An Efficient Stochastic Gradient Descent Algorithm to Maximize the Coverage of Cellular Networks
Network coverage and capacity optimization is an important operational task in cellular networks. The network coverage maximization by adjusting azimuths and tilts of antennas is focused and the existing approaches are mainly gradient-free methods. A standard gradient descent algorithm and its impro...
Saved in:
| Published in: | IEEE transactions on wireless communications Vol. 18; no. 7; pp. 3424 - 3436 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1536-1276, 1558-2248 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Network coverage and capacity optimization is an important operational task in cellular networks. The network coverage maximization by adjusting azimuths and tilts of antennas is focused and the existing approaches are mainly gradient-free methods. A standard gradient descent algorithm and its improved version, namely a Stochastic Gradient Descent (SGD) algorithm are proposed on the basis of a novel coverage indicator, named as the soft coverage indicator, to approximate the hard version of the original coverage indicator. We prove that the gradient vector is sparse, which accelerates gradient calculation, due to the number limitation of base stations within a specific distance from a given sampling point even if there are many decision variables of azimuths and tilts. Also, the SGD algorithm only requires a small amount of computation based on cheap estimates of the gradients, and thus is applicable to large-scale networks in an efficient manner. The experiments show that the proposed approaches perform well both in their near-optimal solutions and in their computation efficiency compared with the meta-heuristic algorithms. The extensibility and practicality of the proposed algorithms are also discussed. |
|---|---|
| AbstractList | Network coverage and capacity optimization is an important operational task in cellular networks. The network coverage maximization by adjusting azimuths and tilts of antennas is focused and the existing approaches are mainly gradient-free methods. A standard gradient descent algorithm and its improved version, namely a Stochastic Gradient Descent (SGD) algorithm are proposed on the basis of a novel coverage indicator, named as the soft coverage indicator, to approximate the hard version of the original coverage indicator. We prove that the gradient vector is sparse, which accelerates gradient calculation, due to the number limitation of base stations within a specific distance from a given sampling point even if there are many decision variables of azimuths and tilts. Also, the SGD algorithm only requires a small amount of computation based on cheap estimates of the gradients, and thus is applicable to large-scale networks in an efficient manner. The experiments show that the proposed approaches perform well both in their near-optimal solutions and in their computation efficiency compared with the meta-heuristic algorithms. The extensibility and practicality of the proposed algorithms are also discussed. |
| Author | Zhang, Haijun Liu, Yaxi Huangfu, Wei Long, Keping |
| Author_xml | – sequence: 1 givenname: Yaxi orcidid: 0000-0001-5012-8502 surname: Liu fullname: Liu, Yaxi email: yaxi.ustb@gmail.com organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Wei orcidid: 0000-0003-2887-8395 surname: Huangfu fullname: Huangfu, Wei email: huangfuwei@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Haijun orcidid: 0000-0002-0236-6482 surname: Zhang fullname: Zhang, Haijun email: haijunzhang@ieee.org organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Keping surname: Long fullname: Long, Keping email: longkeping@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China |
| BookMark | eNp9kD1PwzAQhi0EEm1hR2KxxJxiO07ijFUoBanAQBFjcMy5dUnjYrt8_XoSWjEwML2n0_vcSU8f7Te2AYROKBlSSvLz2WMxZITmQ5ZTTjjZQz2aJCJijIv9bo7TiLIsPUR975eE0CxNkh56GjV4rLVRBpqA74NVC-mDUXji5PPP7gK86nJUz60zYbHCweIb-WFW5gtwWAAu7Bs4OQdsNS6grje1dPgWwrt1L_4IHWhZezje5QA9XI5nxVU0vZtcF6NppOIkC1GeqUrTOJOUK60pS1JOgAOrFMslBQKEp0ylMReZJFSJikkltI5FRXMlaRoP0Nn27trZ1w34UC7txjXty5KxVkQiYtG1yLalnPXegS7Xzqyk-ywpKTuPZeux7DyWO48tkv5BlAkyGNsEJ039H3i6BQ0A_P4RGRE5z-Nv2DGB1w |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2021_e06948 crossref_primary_10_1016_j_jhydrol_2022_128567 crossref_primary_10_1088_1742_6596_1998_1_012008 crossref_primary_10_3390_technologies13030105 crossref_primary_10_1049_cth2_12670 crossref_primary_10_1016_j_bspc_2024_106457 crossref_primary_10_1109_ACCESS_2024_3356049 crossref_primary_10_1016_j_cose_2021_102177 crossref_primary_10_1007_s11432_020_2927_2 crossref_primary_10_3390_s21227540 crossref_primary_10_1109_JSEN_2024_3479733 crossref_primary_10_1109_TWC_2024_3407837 crossref_primary_10_1016_j_jer_2024_04_020 crossref_primary_10_1109_ACCESS_2020_3033325 crossref_primary_10_1109_TCOMM_2023_3296753 crossref_primary_10_1109_TAP_2022_3175214 crossref_primary_10_1007_s11042_023_14634_4 crossref_primary_10_1109_TWC_2024_3454106 crossref_primary_10_1109_TWC_2023_3326209 crossref_primary_10_1109_TVT_2022_3191882 crossref_primary_10_1109_JSYST_2020_2990320 crossref_primary_10_1109_TWC_2020_3021419 crossref_primary_10_1109_TVT_2023_3259435 crossref_primary_10_1109_TNSM_2023_3262401 crossref_primary_10_1109_TMC_2025_3542434 crossref_primary_10_1016_j_sigpro_2020_107803 crossref_primary_10_1109_ACCESS_2021_3066499 crossref_primary_10_32604_cmc_2022_019443 crossref_primary_10_1007_s11042_023_17507_y crossref_primary_10_1109_TNSE_2021_3049262 crossref_primary_10_1109_TVT_2022_3202041 crossref_primary_10_1109_TWC_2025_3551316 crossref_primary_10_1007_s13410_024_01437_y |
| Cites_doi | 10.1137/16M1061308 10.1109/TVT.2011.2163326 10.1155/WCN.2005.816 10.1155/2017/4380676 10.1155/2012/878595 10.1109/MNET.2014.6963804 10.1007/s11276-008-0155-9 10.1002/ett.2957 10.1109/MCOM.2017.1600940 10.1109/MITP.2017.9 10.1109/WOCN.2017.8065843 10.1016/S0893-6080(98)00116-6 10.1016/S1005-8885(15)60683-5 10.1016/j.dam.2004.07.005 10.1109/VETECS.2005.1543252 10.1109/VTCFall.2017.8288237 10.1109/PIMRC.2010.5671622 10.1109/MCOM.2014.6979983 10.1109/TVT.2015.2419079 10.1016/0925-2312(93)90006-O 10.1109/LWC.2014.2327228 10.1016/0009-2614(85)80574-1 10.1109/TVT.2016.2605380 10.1109/VTCFall.2014.6965924 10.1007/s11276-010-0299-2 10.1109/NTICT.2017.7976145 10.1016/j.comcom.2017.09.002 10.1007/s11277-016-3849-9 10.1109/TWC.2017.2786255 10.1109/TVT.2018.2846655 10.1109/MWC.2006.275194 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2019.2914040 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 3436 |
| ExternalDocumentID | 10_1109_TWC_2019_2914040 8708949 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Joint Foundation of the Ministry of Education (MoE) and China Mobile Group grantid: MCM20160103; MCM20170108 – fundername: Fundamental Research Funds for the Central Universities grantid: RC1631 – fundername: National Natural Science Foundation of China grantid: 61822104; 61370191 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c357t-97cbf137a14cff125640e4e2bc29a1e0e0462c63487a01c8b2ac8ff38b19ca163 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475339700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 12:18:34 EDT 2025 Sat Nov 29 06:23:47 EST 2025 Tue Nov 18 22:18:28 EST 2025 Wed Aug 27 05:49:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-97cbf137a14cff125640e4e2bc29a1e0e0462c63487a01c8b2ac8ff38b19ca163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0236-6482 0000-0003-2887-8395 0000-0001-5012-8502 |
| PQID | 2255858386 |
| PQPubID | 105736 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2255858386 crossref_primary_10_1109_TWC_2019_2914040 ieee_primary_8708949 crossref_citationtrail_10_1109_TWC_2019_2914040 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-July 2019-7-00 20190701 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-July |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 kingma (ref34) 2014 ref13 ref37 ref15 sousa (ref12) 2018; 3 ref14 ref31 ref11 tieleman (ref33) 2012; 4 ref32 ref10 ref2 ref1 ref17 ref16 abadi (ref39) 2016 ref19 ref24 ref23 ref26 ref25 ref20 ref22 ref21 (ref30) 2017 ref28 ref27 luketi? (ref18) 2011 ref29 ref8 ref7 ref9 sutskever (ref38) 2013 ge (ref36) 2015 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref31 doi: 10.1137/16M1061308 – ident: ref10 doi: 10.1109/TVT.2011.2163326 – volume: 3 start-page: 12 year: 2018 ident: ref12 article-title: Self-optimization of low coverage and high interference in real 3G/4G radio access networks publication-title: Inst Eng Lisbon Academic J Electron Telecommun Comput – start-page: 265 year: 2016 ident: ref39 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc Symp Operating Syst Design Implementation – year: 2017 ident: ref30 publication-title: Further Advancements for E-UTRA Physical Layer Aspects – ident: ref22 doi: 10.1155/WCN.2005.816 – start-page: 1139 year: 2013 ident: ref38 article-title: On the importance of initialization and momentum in deep learning publication-title: Proc Int Conf Mach Learn – ident: ref27 doi: 10.1155/2017/4380676 – ident: ref19 doi: 10.1155/2012/878595 – ident: ref16 doi: 10.1109/MNET.2014.6963804 – start-page: 797 year: 2015 ident: ref36 article-title: Escaping from saddle points-Online stochastic gradient for tensor decomposition publication-title: Proc 28th Conf Learn Theory – ident: ref24 doi: 10.1007/s11276-008-0155-9 – ident: ref29 doi: 10.1002/ett.2957 – ident: ref17 doi: 10.1109/MCOM.2017.1600940 – ident: ref1 doi: 10.1109/MITP.2017.9 – ident: ref5 doi: 10.1109/WOCN.2017.8065843 – start-page: 612 year: 2011 ident: ref18 article-title: Optimization of coverage and capacity of self-organizing network in LTE publication-title: Proc 34th Int Conv MIPRO – ident: ref32 doi: 10.1016/S0893-6080(98)00116-6 – ident: ref11 doi: 10.1016/S1005-8885(15)60683-5 – year: 2014 ident: ref34 publication-title: Adam A method for stochastic optimization – ident: ref6 doi: 10.1016/j.dam.2004.07.005 – ident: ref35 doi: 10.1109/VETECS.2005.1543252 – ident: ref20 doi: 10.1109/VTCFall.2017.8288237 – ident: ref8 doi: 10.1109/PIMRC.2010.5671622 – ident: ref2 doi: 10.1109/MCOM.2014.6979983 – ident: ref14 doi: 10.1109/TVT.2015.2419079 – ident: ref15 doi: 10.1016/0925-2312(93)90006-O – ident: ref13 doi: 10.1109/LWC.2014.2327228 – ident: ref37 doi: 10.1016/0009-2614(85)80574-1 – ident: ref9 doi: 10.1109/TVT.2016.2605380 – volume: 4 start-page: 26 year: 2012 ident: ref33 article-title: RMSprop: Divide the gradient by a running average of its recent magnitude publication-title: Neural Networks and Machine Learning – ident: ref26 doi: 10.1109/VTCFall.2014.6965924 – ident: ref25 doi: 10.1007/s11276-010-0299-2 – ident: ref3 doi: 10.1109/NTICT.2017.7976145 – ident: ref4 doi: 10.1016/j.comcom.2017.09.002 – ident: ref7 doi: 10.1007/s11277-016-3849-9 – ident: ref21 doi: 10.1109/TWC.2017.2786255 – ident: ref28 doi: 10.1109/TVT.2018.2846655 – ident: ref23 doi: 10.1109/MWC.2006.275194 |
| SSID | ssj0017655 |
| Score | 2.4845195 |
| Snippet | Network coverage and capacity optimization is an important operational task in cellular networks. The network coverage maximization by adjusting azimuths and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3424 |
| SubjectTerms | Algorithms Antennas Azimuth Base stations Cellular communication Cellular network Cellular networks computational complexity coverage optimization gradient descent Heuristic methods Linear programming Machine learning algorithms Optimization stochastic gradient descent |
| Title | An Efficient Stochastic Gradient Descent Algorithm to Maximize the Coverage of Cellular Networks |
| URI | https://ieeexplore.ieee.org/document/8708949 https://www.proquest.com/docview/2255858386 |
| Volume | 18 |
| WOSCitedRecordID | wos000475339700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE9QClULKXIBy6VGjZ2QmwfV8tHD3SFVKpyC_ZkDCstG7QbUNVfX9sJUasipN5y8ESRxx7PxG_eAzgQ2h7xKhOJsw6T3BIl2hJPiGdFlaKxuY0krudyMlFXV_piBT73vTBEFMFndBge411-VeND-FU29GtL6VyvwqqURdur1d8YyCIqnPoNHHRlZH8lmerh5Y9xwHDpQ6EDmUz61xEUNVX-CcTxdDnd-L_vegvrXRbJRq3bN2GF5u_gzR_cgltwPZqzk8gP4W3Zt6bGWxM4mdnZIqK8GnbcMjmx0eymXkyb2zvW1Oyr-Tm9m_4i5hNDNg74Th9wWO3YmGazAFllkxY4vtyG76cnl-MvSSenkGB2JJtES7SOZ9LwHJ3ziU2Rp5STsCi04ZRS6FPFIvMljEk5KisMKucyZblG4_O297A2r-e0A0whWmFFpQtX5S4LeuW-LOKFMApTJ8UAhk8zXGLHNR4kL2ZlrDlSXXqflMEnZeeTAXzqLe5bno0Xxm4FH_TjuukfwN6TE8tuIy5LH658QaQyVew-b_UBXod3twjcPVhrFg_0EV7hYzNdLvbjGvsNz-nPjQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgQQ8jME20bExP_CCRFbbcRP7seo2hugqJIrYW7Av9lapa1CbIbRfj-1kEdMmJN7y4FMin32-i7_7PoB3XJkBK1OeOOMwEcbaRBnLEsvSrKSojTCRxHWcTyby_Fx9WYMPXS-MtTaCz-xheIx3-WWF1-FXWd-vLamEegSPB0Jw2nRrdXcGeRY1Tv0WDsoyeXcpSVV_-n0UUFzqkKtAJ0PvHEJRVeVeKI7ny8mL__uyTdho80gybBz_Etbs4hU8_4tdcAt-DBfkODJEeFvyta7wUgdWZvJxGXFeNTlquJzIcH5RLWf15RWpK3Kmf8-uZjeW-NSQjALC04ccUjkysvN5AK2SSQMdX23Dt5Pj6eg0aQUVEkwHeZ2oHI1jaa6ZQOd8apMJaoXlBrnSzFIbOlUxS30RoylDabhG6VwqDVOofea2A-uLamFfA5GIhhteqsyVwqVBsdwXRizjWiJ1Oe9B_3aGC2zZxoPoxbyIVQdVhfdJEXxStD7pwfvO4mfDtPGPsVvBB924dvp7sHfrxKLdiqvCByxfEslUZrsPWx3A09Pp2bgYf5p8fgPPwnsaPO4erNfLa7sPT_BXPVst38b19gfFQNLU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Stochastic+Gradient+Descent+Algorithm+to+Maximize+the+Coverage+of+Cellular+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Liu%2C+Yaxi&rft.au=Huangfu%2C+Wei&rft.au=Zhang%2C+Haijun&rft.au=Long%2C+Keping&rft.date=2019-07-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=18&rft.issue=7&rft.spage=3424&rft.epage=3436&rft_id=info:doi/10.1109%2FTWC.2019.2914040&rft.externalDocID=8708949 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |