An Efficient Stochastic Gradient Descent Algorithm to Maximize the Coverage of Cellular Networks

Network coverage and capacity optimization is an important operational task in cellular networks. The network coverage maximization by adjusting azimuths and tilts of antennas is focused and the existing approaches are mainly gradient-free methods. A standard gradient descent algorithm and its impro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 18; no. 7; pp. 3424 - 3436
Main Authors: Liu, Yaxi, Huangfu, Wei, Zhang, Haijun, Long, Keping
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Network coverage and capacity optimization is an important operational task in cellular networks. The network coverage maximization by adjusting azimuths and tilts of antennas is focused and the existing approaches are mainly gradient-free methods. A standard gradient descent algorithm and its improved version, namely a Stochastic Gradient Descent (SGD) algorithm are proposed on the basis of a novel coverage indicator, named as the soft coverage indicator, to approximate the hard version of the original coverage indicator. We prove that the gradient vector is sparse, which accelerates gradient calculation, due to the number limitation of base stations within a specific distance from a given sampling point even if there are many decision variables of azimuths and tilts. Also, the SGD algorithm only requires a small amount of computation based on cheap estimates of the gradients, and thus is applicable to large-scale networks in an efficient manner. The experiments show that the proposed approaches perform well both in their near-optimal solutions and in their computation efficiency compared with the meta-heuristic algorithms. The extensibility and practicality of the proposed algorithms are also discussed.
AbstractList Network coverage and capacity optimization is an important operational task in cellular networks. The network coverage maximization by adjusting azimuths and tilts of antennas is focused and the existing approaches are mainly gradient-free methods. A standard gradient descent algorithm and its improved version, namely a Stochastic Gradient Descent (SGD) algorithm are proposed on the basis of a novel coverage indicator, named as the soft coverage indicator, to approximate the hard version of the original coverage indicator. We prove that the gradient vector is sparse, which accelerates gradient calculation, due to the number limitation of base stations within a specific distance from a given sampling point even if there are many decision variables of azimuths and tilts. Also, the SGD algorithm only requires a small amount of computation based on cheap estimates of the gradients, and thus is applicable to large-scale networks in an efficient manner. The experiments show that the proposed approaches perform well both in their near-optimal solutions and in their computation efficiency compared with the meta-heuristic algorithms. The extensibility and practicality of the proposed algorithms are also discussed.
Author Zhang, Haijun
Liu, Yaxi
Huangfu, Wei
Long, Keping
Author_xml – sequence: 1
  givenname: Yaxi
  orcidid: 0000-0001-5012-8502
  surname: Liu
  fullname: Liu, Yaxi
  email: yaxi.ustb@gmail.com
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0003-2887-8395
  surname: Huangfu
  fullname: Huangfu, Wei
  email: huangfuwei@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Haijun
  orcidid: 0000-0002-0236-6482
  surname: Zhang
  fullname: Zhang, Haijun
  email: haijunzhang@ieee.org
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
– sequence: 4
  givenname: Keping
  surname: Long
  fullname: Long, Keping
  email: longkeping@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
BookMark eNp9kD1PwzAQhi0EEm1hR2KxxJxiO07ijFUoBanAQBFjcMy5dUnjYrt8_XoSWjEwML2n0_vcSU8f7Te2AYROKBlSSvLz2WMxZITmQ5ZTTjjZQz2aJCJijIv9bo7TiLIsPUR975eE0CxNkh56GjV4rLVRBpqA74NVC-mDUXji5PPP7gK86nJUz60zYbHCweIb-WFW5gtwWAAu7Bs4OQdsNS6grje1dPgWwrt1L_4IHWhZezje5QA9XI5nxVU0vZtcF6NppOIkC1GeqUrTOJOUK60pS1JOgAOrFMslBQKEp0ylMReZJFSJikkltI5FRXMlaRoP0Nn27trZ1w34UC7txjXty5KxVkQiYtG1yLalnPXegS7Xzqyk-ywpKTuPZeux7DyWO48tkv5BlAkyGNsEJ039H3i6BQ0A_P4RGRE5z-Nv2DGB1w
CODEN ITWCAX
CitedBy_id crossref_primary_10_1016_j_heliyon_2021_e06948
crossref_primary_10_1016_j_jhydrol_2022_128567
crossref_primary_10_1088_1742_6596_1998_1_012008
crossref_primary_10_3390_technologies13030105
crossref_primary_10_1049_cth2_12670
crossref_primary_10_1016_j_bspc_2024_106457
crossref_primary_10_1109_ACCESS_2024_3356049
crossref_primary_10_1016_j_cose_2021_102177
crossref_primary_10_1007_s11432_020_2927_2
crossref_primary_10_3390_s21227540
crossref_primary_10_1109_JSEN_2024_3479733
crossref_primary_10_1109_TWC_2024_3407837
crossref_primary_10_1016_j_jer_2024_04_020
crossref_primary_10_1109_ACCESS_2020_3033325
crossref_primary_10_1109_TCOMM_2023_3296753
crossref_primary_10_1109_TAP_2022_3175214
crossref_primary_10_1007_s11042_023_14634_4
crossref_primary_10_1109_TWC_2024_3454106
crossref_primary_10_1109_TWC_2023_3326209
crossref_primary_10_1109_TVT_2022_3191882
crossref_primary_10_1109_JSYST_2020_2990320
crossref_primary_10_1109_TWC_2020_3021419
crossref_primary_10_1109_TVT_2023_3259435
crossref_primary_10_1109_TNSM_2023_3262401
crossref_primary_10_1109_TMC_2025_3542434
crossref_primary_10_1016_j_sigpro_2020_107803
crossref_primary_10_1109_ACCESS_2021_3066499
crossref_primary_10_32604_cmc_2022_019443
crossref_primary_10_1007_s11042_023_17507_y
crossref_primary_10_1109_TNSE_2021_3049262
crossref_primary_10_1109_TVT_2022_3202041
crossref_primary_10_1109_TWC_2025_3551316
crossref_primary_10_1007_s13410_024_01437_y
Cites_doi 10.1137/16M1061308
10.1109/TVT.2011.2163326
10.1155/WCN.2005.816
10.1155/2017/4380676
10.1155/2012/878595
10.1109/MNET.2014.6963804
10.1007/s11276-008-0155-9
10.1002/ett.2957
10.1109/MCOM.2017.1600940
10.1109/MITP.2017.9
10.1109/WOCN.2017.8065843
10.1016/S0893-6080(98)00116-6
10.1016/S1005-8885(15)60683-5
10.1016/j.dam.2004.07.005
10.1109/VETECS.2005.1543252
10.1109/VTCFall.2017.8288237
10.1109/PIMRC.2010.5671622
10.1109/MCOM.2014.6979983
10.1109/TVT.2015.2419079
10.1016/0925-2312(93)90006-O
10.1109/LWC.2014.2327228
10.1016/0009-2614(85)80574-1
10.1109/TVT.2016.2605380
10.1109/VTCFall.2014.6965924
10.1007/s11276-010-0299-2
10.1109/NTICT.2017.7976145
10.1016/j.comcom.2017.09.002
10.1007/s11277-016-3849-9
10.1109/TWC.2017.2786255
10.1109/TVT.2018.2846655
10.1109/MWC.2006.275194
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2019.2914040
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 3436
ExternalDocumentID 10_1109_TWC_2019_2914040
8708949
Genre orig-research
GrantInformation_xml – fundername: Joint Foundation of the Ministry of Education (MoE) and China Mobile Group
  grantid: MCM20160103; MCM20170108
– fundername: Fundamental Research Funds for the Central Universities
  grantid: RC1631
– fundername: National Natural Science Foundation of China
  grantid: 61822104; 61370191
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c357t-97cbf137a14cff125640e4e2bc29a1e0e0462c63487a01c8b2ac8ff38b19ca163
IEDL.DBID RIE
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475339700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:18:34 EDT 2025
Sat Nov 29 06:23:47 EST 2025
Tue Nov 18 22:18:28 EST 2025
Wed Aug 27 05:49:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-97cbf137a14cff125640e4e2bc29a1e0e0462c63487a01c8b2ac8ff38b19ca163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0236-6482
0000-0003-2887-8395
0000-0001-5012-8502
PQID 2255858386
PQPubID 105736
PageCount 13
ParticipantIDs proquest_journals_2255858386
crossref_primary_10_1109_TWC_2019_2914040
ieee_primary_8708949
crossref_citationtrail_10_1109_TWC_2019_2914040
PublicationCentury 2000
PublicationDate 2019-July
2019-7-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
kingma (ref34) 2014
ref13
ref37
ref15
sousa (ref12) 2018; 3
ref14
ref31
ref11
tieleman (ref33) 2012; 4
ref32
ref10
ref2
ref1
ref17
ref16
abadi (ref39) 2016
ref19
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref30) 2017
ref28
ref27
luketi? (ref18) 2011
ref29
ref8
ref7
ref9
sutskever (ref38) 2013
ge (ref36) 2015
ref4
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1137/16M1061308
– ident: ref10
  doi: 10.1109/TVT.2011.2163326
– volume: 3
  start-page: 12
  year: 2018
  ident: ref12
  article-title: Self-optimization of low coverage and high interference in real 3G/4G radio access networks
  publication-title: Inst Eng Lisbon Academic J Electron Telecommun Comput
– start-page: 265
  year: 2016
  ident: ref39
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: Proc Symp Operating Syst Design Implementation
– year: 2017
  ident: ref30
  publication-title: Further Advancements for E-UTRA Physical Layer Aspects
– ident: ref22
  doi: 10.1155/WCN.2005.816
– start-page: 1139
  year: 2013
  ident: ref38
  article-title: On the importance of initialization and momentum in deep learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref27
  doi: 10.1155/2017/4380676
– ident: ref19
  doi: 10.1155/2012/878595
– ident: ref16
  doi: 10.1109/MNET.2014.6963804
– start-page: 797
  year: 2015
  ident: ref36
  article-title: Escaping from saddle points-Online stochastic gradient for tensor decomposition
  publication-title: Proc 28th Conf Learn Theory
– ident: ref24
  doi: 10.1007/s11276-008-0155-9
– ident: ref29
  doi: 10.1002/ett.2957
– ident: ref17
  doi: 10.1109/MCOM.2017.1600940
– ident: ref1
  doi: 10.1109/MITP.2017.9
– ident: ref5
  doi: 10.1109/WOCN.2017.8065843
– start-page: 612
  year: 2011
  ident: ref18
  article-title: Optimization of coverage and capacity of self-organizing network in LTE
  publication-title: Proc 34th Int Conv MIPRO
– ident: ref32
  doi: 10.1016/S0893-6080(98)00116-6
– ident: ref11
  doi: 10.1016/S1005-8885(15)60683-5
– year: 2014
  ident: ref34
  publication-title: Adam A method for stochastic optimization
– ident: ref6
  doi: 10.1016/j.dam.2004.07.005
– ident: ref35
  doi: 10.1109/VETECS.2005.1543252
– ident: ref20
  doi: 10.1109/VTCFall.2017.8288237
– ident: ref8
  doi: 10.1109/PIMRC.2010.5671622
– ident: ref2
  doi: 10.1109/MCOM.2014.6979983
– ident: ref14
  doi: 10.1109/TVT.2015.2419079
– ident: ref15
  doi: 10.1016/0925-2312(93)90006-O
– ident: ref13
  doi: 10.1109/LWC.2014.2327228
– ident: ref37
  doi: 10.1016/0009-2614(85)80574-1
– ident: ref9
  doi: 10.1109/TVT.2016.2605380
– volume: 4
  start-page: 26
  year: 2012
  ident: ref33
  article-title: RMSprop: Divide the gradient by a running average of its recent magnitude
  publication-title: Neural Networks and Machine Learning
– ident: ref26
  doi: 10.1109/VTCFall.2014.6965924
– ident: ref25
  doi: 10.1007/s11276-010-0299-2
– ident: ref3
  doi: 10.1109/NTICT.2017.7976145
– ident: ref4
  doi: 10.1016/j.comcom.2017.09.002
– ident: ref7
  doi: 10.1007/s11277-016-3849-9
– ident: ref21
  doi: 10.1109/TWC.2017.2786255
– ident: ref28
  doi: 10.1109/TVT.2018.2846655
– ident: ref23
  doi: 10.1109/MWC.2006.275194
SSID ssj0017655
Score 2.4845195
Snippet Network coverage and capacity optimization is an important operational task in cellular networks. The network coverage maximization by adjusting azimuths and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3424
SubjectTerms Algorithms
Antennas
Azimuth
Base stations
Cellular communication
Cellular network
Cellular networks
computational complexity
coverage optimization
gradient descent
Heuristic methods
Linear programming
Machine learning algorithms
Optimization
stochastic gradient descent
Title An Efficient Stochastic Gradient Descent Algorithm to Maximize the Coverage of Cellular Networks
URI https://ieeexplore.ieee.org/document/8708949
https://www.proquest.com/docview/2255858386
Volume 18
WOSCitedRecordID wos000475339700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE9QClULKXIBy6VGjZ2QmwfV8tHD3SFVKpyC_ZkDCstG7QbUNVfX9sJUasipN5y8ESRxx7PxG_eAzgQ2h7xKhOJsw6T3BIl2hJPiGdFlaKxuY0krudyMlFXV_piBT73vTBEFMFndBge411-VeND-FU29GtL6VyvwqqURdur1d8YyCIqnPoNHHRlZH8lmerh5Y9xwHDpQ6EDmUz61xEUNVX-CcTxdDnd-L_vegvrXRbJRq3bN2GF5u_gzR_cgltwPZqzk8gP4W3Zt6bGWxM4mdnZIqK8GnbcMjmx0eymXkyb2zvW1Oyr-Tm9m_4i5hNDNg74Th9wWO3YmGazAFllkxY4vtyG76cnl-MvSSenkGB2JJtES7SOZ9LwHJ3ziU2Rp5STsCi04ZRS6FPFIvMljEk5KisMKucyZblG4_O297A2r-e0A0whWmFFpQtX5S4LeuW-LOKFMApTJ8UAhk8zXGLHNR4kL2ZlrDlSXXqflMEnZeeTAXzqLe5bno0Xxm4FH_TjuukfwN6TE8tuIy5LH658QaQyVew-b_UBXod3twjcPVhrFg_0EV7hYzNdLvbjGvsNz-nPjQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgQQ8jME20bExP_CCRFbbcRP7seo2hugqJIrYW7Av9lapa1CbIbRfj-1kEdMmJN7y4FMin32-i7_7PoB3XJkBK1OeOOMwEcbaRBnLEsvSrKSojTCRxHWcTyby_Fx9WYMPXS-MtTaCz-xheIx3-WWF1-FXWd-vLamEegSPB0Jw2nRrdXcGeRY1Tv0WDsoyeXcpSVV_-n0UUFzqkKtAJ0PvHEJRVeVeKI7ny8mL__uyTdho80gybBz_Etbs4hU8_4tdcAt-DBfkODJEeFvyta7wUgdWZvJxGXFeNTlquJzIcH5RLWf15RWpK3Kmf8-uZjeW-NSQjALC04ccUjkysvN5AK2SSQMdX23Dt5Pj6eg0aQUVEkwHeZ2oHI1jaa6ZQOd8apMJaoXlBrnSzFIbOlUxS30RoylDabhG6VwqDVOofea2A-uLamFfA5GIhhteqsyVwqVBsdwXRizjWiJ1Oe9B_3aGC2zZxoPoxbyIVQdVhfdJEXxStD7pwfvO4mfDtPGPsVvBB924dvp7sHfrxKLdiqvCByxfEslUZrsPWx3A09Pp2bgYf5p8fgPPwnsaPO4erNfLa7sPT_BXPVst38b19gfFQNLU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Stochastic+Gradient+Descent+Algorithm+to+Maximize+the+Coverage+of+Cellular+Networks&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Liu%2C+Yaxi&rft.au=Huangfu%2C+Wei&rft.au=Zhang%2C+Haijun&rft.au=Long%2C+Keping&rft.date=2019-07-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=18&rft.issue=7&rft.spage=3424&rft.epage=3436&rft_id=info:doi/10.1109%2FTWC.2019.2914040&rft.externalDocID=8708949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon