Scalable Detection of Anomalous Patterns With Connectivity Constraints

We present GraphScan, a novel method for detecting arbitrarily shaped connected clusters in graph or network data. Given a graph structure, data observed at each node, and a score function defining the anomalousness of a set of nodes, GraphScan can efficiently and exactly identify the most anomalous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics Jg. 24; H. 4; S. 1014 - 1033
Hauptverfasser: Speakman, Skyler, McFowland, Edward, Neill, Daniel B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria Taylor & Francis 02.10.2015
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Schlagworte:
ISSN:1061-8600, 1537-2715
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!