Scalable Detection of Anomalous Patterns With Connectivity Constraints
We present GraphScan, a novel method for detecting arbitrarily shaped connected clusters in graph or network data. Given a graph structure, data observed at each node, and a score function defining the anomalousness of a set of nodes, GraphScan can efficiently and exactly identify the most anomalous...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and graphical statistics Jg. 24; H. 4; S. 1014 - 1033 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Alexandria
Taylor & Francis
02.10.2015
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 1061-8600, 1537-2715 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!