IQNet: Image Quality Assessment Guided Just Noticeable Difference Prefiltering for Versatile Video Coding
Image prefiltering with just noticeable distortion (JND) improves coding efficiency in a visual lossless way by filtering the perceptually redundant information prior to compression. However, real JND cannot be well modeled with inaccurate masking equations in traditional approaches or image-level s...
Uloženo v:
| Vydáno v: | IEEE open journal of circuits and systems Ročník 5; s. 17 - 27 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2644-1225, 2644-1225 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Image prefiltering with just noticeable distortion (JND) improves coding efficiency in a visual lossless way by filtering the perceptually redundant information prior to compression. However, real JND cannot be well modeled with inaccurate masking equations in traditional approaches or image-level subject tests in deep learning approaches. Thus, this paper proposes a fine-grained JND prefiltering dataset guided by image quality assessment for accurate block-level JND modeling. The dataset is constructed from decoded images to include coding effects and is also perceptually enhanced with block overlap and edge preservation. Furthermore, based on this dataset, we propose a lightweight JND prefiltering network, IQNet, which can be applied directly to different quantization cases with the same model and only needs 3K parameters. The experimental results show that the proposed approach to Versatile Video Coding could yield maximum/average bitrate savings of 41%/15% and 53%/19% for all-intra and low-delay P configurations, respectively, with negligible subjective quality loss. Our method demonstrates higher perceptual quality and a model size that is an order of magnitude smaller than previous deep learning methods. |
|---|---|
| AbstractList | Image prefiltering with just noticeable distortion (JND) improves coding efficiency in a visual lossless way by filtering the perceptually redundant information prior to compression. However, real JND cannot be well modeled with inaccurate masking equations in traditional approaches or image-level subject tests in deep learning approaches. Thus, this paper proposes a fine-grained JND prefiltering dataset guided by image quality assessment for accurate block-level JND modeling. The dataset is constructed from decoded images to include coding effects and is also perceptually enhanced with block overlap and edge preservation. Furthermore, based on this dataset, we propose a lightweight JND prefiltering network, IQNet, which can be applied directly to different quantization cases with the same model and only needs 3K parameters. The experimental results show that the proposed approach to Versatile Video Coding could yield maximum/average bitrate savings of 41%/15% and 53%/19% for all-intra and low-delay P configurations, respectively, with negligible subjective quality loss. Our method demonstrates higher perceptual quality and a model size that is an order of magnitude smaller than previous deep learning methods. |
| Author | Lee, Chiang Lo-Hsuan Chang, Tian-Sheuan Sun, Yu-Han |
| Author_xml | – sequence: 1 givenname: Yu-Han surname: Sun fullname: Sun, Yu-Han organization: Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan – sequence: 2 givenname: Chiang Lo-Hsuan surname: Lee fullname: Lee, Chiang Lo-Hsuan organization: Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan – sequence: 3 givenname: Tian-Sheuan orcidid: 0000-0002-0561-8745 surname: Chang fullname: Chang, Tian-Sheuan email: tschang@nycu.edu.tw organization: Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan |
| BookMark | eNpNUU1PGzEQtSoqlVL-AOJgqeek_t5dblFKaRCCohau1ng9jhxt1tTePfDvawiqOM1o5r03H-8zORrTiISccbbknHXf7q7Xq99LwYRcSqkU69QHciyMUgsuhD56l38ip6XsGGNCc85Fc0zi5v4Wpwu62cMW6f0MQ5ye6aoULGWP40Sv5ujR0-u5TPQ2TbFHcAPS7zEEzDj2SH9lDHGYMMdxS0PK9BFzgSlW1GPlJrpOvra-kI8BhoKnb_GEPPy4_LP-ubi5u9qsVzeLXupmWnRac6FZaIPooG-FAQOeg_ZCuaBBC_SOISofJIO26blxzjW9EegajibIE7I56PoEO_uU4x7ys00Q7Wsh5a2FXO8Y0OpWhhawV61SykkA07W-dSiUbhjTrmp9PWg95fR3xjLZXZrzWNe3ohOSSyOZrihxQPU5lVK_8X8qZ_bFIfvqkH1xyL45VEnnB1JExHcEabRmnfwHTaWOeQ |
| CODEN | IOJCC3 |
| Cites_doi | 10.1109/ICIP.2019.8803454 10.1016/j.jvcir.2017.04.009 10.1016/j.image.2023.117019 10.1109/TCSVT.2020.3030895 10.1109/TCSVT.2021.3076224 10.1016/j.ins.2023.119575 10.1109/CVPR.2012.6247954 10.1007/s11263-018-01144-2 10.1109/TCSVT.2016.2539862 10.1007/978-3-030-67070-2_3 10.1109/TCSVT.2015.2389491 10.1109/ICIP49359.2023.10222099 10.1109/TCSVT.2021.3101953 10.1109/ISCAS.2016.7539109 10.1109/ICIP.2016.7532610 10.1109/TIP.2018.2818439 10.1109/ICMEW46912.2020.9105999 10.1109/ACCESS.2020.3046194 10.1109/DCC50243.2021.00009 10.1109/CVPR46437.2021.01590 10.1109/TCSVT.2022.3163860 10.1016/j.jvcir.2023.103877 10.1109/TIP.2018.2831899 10.1109/ISPACS.2018.8923511 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M DOA |
| DOI | 10.1109/OJCAS.2023.3344094 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2644-1225 |
| EndPage | 27 |
| ExternalDocumentID | oai_doaj_org_article_583f8aec48444b3aa698d8be2457005b 10_1109_OJCAS_2023_3344094 10365509 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: 111-2622-8-A49-018-SB; 110-2221-E-A49-148-MY3; 110-2218-E-A49-015-MBK funderid: 10.13039/501100020950 – fundername: Novatek |
| GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c357t-9551250f8f29ac826a6ad1a5d24bf5a52edb0ee4df30a87c16bbb7c62eb71e6f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001162376900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2644-1225 |
| IngestDate | Fri Oct 03 12:44:25 EDT 2025 Sun Jun 29 15:58:13 EDT 2025 Sat Nov 29 05:59:26 EST 2025 Wed Aug 27 01:55:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-9551250f8f29ac826a6ad1a5d24bf5a52edb0ee4df30a87c16bbb7c62eb71e6f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0561-8745 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10365509 |
| PQID | 2923136305 |
| PQPubID | 5075790 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_583f8aec48444b3aa698d8be2457005b crossref_primary_10_1109_OJCAS_2023_3344094 ieee_primary_10365509 proquest_journals_2923136305 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE open journal of circuits and systems |
| PublicationTitleAbbrev | OJCAS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref17 ref16 ref19 ref18 Jinjian (ref1) 2018; 13 ref24 ref23 ref25 ref20 ref22 ref21 Li (ref26) 2016; 6 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref7 doi: 10.1109/ICIP.2019.8803454 – ident: ref5 doi: 10.1016/j.jvcir.2017.04.009 – ident: ref13 doi: 10.1016/j.image.2023.117019 – ident: ref23 doi: 10.1109/TCSVT.2020.3030895 – ident: ref8 doi: 10.1109/TCSVT.2021.3076224 – ident: ref11 doi: 10.1016/j.ins.2023.119575 – ident: ref22 doi: 10.1109/CVPR.2012.6247954 – ident: ref25 doi: 10.1007/s11263-018-01144-2 – ident: ref3 doi: 10.1109/TCSVT.2016.2539862 – ident: ref24 doi: 10.1007/978-3-030-67070-2_3 – ident: ref2 doi: 10.1109/TCSVT.2015.2389491 – ident: ref10 doi: 10.1109/ICIP49359.2023.10222099 – ident: ref18 doi: 10.1109/TCSVT.2021.3101953 – ident: ref19 doi: 10.1109/ISCAS.2016.7539109 – ident: ref6 doi: 10.1109/ICIP.2016.7532610 – ident: ref4 doi: 10.1109/TIP.2018.2818439 – ident: ref14 doi: 10.1109/ICMEW46912.2020.9105999 – ident: ref17 doi: 10.1109/ACCESS.2020.3046194 – volume: 6 start-page: 2 issue: 2 year: 2016 ident: ref26 article-title: Toward a practical perceptual video quality metric publication-title: Netflix Tech. Blog – ident: ref15 doi: 10.1109/DCC50243.2021.00009 – ident: ref16 doi: 10.1109/CVPR46437.2021.01590 – ident: ref9 doi: 10.1109/TCSVT.2022.3163860 – ident: ref12 doi: 10.1016/j.jvcir.2023.103877 – ident: ref21 doi: 10.1109/TIP.2018.2831899 – volume: 13 start-page: 4 year: 2018 ident: ref1 article-title: Survey of visual just noticeable difference estimation publication-title: Front. Comput. Sci. – ident: ref20 doi: 10.1109/ISPACS.2018.8923511 |
| SSID | ssj0002511127 |
| Score | 2.2565181 |
| Snippet | Image prefiltering with just noticeable distortion (JND) improves coding efficiency in a visual lossless way by filtering the perceptually redundant... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Codecs Datasets Deep learning Discrete cosine transforms Distortion Encoding Image coding Image edge detection Image enhancement Image quality Image reconstruction just noticeable distortion Quality assessment Training data Video coding video quality assessment |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKEcELQglkflQ29VwPHb3JZtaelhS8VD3Cy_Iu2BXQQLEv-emSSLFnHopZccLCd2ZuLxN479fYR8hXJTB-aqqJlACTNVuSjg0ignc0jK8U5swozH9ubGnS9JfeGesI4euDPckbKisaEkaaWUUYSgnc02Fi6RmV1FjL7MuKVkCmMwAueam8UpGeaO_vweDS8OUSz8UAiJWc2bmagl7O8VVt6F5XauOd0g6z1IpMOuc5vkQ5l-ImtL1IGfyeTs77jMj-nZLQQE2jFhPNPhK88m_fk4ySVTVOui4xluccNDUvR7L4iSCj2HLk3wZzk8kAJ2pbh2Bo6CWtdw74yOZjixbZGr0x-Xo19VL5tQJaHMvHIAggDYNLbhLiRIH4IOuQ4qcxkbFRQvObJSZG4EC9akWscYTdK8RFMX3YhtsjKdTcsOodwmayKgFi0z5HEsogBgnWDYNnUxLAzIt4UJ_V3HjuHbrII53xrco8F9b_ABOUErv9ZEZuu2APzte3_7f_l7QLbQR0vNCQ1ZlhuQ_YXTfD8MHzxH-Co0xLTd_9H2HvkI7yO7FZh9sjK_fywHZDU9zScP91_aL_AFWH_cwQ priority: 102 providerName: Directory of Open Access Journals |
| Title | IQNet: Image Quality Assessment Guided Just Noticeable Difference Prefiltering for Versatile Video Coding |
| URI | https://ieeexplore.ieee.org/document/10365509 https://www.proquest.com/docview/2923136305 https://doaj.org/article/583f8aec48444b3aa698d8be2457005b |
| Volume | 5 |
| WOSCitedRecordID | wos001162376900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2644-1225 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511127 issn: 2644-1225 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2644-1225 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511127 issn: 2644-1225 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPIu6UCofuKEsSfzmtiwtFImliId6s_yYSHtgg9pdJC78dmac7KoIceBiRZGdOP4y9jdjzwxjz_C-aULtqqhrQSnMVOWiwKJTTuaQlGuHZBNmsbAXF-58dFYvvjAAUA6fwZQuy15-7tOGTGUo4UIjo3Z7bM8YPThr7QwqxJWb1mwdY2r34sO7-ezTlPKDT4WQpMj8sfiUGP1jUpW_ZuKyvJze_c-O3WN3Rh7JZwPw99kNWD1gt69FF3zIlmcfF7B-yc--4ZzBh2AZP_lsF4qTv9ksM2ROCb34oqdTcORHxV-POVMS8HP8hCXtp-MDOdJbTuY1xBJrfcW2PZ_3tPYdsC-nJ5_nb6sxs0KVhDLryiFPQu7T2a51IaGGEXTITVC5lbFTQbWQYw0gcyfqYE1qdIzRJN1CNA3oTjxi-6t-BYeMtzZZE5HYaJlR1asj5QhsEkp214Cpw4Q93w65_z4E0PBF8aidLwB5AsiPAE3YK0JlV5OCX5cbONx-lCWvrOhsgCStlDKKELSz2UZoJQXrV3HCDgiia68b0Jmwoy3IfpTUK98SwxUap73H_2j2hN3CLsrB7nLE9teXG3jKbqYf6-XV5XFR4rF8_-vkuPyQvwEgB9y_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIAGH8mrVhQI-cENZEj9im9t229KFEoooqDfLr0h7YFO1u0j8e2ac7KoIceASRZadOP4y9jdjzwwhr6FcVa40ha9LjinMZGE8h0srjYguSMP6ZBOqafTFhTkbnNWzL0xKKR8-S2O8zXv5sQsrNJWBhPMaGLW5Te5IIVjZu2ttTCrIlium1q4xpXn7-cN08nWMGcLHnAtUZf5YfnKU_iGtyl9zcV5gjh_-Z9ceke2BSdJJD_1jcistnpAHN-ILPiXz2ZcmLd_R2Q-YNWgfLuMXnWyCcdL3q3lMkWJKL9p0eA4OPano4ZA1JSR6Bp8wxx11eCAFgkvRwAZoQq3v0Laj0w5Xvx3y7fjofHpSDLkVisClWhYGmBKwn1a3zLgAOoarXaycjEz4VjrJUvRlSiK2vHRahar23qtQs-RVleqW75KtRbdIe4QyHbTyQG1qEUHZKz1mCawCyHZbJVW6EXmzHnJ72YfQsFn1KI3NAFkEyA4AjcgBorKpieGvcwEMtx2kyUrNW-1SEFoI4blztdFR-8QEhuuXfkR2EKIbr-vRGZH9Nch2kNVry5Dj8homvmf_aPaK3Ds5_3RqT2fNx-fkPnRX9FaYfbK1vFqlF-Ru-LmcX1-9zD_kb1ia3eA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IQNet%3A+Image+Quality+Assessment+Guided+Just+Noticeable+Difference+Prefiltering+for+Versatile+Video+Coding&rft.jtitle=IEEE+open+journal+of+circuits+and+systems&rft.au=Sun%2C+Yu-Han&rft.au=Lee%2C+Chiang+Lo-Hsuan&rft.au=Chang%2C+Tian-Sheuan&rft.date=2024&rft.pub=IEEE&rft.eissn=2644-1225&rft.volume=5&rft.spage=17&rft.epage=27&rft_id=info:doi/10.1109%2FOJCAS.2023.3344094&rft.externalDocID=10365509 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1225&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1225&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1225&client=summon |