2C+Feng&rft.au=Wang%2C+Chenglong&rft.au=Wang%2C+Yuanhui&rft.au=Chemori%2C+Ahmed&rft.date=2025-05-09&rft.issn=1573-0484&rft.eissn=1573-0484&rft.volume=81&rft.issue=7&rft_id=info:doi/10.1007%2Fs11227-025-07318-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_025_07318_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon