Data-driven fuzzy logic control method for improved USV path planning
The parameters of the path planning algorithm for unmanned surface vehicles (USVs) usually rely on manual settings, which makes it difficult for the algorithm to achieve the optimal solution when considering multiple factors in path planning. This paper proposes a data-driven method to improve the U...
Gespeichert in:
| Veröffentlicht in: | The Journal of supercomputing Jg. 81; H. 7; S. 844 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer Nature B.V
09.05.2025
Springer Verlag |
| Schlagworte: | |
| ISSN: | 1573-0484, 0920-8542, 1573-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The parameters of the path planning algorithm for unmanned surface vehicles (USVs) usually rely on manual settings, which makes it difficult for the algorithm to achieve the optimal solution when considering multiple factors in path planning. This paper proposes a data-driven method to improve the USV path planning algorithm in response to the problem of unreasonable control caused by manual experience parameter settings in traditional algorithms. Firstly, a dataset is constructed by extracting corresponding parameters from traditional fuzzy logic control algorithms. Then, using two existing fuzzy controllers as samples, a fuzzy neural network is designed. Finally, using this dataset, a new fuzzy logic controller is generated through a fuzzy neural network. Compared with traditional fuzzy logic controllers, data-driven controllers exhibit a more reasonable distribution of variable parameters, thus verifying the superiority of neural network-based controllers. Numerical simulations show that the proposed method improves both the path length and the navigation time, while ensuring safety in complex environments. |
|---|---|
| AbstractList | The parameters of the path planning algorithm for unmanned surface vehicles (USVs) usually rely on manual settings, which makes it difficult for the algorithm to achieve the optimal solution when considering multiple factors in path planning. This paper proposes a data-driven method to improve the USV path planning algorithm in response to the problem of unreasonable control caused by manual experience parameter settings in traditional algorithms. Firstly, a dataset is constructed by extracting corresponding parameters from traditional fuzzy logic control algorithms. Then, using two existing fuzzy controllers as samples, a fuzzy neural network is designed. Finally, using this dataset, a new fuzzy logic controller is generated through a fuzzy neural network. Compared with traditional fuzzy logic controllers, data-driven controllers exhibit a more reasonable distribution of variable parameters, thus verifying the superiority of neural network-based controllers. Numerical simulations show that the proposed method improves both the path length and the navigation time, while ensuring safety in complex environments. This paper proposes a data-driven fuzzy logic control method to improve the Dynamic Window Approach (DWA) for path planning of Unmanned Surface Vehicles (USVs). The proposed method aims to reduce the subjectivity introduced by human factors in the parameter settings of conventional fuzzy logic control. A data-driven dataset was constructed by extracting parameters from conventional fuzzy logic control algorithms, and a fuzzy neural network was employed to derive a new fuzzy logic controller from this dataset. The resulting controller exhibits a more rational distribution of variables compared to conventional fuzzy logic controllers, demonstrating the superiority of controllers generated by neural networks. Numerical simulations show that proposed the data-driven USVs path planning method offers improvements in terms of path length, navigation time, and reduced turning angles. |
| ArticleNumber | 844 |
| Author | Wang, Yuanhui Chemori, Ahmed Zhang, Xiaoyue Wang, Chenglong Zhang, Kun Zhang, Yuxuan Wang, Feng |
| Author_xml | – sequence: 1 givenname: Feng surname: Wang fullname: Wang, Feng – sequence: 2 givenname: Chenglong surname: Wang fullname: Wang, Chenglong – sequence: 3 givenname: Yuanhui surname: Wang fullname: Wang, Yuanhui – sequence: 4 givenname: Ahmed surname: Chemori fullname: Chemori, Ahmed – sequence: 5 givenname: Xiaoyue surname: Zhang fullname: Zhang, Xiaoyue – sequence: 6 givenname: Kun surname: Zhang fullname: Zhang, Kun – sequence: 7 givenname: Yuxuan surname: Zhang fullname: Zhang, Yuxuan |
| BackLink | https://hal-lirmm.ccsd.cnrs.fr/lirmm-05061978$$DView record in HAL |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2CyxIgC54_E8ViVQpEqMUBZLSexW1dJXJy0UvvrSQlIiIHpbnje03vPCA1qXxuErgncEQBx3xBCqYiAxhEIRtKInaEhiQWLgKd88Gu_QKOm2QAAZ4IN0exBtzoqgtubGtvd8XjApV-5HOe-boMvcWXatS-w9QG7ahv83hR4-fqOt7pd422p69rVq0t0bnXZmKvvOUbLx9nbdB4tXp6ep5NFlLNYtJEsMpPaIpOCM8tlnuRxJqXmQAwUmc5kYoByGRPJWKKthSylGRhuWfeUJYSN0W1_d61LtQ2u0uGgvHZqPlmo0oWqUhBDQqRI9yf6pqe72h8707Rq43eh7goqRuOES0Gp7Ki0p_LgmyYYq3LX6tad_teuVATUSbHqFatOsfpSrFgXpX-iP53-CX0CjPx_Qw |
| CitedBy_id | crossref_primary_10_3390_s25175454 |
| Cites_doi | 10.1016/j.robot.2019.05.012 10.1007/s11227-023-05438-2 10.1109/TEVC.2024.3415368 10.1016/j.oceaneng.2024.117210 10.1109/ISMA.2018.8330141 10.1016/j.oceaneng.2024.117716 10.1109/TSMC.2024.3429467 10.1109/TNNLS.2021.3056444 10.1109/TITS.2021.3088935 10.1016/j.swevo.2024.101505 10.1109/JIOT.2023.3325234 10.1016/j.oceaneng.2024.118631 10.1109/100.580977 10.1016/j.eswa.2024.123539 10.1109/TAES.2024.3400923 10.1016/j.oceaneng.2022.111329 10.1016/j.neucom.2023.126316 10.3390/jmse11091831 10.1016/j.eswa.2024.124906 10.1145/3544558 10.1109/ACCESS.2022.3210251 10.1177/01423312211024798 10.1016/j.oceaneng.2022.112894 10.3390/jmse11071386 10.1109/CASE56687.2023.10260584 10.1109/MITS.2022.3229109 10.1016/j.oceaneng.2024.118705 10.1016/j.knosys.2024.111400 10.1145/3696206 10.1109/TSMC.2024.3370177 10.3390/jmse10070901 10.1109/IROS.2013.6696520 10.1109/TIV.2020.3000323 10.1016/j.oceaneng.2022.113435 10.1016/j.oceaneng.2024.117535 10.1016/j.oceaneng.2020.107043 10.1109/TRO.2020.3038693 10.1109/LRA.2019.2901898 10.1186/s40537-019-0197-0 10.1016/j.eswa.2022.117798 10.1109/ICRA48506.2021.9561462 10.1016/j.eswa.2023.121240 10.1609/aaai.v35i12.17315 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION JQ2 1XC VOOES |
| DOI | 10.1007/s11227-025-07318-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| ExternalDocumentID | oai:HAL:lirmm-05061978v1 10_1007_s11227_025_07318_3 |
| GroupedDBID | -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CCPQU CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~EX JQ2 1XC VOOES |
| ID | FETCH-LOGICAL-c357t-9dbe8fdb9743f49c6c5b99a401e0dbab96e0249519336aff0b82b0e4f3073f113 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485852100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-0484 0920-8542 |
| IngestDate | Wed Dec 10 08:45:49 EST 2025 Sun Nov 30 04:09:36 EST 2025 Sat Nov 29 07:55:42 EST 2025 Tue Nov 18 20:42:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Fuzzy logic control Path planning Data-driven Neural network Dynamic Window Approach Unmanned Surface Vehicles (USVs) |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-9dbe8fdb9743f49c6c5b99a401e0dbab96e0249519336aff0b82b0e4f3073f113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9739-9473 |
| OpenAccessLink | https://hal-lirmm.ccsd.cnrs.fr/lirmm-05061978 |
| PQID | 3256497229 |
| PQPubID | 2043774 |
| ParticipantIDs | hal_primary_oai_HAL_lirmm_05061978v1 proquest_journals_3256497229 crossref_citationtrail_10_1007_s11227_025_07318_3 crossref_primary_10_1007_s11227_025_07318_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-09 |
| PublicationDateYYYYMMDD | 2025-05-09 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | The Journal of supercomputing |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Nature B.V – name: Springer Verlag |
| References | 7318_CR33 C Shorten (7318_CR32) 2019; 6 7318_CR15 M Bayer (7318_CR31) 2022; 55 G Xia (7318_CR6) 2022; 266 C Cao (7318_CR34) 2024; 57 B Ichter (7318_CR36) 2019; 4 A Mohammadzadeh (7318_CR30) 2023; 547 H Wu (7318_CR23) 2024; 80 Y Wang (7318_CR8) 2024; 301 D Fox (7318_CR10) 1997; 4 J Liang (7318_CR13) 2023; 11 D Yang (7318_CR19) 2022; 10 W Guan (7318_CR16) 2023; 15 7318_CR18 D Wang (7318_CR9) 2023; 11 D Gao (7318_CR26) 2022; 10 Z Cui (7318_CR17) 2024; 256 J Zhang (7318_CR24) 2021; 16 K Gao (7318_CR2) 2024; 86 H Yu (7318_CR42) 2024 Y Wang (7318_CR4) 2022; 253 CS Tan (7318_CR38) 2024; 249 J Zhang (7318_CR14) 2024; 310 7318_CR25 Z Lin (7318_CR27) 2022; 44 M Menner (7318_CR37) 2020; 6 Y Wang (7318_CR5) 2024; 310 N Wang (7318_CR43) 2024; 60 B Li (7318_CR7) 2024; 303 D Kanoulas (7318_CR35) 2019; 119 F Li (7318_CR44) 2024; 54 M Woźniak (7318_CR29) 2022; 207 D Bruder (7318_CR20) 2020; 37 X Yuan (7318_CR12) 2023; 11 C Zhou (7318_CR1) 2020; 200 Q Zhou (7318_CR39) 2024; 286 X Zhang (7318_CR3) 2023; 268 7318_CR28 Z Huang (7318_CR22) 2021; 23 Y Yu (7318_CR41) 2024; 55 D Xu (7318_CR11) 2024; 298 N Wang (7318_CR21) 2021; 32 A Puente-Castro (7318_CR40) 2024; 235 |
| References_xml | – volume: 119 start-page: 13 year: 2019 ident: 7318_CR35 publication-title: Robot Auton Syst doi: 10.1016/j.robot.2019.05.012 – volume: 80 start-page: 202 issue: 1 year: 2024 ident: 7318_CR23 publication-title: J Supercomput doi: 10.1007/s11227-023-05438-2 – year: 2024 ident: 7318_CR42 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2024.3415368 – volume: 298 start-page: 117210 year: 2024 ident: 7318_CR11 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.117210 – ident: 7318_CR25 doi: 10.1109/ISMA.2018.8330141 – volume: 303 start-page: 117716 year: 2024 ident: 7318_CR7 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.117716 – volume: 54 start-page: 6435 year: 2024 ident: 7318_CR44 publication-title: IEEE Trans Syst, Man, Cybernet: Syst doi: 10.1109/TSMC.2024.3429467 – volume: 32 start-page: 5456 issue: 12 year: 2021 ident: 7318_CR21 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3056444 – volume: 23 start-page: 10239 issue: 8 year: 2021 ident: 7318_CR22 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2021.3088935 – volume: 86 start-page: 101505 year: 2024 ident: 7318_CR2 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2024.101505 – volume: 11 start-page: 10084 issue: 6 year: 2023 ident: 7318_CR9 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2023.3325234 – volume: 310 start-page: 118631 year: 2024 ident: 7318_CR5 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.118631 – volume: 4 start-page: 23 issue: 1 year: 1997 ident: 7318_CR10 publication-title: IEEE Robot Autom Mag doi: 10.1109/100.580977 – volume: 249 start-page: 123539 year: 2024 ident: 7318_CR38 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.123539 – volume: 60 start-page: 6224 year: 2024 ident: 7318_CR43 publication-title: IEEE Trans Aerosp Electr Syst doi: 10.1109/TAES.2024.3400923 – volume: 253 start-page: 111329 year: 2022 ident: 7318_CR4 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.111329 – volume: 547 start-page: 126316 year: 2023 ident: 7318_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126316 – volume: 11 start-page: 1831 issue: 9 year: 2023 ident: 7318_CR12 publication-title: J Mar Sci Eng doi: 10.3390/jmse11091831 – volume: 256 start-page: 124906 year: 2024 ident: 7318_CR17 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2024.124906 – volume: 55 start-page: 1 issue: 7 year: 2022 ident: 7318_CR31 publication-title: ACM Comput Surv doi: 10.1145/3544558 – volume: 10 start-page: 104375 year: 2022 ident: 7318_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3210251 – volume: 44 start-page: 121 issue: 1 year: 2022 ident: 7318_CR27 publication-title: Trans Inst Meas Control doi: 10.1177/01423312211024798 – volume: 266 start-page: 112894 year: 2022 ident: 7318_CR6 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.112894 – volume: 11 start-page: 1386 issue: 7 year: 2023 ident: 7318_CR13 publication-title: J Mar Sci Eng doi: 10.3390/jmse11071386 – ident: 7318_CR15 doi: 10.1109/CASE56687.2023.10260584 – volume: 15 start-page: 36 issue: 3 year: 2023 ident: 7318_CR16 publication-title: IEEE Intell Transp Syst Mag doi: 10.1109/MITS.2022.3229109 – volume: 310 start-page: 118705 year: 2024 ident: 7318_CR14 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.118705 – volume: 286 start-page: 111400 year: 2024 ident: 7318_CR39 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2024.111400 – volume: 57 start-page: 1 issue: 2 year: 2024 ident: 7318_CR34 publication-title: ACM Comput Surv doi: 10.1145/3696206 – volume: 55 start-page: 51 year: 2024 ident: 7318_CR41 publication-title: IEEE Trans Syst, Man, Cybernet: Syst doi: 10.1109/TSMC.2024.3370177 – volume: 10 start-page: 901 issue: 7 year: 2022 ident: 7318_CR26 publication-title: J Mar Sci Eng doi: 10.3390/jmse10070901 – ident: 7318_CR28 doi: 10.1109/IROS.2013.6696520 – volume: 6 start-page: 131 issue: 1 year: 2020 ident: 7318_CR37 publication-title: IEEE Trans Intell Veh doi: 10.1109/TIV.2020.3000323 – volume: 268 start-page: 113435 year: 2023 ident: 7318_CR3 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113435 – volume: 301 start-page: 117535 year: 2024 ident: 7318_CR8 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.117535 – volume: 200 start-page: 107043 year: 2020 ident: 7318_CR1 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107043 – volume: 37 start-page: 948 issue: 3 year: 2020 ident: 7318_CR20 publication-title: IEEE Trans Rob doi: 10.1109/TRO.2020.3038693 – volume: 4 start-page: 2407 issue: 3 year: 2019 ident: 7318_CR36 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2019.2901898 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 7318_CR32 publication-title: J Big Data doi: 10.1186/s40537-019-0197-0 – volume: 16 start-page: 10 issue: 6 year: 2021 ident: 7318_CR24 publication-title: Chin J Ship Res – volume: 207 start-page: 117798 year: 2022 ident: 7318_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117798 – ident: 7318_CR18 doi: 10.1109/ICRA48506.2021.9561462 – volume: 235 start-page: 121240 year: 2024 ident: 7318_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121240 – ident: 7318_CR33 doi: 10.1609/aaai.v35i12.17315 |
| SSID | ssj0004373 |
| Score | 2.3874495 |
| Snippet | The parameters of the path planning algorithm for unmanned surface vehicles (USVs) usually rely on manual settings, which makes it difficult for the algorithm... This paper proposes a data-driven fuzzy logic control method to improve the Dynamic Window Approach (DWA) for path planning of Unmanned Surface Vehicles... |
| SourceID | hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 844 |
| SubjectTerms | Algorithms Automatic Automatic Control Engineering Computer Science Control algorithms Control methods Datasets Engineering Sciences Fuzzy control Fuzzy logic Kinematics Neural networks Parameters Path planning Robotics Surface vehicles Unmanned vehicles Velocity |
| Title | Data-driven fuzzy logic control method for improved USV path planning |
| URI | https://www.proquest.com/docview/3256497229 https://hal-lirmm.ccsd.cnrs.fr/lirmm-05061978 |
| Volume | 81 |
| WOSCitedRecordID | wos001485852100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 1573-0484 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-QePAifkYUTQ_ctHFdt3U9EoVwIMSIEG5Nu3WRBJCMQSJ_va9jQDRqQrJjv_JeP35vff39EKorbTnCVUxin2riMW1I6HsRCTgEzYrxhOfZ7oMO73bD4VC8lNDDnzf4j3NABC4nVnYVpiMNiaX2pIFr5Qpee4PdI0iWXydTnzMC09IrXsj83sS3U-jg3eZA_tiK8_OlVdlvZCfouMCRuLF2_CkqmekZqmw0GnCxZM9R81llisSp3dRwslitPnG-2-EiRx2vJaQxYFc8yn8wmBj3ewNspYrxrJA0ukD9VvPtqU0K6QQSMZ9nRMTahEmsIVpgiSeiIPK1EAqCKePEWmkRGMsVaOEbC1SSODp0tWO8xC75hFJ2icrTj6m5QjhylPYBV5lAAHTyXE2ZCqCS4rELTfMqohtTyqjgFbfyFmO5Y0S2dpJgJ5nbSbIqut_Wma1ZNf4tXQcPbQtaQux2oyPHo3QykY4PiARC4SWtotrGhbJYiHPJANLBIF1XXO_V5w06cnPHwidqqJylC3OLDqNlNpqnd_nM-wJGmcxJ |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+fuzzy+logic+control+method+for+improved+USV+path+planning&rft.jtitle=The+Journal+of+supercomputing&rft.au=Wang%2C+Feng&rft.au=Wang%2C+Chenglong&rft.au=Wang%2C+Yuanhui&rft.au=Chemori%2C+Ahmed&rft.date=2025-05-09&rft.issn=1573-0484&rft.eissn=1573-0484&rft.volume=81&rft.issue=7&rft_id=info:doi/10.1007%2Fs11227-025-07318-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_025_07318_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon |