Fast power flow calculation for distribution networks based on graph models and hierarchical forward-backward sweep parallel algorithm
IntroductionIn response to the issues of complexity and low efficiency in line loss calculations for actual distribution networks, this paper proposes a fast power flow calculation method for distribution networks based on Neo4j graph models and a hierarchical forward-backward sweep parallel algorit...
Uloženo v:
| Vydáno v: | Frontiers in energy research Ročník 12 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Frontiers Media S.A
28.08.2024
|
| Témata: | |
| ISSN: | 2296-598X, 2296-598X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | IntroductionIn response to the issues of complexity and low efficiency in line loss calculations for actual distribution networks, this paper proposes a fast power flow calculation method for distribution networks based on Neo4j graph models and a hierarchical forward-backward sweep parallel algorithm.MethodsFirstly, Neo4j is used to describe the distribution network structure as a simple graph model composed of nodes and edges. Secondly, a hierarchical forward-backward sweep method is adopted to perform power flow calculations on the graph model network. Finally, during the computation of distribution network subgraphs, the method is combined with the Bulk Synchronous Parallel (BSP) computing model to quickly complete the line loss analysis.Results and DiscussionResults from the IEEE 33-node test system demonstrate that the proposed method can calculate network losses quickly and accurately, with a computation time of only 0.175s, which is lower than the MySQL and Neo4j graph methods that do not consider hierarchical parallel computing. |
|---|---|
| AbstractList | IntroductionIn response to the issues of complexity and low efficiency in line loss calculations for actual distribution networks, this paper proposes a fast power flow calculation method for distribution networks based on Neo4j graph models and a hierarchical forward-backward sweep parallel algorithm.MethodsFirstly, Neo4j is used to describe the distribution network structure as a simple graph model composed of nodes and edges. Secondly, a hierarchical forward-backward sweep method is adopted to perform power flow calculations on the graph model network. Finally, during the computation of distribution network subgraphs, the method is combined with the Bulk Synchronous Parallel (BSP) computing model to quickly complete the line loss analysis.Results and DiscussionResults from the IEEE 33-node test system demonstrate that the proposed method can calculate network losses quickly and accurately, with a computation time of only 0.175s, which is lower than the MySQL and Neo4j graph methods that do not consider hierarchical parallel computing. |
| Author | Zhu, Jianfei Chen, Wengang Ji, Yuze Wang, Xinrui Tian, Ruimin |
| Author_xml | – sequence: 1 givenname: Xinrui surname: Wang fullname: Wang, Xinrui – sequence: 2 givenname: Wengang surname: Chen fullname: Chen, Wengang – sequence: 3 givenname: Ruimin surname: Tian fullname: Tian, Ruimin – sequence: 4 givenname: Yuze surname: Ji fullname: Ji, Yuze – sequence: 5 givenname: Jianfei surname: Zhu fullname: Zhu, Jianfei |
| BookMark | eNp9kc9q3DAQh0VJoGmSF-hJL-CtLMuydSwhaRcCvaTQmxj921WitcxIweQF-tz1bkIpPeQ0w2_4fYf5PpGzKU-ekM8t23TdqL4EP-FuwxkXm1bIXjH2gVxwrmTTq_HX2T_7R3JdyiNjrO14L1p2QX7fQal0zotHGlJeqIVknxPUmCcaMlIXS8Vonk_B5OuS8alQA8U7uiY7hHlPD9n5VChMju6jR0C7jyvoCFgAXWPAPh0XWhbvZzoDQko-UUi7jLHuD1fkPEAq_vptXpKfd7cPN9-b-x_ftjdf7xvb9UNtRukEBDEqC9IYF7yUTBneMZC99M4o43oInQiwHkYFJlgTAmOqHYMYRtZdku0r12V41DPGA-CLzhD1Kci404A12uQ15wMYoZgclBPcW-WlcRbAqtB3ZuAri7-yLOZS0Ie_vJbpoxh9EqOPYvSbmLU0_leysZ6-XRFieq_6B0QDm6Q |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_136862 |
| Cites_doi | 10.1109/tpwrs.2018.2816118 10.1109/tii.2023.3313526 10.23919/pcmp.2023.000379 10.13335/j.1000-3673.pst.2018.1193 10.1016/j.epsr.2016.03.023 10.1109/tsg.2023.3241268 10.1109/tpwrs.2021.3116182 10.1109/tpwrs.2021.3112461 10.1109/ITOEC53115.2022.9734521 10.1038/s44287-024-00042-9 10.1109/SCEMS48876.2020.9352313 10.1109/jiot.2024.3391762 10.1016/j.ijepes.2023.108956 10.1109/tpwrd.2022.3186762 10.3390/en12040733 10.1109/tpwrs.2018.2810641 10.23919/pcmp.2023.000316 10.1007/s42835-019-00198-7 10.1049/oap-cired.2017.0500 10.1186/s41601-023-00293-y 10.1109/tsg.2024.3373256 10.1109/tkde.2017.2766634 10.1049/tje2.12330 10.3390/a14100275 10.1007/s11063-012-9253-x 10.1109/IICPE.2018.8709560 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/fenrg.2024.1465900 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2296-598X |
| ExternalDocumentID | oai_doaj_org_article_227ab490679d42ec9e6bdcaac9f53b72 10_3389_fenrg_2024_1465900 |
| GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 |
| ID | FETCH-LOGICAL-c357t-86d4af489ca6bbdfe6609b230a656edb9bd5af34fa66089abfcbff00918f47803 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001308958500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-598X |
| IngestDate | Fri Oct 03 12:44:59 EDT 2025 Sat Nov 29 03:07:13 EST 2025 Tue Nov 18 21:26:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-86d4af489ca6bbdfe6609b230a656edb9bd5af34fa66089abfcbff00918f47803 |
| OpenAccessLink | https://doaj.org/article/227ab490679d42ec9e6bdcaac9f53b72 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_227ab490679d42ec9e6bdcaac9f53b72 crossref_primary_10_3389_fenrg_2024_1465900 crossref_citationtrail_10_3389_fenrg_2024_1465900 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-28 |
| PublicationDateYYYYMMDD | 2024-08-28 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in energy research |
| PublicationYear | 2024 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Yan (B24) 2019; 12 Huang (B6) 2022; 38 Zhang (B26) 2019; 43 Castaño (B3) 2013; 37 Meena (B11) 2018 Ahmadi (B1) 2021; 37 Liu (B10) 2023; 12 Ruan (B20); 11 Wu (B22); 9 Ruan (B18); 20 Kazemdehdashti (B7) 2018; 33 Kocar (B9) 2016; 138 Yang (B25) 2022 Ruan (B16) 2023; 14 Wang (B21) 2019; 14 Hu (B5) 2017; 30 Ruan (B19); 1 Wu (B23); 9 Ren (B14) 2020 Bennani (B2) 2023; 148 Zuluaga (B28) 2018; 33 Khazaee (B8) 2017; 1 Nour (B12) 2023; 8 Zhou (B27) 2021 Guo (B4) 2021; 37 Rodriguez (B15) 2021; 14 Ruan (B17); 15 Pan (B13) 2018 |
| References_xml | – volume: 33 start-page: 5738 year: 2018 ident: B7 article-title: The generalized cross-entropy method in probabilistic optimal power flow publication-title: IEEE Trans. Power Syst. doi: 10.1109/tpwrs.2018.2816118 – start-page: 4340 year: 2018 ident: B13 article-title: Modeling methods of big data for power grid based on graph database – volume: 20 start-page: 3650 ident: B18 article-title: On vulnerability of renewable energy forecasting: adversarial learning attacks publication-title: IEEE Trans. Industrial Inf. doi: 10.1109/tii.2023.3313526 – volume: 9 start-page: 138 ident: B23 article-title: A distributed computing algorithm for electricity carbon emission flow and carbon emission intensity publication-title: Prot. Control Mod. Power Syst. doi: 10.23919/pcmp.2023.000379 – volume: 43 start-page: 1404 year: 2019 ident: B26 article-title: Line loss prediction of 10 kV distribution network based on grey correlation analysis and improved neural network publication-title: Power Syst. Technol. doi: 10.13335/j.1000-3673.pst.2018.1193 – volume: 138 start-page: 146 year: 2016 ident: B9 article-title: Simulation of transients in very large scale distribution networks by combining input text files with graphical user interface publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.03.023 – volume: 14 start-page: 4035 year: 2023 ident: B16 article-title: Super-resolution perception assisted spatiotemporal graph deep learning against false data injection attacks in smart grid publication-title: IEEE Trans. Smart Grid doi: 10.1109/tsg.2023.3241268 – volume: 37 start-page: 1695 year: 2021 ident: B1 article-title: Fast Newton-Raphson power flow analysis based on sparse techniques and parallel processing publication-title: IEEE Trans. Power Syst. doi: 10.1109/tpwrs.2021.3116182 – start-page: 1808 year: 2021 ident: B27 article-title: Research on reliability Evaluation system of distribution network based on Knowledge Graph – volume: 37 start-page: 1798 year: 2021 ident: B4 article-title: Data-driven power flow calculation method: a lifting dimension linear regression approach publication-title: IEEE Trans. Power Syst. doi: 10.1109/tpwrs.2021.3112461 – year: 2022 ident: B25 article-title: Optimization calculation method of transmission line loss with multi-parameter correction doi: 10.1109/ITOEC53115.2022.9734521 – volume: 1 start-page: 278 ident: B19 article-title: Towards interdisciplinary integration of electrical engineering and earth science publication-title: Nat. Rev. Electr. Eng. doi: 10.1038/s44287-024-00042-9 – year: 2020 ident: B14 article-title: Calculation method of the line loss rate in transformer district based on neural network with optimized input variables doi: 10.1109/SCEMS48876.2020.9352313 – volume: 11 start-page: 24 948 ident: B20 article-title: Privacy-preserving Bi-level optimization of internet data centers for electricity-carbon collaborative demand response publication-title: IEEE Internet Things J. doi: 10.1109/jiot.2024.3391762 – volume: 148 start-page: 108956 year: 2023 ident: B2 article-title: A generic power flow formulation for flexible modeling and fast solving for large-scale unbalanced networks publication-title: Int. J. Electr. Power and Energy Syst. doi: 10.1016/j.ijepes.2023.108956 – volume: 38 start-page: 231 year: 2022 ident: B6 article-title: A multi-rate dynamic energy flow analysis method for integrated electricity-gas-heat system with different time-scale publication-title: IEEE Trans. Power Deliv. doi: 10.1109/tpwrd.2022.3186762 – volume: 12 start-page: 733 year: 2019 ident: B24 article-title: A continuation power flow model of multi-area AC/DC interconnected bulk systems incorporating voltage source converter-based multi-terminal DC networks and its decoupling algorithm publication-title: Energies doi: 10.3390/en12040733 – volume: 33 start-page: 5217 year: 2018 ident: B28 article-title: Bayesian probabilistic power flow analysis using Jacobian approximate Bayesian computation publication-title: IEEE Trans. Power Syst. doi: 10.1109/tpwrs.2018.2810641 – volume: 9 start-page: 142 ident: B22 article-title: Cyber-physical integrated planning of distribution networks considering spatial-temporal flexible resources publication-title: Prot. Control Mod. Power Syst. doi: 10.23919/pcmp.2023.000316 – volume: 14 start-page: 1553 year: 2019 ident: B21 article-title: A new on-line power flow calculation method with computation loads separation technique in DC power systems publication-title: J. Electr. Eng. and Technol. doi: 10.1007/s42835-019-00198-7 – volume: 1 start-page: 1711 year: 2017 ident: B8 article-title: Distribution loss reduction in residential and commercial pilots by using AMI system publication-title: CIRED-Open Access Proc. J. doi: 10.1049/oap-cired.2017.0500 – volume: 8 start-page: 20 year: 2023 ident: B12 article-title: Voltage imbalance mitigation in an active distribution network using decentralized current control publication-title: Prot. Control Mod. Power Syst. doi: 10.1186/s41601-023-00293-y – volume: 15 start-page: 3333 ident: B17 article-title: Applying large language models to power systems: potential security threats publication-title: IEEE Trans. Smart Grid doi: 10.1109/tsg.2024.3373256 – volume: 30 start-page: 824 year: 2017 ident: B5 article-title: Answering natural language questions by subgraph matching over knowledge graphs publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/tkde.2017.2766634 – volume: 12 start-page: 12330 year: 2023 ident: B10 article-title: Distribution network power flow calculation based on the BPNN optimized by GA‐ADAM publication-title: J. Eng. doi: 10.1049/tje2.12330 – volume: 14 start-page: 275 year: 2021 ident: B15 article-title: A review of parallel heterogeneous computing algorithms in power systems publication-title: Algorithms doi: 10.3390/a14100275 – volume: 37 start-page: 377 year: 2013 ident: B3 article-title: PCA-ELM: a robust and pruned extreme learning machine approach based on principal component analysis publication-title: Neural Process. Lett. doi: 10.1007/s11063-012-9253-x – year: 2018 ident: B11 article-title: Backward/forward method for three-phase power flow calculation in low voltage distribution networks with EV charging points doi: 10.1109/IICPE.2018.8709560 |
| SSID | ssj0001325410 |
| Score | 2.2732499 |
| Snippet | IntroductionIn response to the issues of complexity and low efficiency in line loss calculations for actual distribution networks, this paper proposes a fast... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| SubjectTerms | bulk synchronous parallel computing model distribution network graph model hierarchical forward-backward sweep line loss calculation |
| Title | Fast power flow calculation for distribution networks based on graph models and hierarchical forward-backward sweep parallel algorithm |
| URI | https://doaj.org/article/227ab490679d42ec9e6bdcaac9f53b72 |
| Volume | 12 |
| WOSCitedRecordID | wos001308958500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29S8UwEA8iDjqIn_hNBjcp9iNtk1HFh4OKg4JbSXKJCrXv8Vp1c_Tv9i6t8lx0cSklTUO4Oy531-vvx9ghQWZlkIkIrC0jQiOMJLgksgpKbRPthAmQ-Zfl9bW8v1c3M1Rf1BPWwwP3gjtO01IboajeASJ1VrnCgNXaKp9npgzeF6OemWQqVFcyTHySuP9LBrMwdexRHQ-YD6aCnANxZf44iWYA-8PJMlphy0NIyE_6rayyOdessaUZoMB19jHSbccnxGjGfT1-4yhZOxBvcQw7ORD-7UBdxZu-tbvldEQBx5EAS80D603LdQOcGLDDNwRciBYIvbOGanl4w9s35yacUMHr2tVc1w_j6VP3-LzB7kbnt2cX0cCgENksL7tIFiC0F1JZXRgD3hVFrAxmHRrDOAdGGci1z4TX-EAqbbw13mPYlUgvShlnm2y-GTdui_Ey8UmsPGgnC-Fy9AROAFhQGMLFuY63WfIlzcoO8OLEclFXmGaQBqqggYo0UA0a2GZH3-9MenCNX2efkpK-ZxIwdhhAc6kGc6n-Mped_1hkly3Sxqi0nMo9Nt9NX9w-W7Cv3VM7PQiWiNer9_NPmjTpqQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+power+flow+calculation+for+distribution+networks+based+on+graph+models+and+hierarchical+forward-backward+sweep+parallel+algorithm&rft.jtitle=Frontiers+in+energy+research&rft.au=Wang%2C+Xinrui&rft.au=Chen%2C+Wengang&rft.au=Tian%2C+Ruimin&rft.au=Ji%2C+Yuze&rft.date=2024-08-28&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=12&rft_id=info:doi/10.3389%2Ffenrg.2024.1465900&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2024_1465900 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |