Fast power flow calculation for distribution networks based on graph models and hierarchical forward-backward sweep parallel algorithm

IntroductionIn response to the issues of complexity and low efficiency in line loss calculations for actual distribution networks, this paper proposes a fast power flow calculation method for distribution networks based on Neo4j graph models and a hierarchical forward-backward sweep parallel algorit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in energy research Ročník 12
Hlavní autoři: Wang, Xinrui, Chen, Wengang, Tian, Ruimin, Ji, Yuze, Zhu, Jianfei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 28.08.2024
Témata:
ISSN:2296-598X, 2296-598X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract IntroductionIn response to the issues of complexity and low efficiency in line loss calculations for actual distribution networks, this paper proposes a fast power flow calculation method for distribution networks based on Neo4j graph models and a hierarchical forward-backward sweep parallel algorithm.MethodsFirstly, Neo4j is used to describe the distribution network structure as a simple graph model composed of nodes and edges. Secondly, a hierarchical forward-backward sweep method is adopted to perform power flow calculations on the graph model network. Finally, during the computation of distribution network subgraphs, the method is combined with the Bulk Synchronous Parallel (BSP) computing model to quickly complete the line loss analysis.Results and DiscussionResults from the IEEE 33-node test system demonstrate that the proposed method can calculate network losses quickly and accurately, with a computation time of only 0.175s, which is lower than the MySQL and Neo4j graph methods that do not consider hierarchical parallel computing.
AbstractList IntroductionIn response to the issues of complexity and low efficiency in line loss calculations for actual distribution networks, this paper proposes a fast power flow calculation method for distribution networks based on Neo4j graph models and a hierarchical forward-backward sweep parallel algorithm.MethodsFirstly, Neo4j is used to describe the distribution network structure as a simple graph model composed of nodes and edges. Secondly, a hierarchical forward-backward sweep method is adopted to perform power flow calculations on the graph model network. Finally, during the computation of distribution network subgraphs, the method is combined with the Bulk Synchronous Parallel (BSP) computing model to quickly complete the line loss analysis.Results and DiscussionResults from the IEEE 33-node test system demonstrate that the proposed method can calculate network losses quickly and accurately, with a computation time of only 0.175s, which is lower than the MySQL and Neo4j graph methods that do not consider hierarchical parallel computing.
Author Zhu, Jianfei
Chen, Wengang
Ji, Yuze
Wang, Xinrui
Tian, Ruimin
Author_xml – sequence: 1
  givenname: Xinrui
  surname: Wang
  fullname: Wang, Xinrui
– sequence: 2
  givenname: Wengang
  surname: Chen
  fullname: Chen, Wengang
– sequence: 3
  givenname: Ruimin
  surname: Tian
  fullname: Tian, Ruimin
– sequence: 4
  givenname: Yuze
  surname: Ji
  fullname: Ji, Yuze
– sequence: 5
  givenname: Jianfei
  surname: Zhu
  fullname: Zhu, Jianfei
BookMark eNp9kc9q3DAQh0VJoGmSF-hJL-CtLMuydSwhaRcCvaTQmxj921WitcxIweQF-tz1bkIpPeQ0w2_4fYf5PpGzKU-ekM8t23TdqL4EP-FuwxkXm1bIXjH2gVxwrmTTq_HX2T_7R3JdyiNjrO14L1p2QX7fQal0zotHGlJeqIVknxPUmCcaMlIXS8Vonk_B5OuS8alQA8U7uiY7hHlPD9n5VChMju6jR0C7jyvoCFgAXWPAPh0XWhbvZzoDQko-UUi7jLHuD1fkPEAq_vptXpKfd7cPN9-b-x_ftjdf7xvb9UNtRukEBDEqC9IYF7yUTBneMZC99M4o43oInQiwHkYFJlgTAmOqHYMYRtZdku0r12V41DPGA-CLzhD1Kci404A12uQ15wMYoZgclBPcW-WlcRbAqtB3ZuAri7-yLOZS0Ie_vJbpoxh9EqOPYvSbmLU0_leysZ6-XRFieq_6B0QDm6Q
CitedBy_id crossref_primary_10_1016_j_energy_2025_136862
Cites_doi 10.1109/tpwrs.2018.2816118
10.1109/tii.2023.3313526
10.23919/pcmp.2023.000379
10.13335/j.1000-3673.pst.2018.1193
10.1016/j.epsr.2016.03.023
10.1109/tsg.2023.3241268
10.1109/tpwrs.2021.3116182
10.1109/tpwrs.2021.3112461
10.1109/ITOEC53115.2022.9734521
10.1038/s44287-024-00042-9
10.1109/SCEMS48876.2020.9352313
10.1109/jiot.2024.3391762
10.1016/j.ijepes.2023.108956
10.1109/tpwrd.2022.3186762
10.3390/en12040733
10.1109/tpwrs.2018.2810641
10.23919/pcmp.2023.000316
10.1007/s42835-019-00198-7
10.1049/oap-cired.2017.0500
10.1186/s41601-023-00293-y
10.1109/tsg.2024.3373256
10.1109/tkde.2017.2766634
10.1049/tje2.12330
10.3390/a14100275
10.1007/s11063-012-9253-x
10.1109/IICPE.2018.8709560
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenrg.2024.1465900
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_227ab490679d42ec9e6bdcaac9f53b72
10_3389_fenrg_2024_1465900
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ID FETCH-LOGICAL-c357t-86d4af489ca6bbdfe6609b230a656edb9bd5af34fa66089abfcbff00918f47803
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001308958500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-598X
IngestDate Fri Oct 03 12:44:59 EDT 2025
Sat Nov 29 03:07:13 EST 2025
Tue Nov 18 21:26:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-86d4af489ca6bbdfe6609b230a656edb9bd5af34fa66089abfcbff00918f47803
OpenAccessLink https://doaj.org/article/227ab490679d42ec9e6bdcaac9f53b72
ParticipantIDs doaj_primary_oai_doaj_org_article_227ab490679d42ec9e6bdcaac9f53b72
crossref_primary_10_3389_fenrg_2024_1465900
crossref_citationtrail_10_3389_fenrg_2024_1465900
PublicationCentury 2000
PublicationDate 2024-08-28
PublicationDateYYYYMMDD 2024-08-28
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-28
  day: 28
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Yan (B24) 2019; 12
Huang (B6) 2022; 38
Zhang (B26) 2019; 43
Castaño (B3) 2013; 37
Meena (B11) 2018
Ahmadi (B1) 2021; 37
Liu (B10) 2023; 12
Ruan (B20); 11
Wu (B22); 9
Ruan (B18); 20
Kazemdehdashti (B7) 2018; 33
Kocar (B9) 2016; 138
Yang (B25) 2022
Ruan (B16) 2023; 14
Wang (B21) 2019; 14
Hu (B5) 2017; 30
Ruan (B19); 1
Wu (B23); 9
Ren (B14) 2020
Bennani (B2) 2023; 148
Zuluaga (B28) 2018; 33
Khazaee (B8) 2017; 1
Nour (B12) 2023; 8
Zhou (B27) 2021
Guo (B4) 2021; 37
Rodriguez (B15) 2021; 14
Ruan (B17); 15
Pan (B13) 2018
References_xml – volume: 33
  start-page: 5738
  year: 2018
  ident: B7
  article-title: The generalized cross-entropy method in probabilistic optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/tpwrs.2018.2816118
– start-page: 4340
  year: 2018
  ident: B13
  article-title: Modeling methods of big data for power grid based on graph database
– volume: 20
  start-page: 3650
  ident: B18
  article-title: On vulnerability of renewable energy forecasting: adversarial learning attacks
  publication-title: IEEE Trans. Industrial Inf.
  doi: 10.1109/tii.2023.3313526
– volume: 9
  start-page: 138
  ident: B23
  article-title: A distributed computing algorithm for electricity carbon emission flow and carbon emission intensity
  publication-title: Prot. Control Mod. Power Syst.
  doi: 10.23919/pcmp.2023.000379
– volume: 43
  start-page: 1404
  year: 2019
  ident: B26
  article-title: Line loss prediction of 10 kV distribution network based on grey correlation analysis and improved neural network
  publication-title: Power Syst. Technol.
  doi: 10.13335/j.1000-3673.pst.2018.1193
– volume: 138
  start-page: 146
  year: 2016
  ident: B9
  article-title: Simulation of transients in very large scale distribution networks by combining input text files with graphical user interface
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.03.023
– volume: 14
  start-page: 4035
  year: 2023
  ident: B16
  article-title: Super-resolution perception assisted spatiotemporal graph deep learning against false data injection attacks in smart grid
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/tsg.2023.3241268
– volume: 37
  start-page: 1695
  year: 2021
  ident: B1
  article-title: Fast Newton-Raphson power flow analysis based on sparse techniques and parallel processing
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/tpwrs.2021.3116182
– start-page: 1808
  year: 2021
  ident: B27
  article-title: Research on reliability Evaluation system of distribution network based on Knowledge Graph
– volume: 37
  start-page: 1798
  year: 2021
  ident: B4
  article-title: Data-driven power flow calculation method: a lifting dimension linear regression approach
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/tpwrs.2021.3112461
– year: 2022
  ident: B25
  article-title: Optimization calculation method of transmission line loss with multi-parameter correction
  doi: 10.1109/ITOEC53115.2022.9734521
– volume: 1
  start-page: 278
  ident: B19
  article-title: Towards interdisciplinary integration of electrical engineering and earth science
  publication-title: Nat. Rev. Electr. Eng.
  doi: 10.1038/s44287-024-00042-9
– year: 2020
  ident: B14
  article-title: Calculation method of the line loss rate in transformer district based on neural network with optimized input variables
  doi: 10.1109/SCEMS48876.2020.9352313
– volume: 11
  start-page: 24 948
  ident: B20
  article-title: Privacy-preserving Bi-level optimization of internet data centers for electricity-carbon collaborative demand response
  publication-title: IEEE Internet Things J.
  doi: 10.1109/jiot.2024.3391762
– volume: 148
  start-page: 108956
  year: 2023
  ident: B2
  article-title: A generic power flow formulation for flexible modeling and fast solving for large-scale unbalanced networks
  publication-title: Int. J. Electr. Power and Energy Syst.
  doi: 10.1016/j.ijepes.2023.108956
– volume: 38
  start-page: 231
  year: 2022
  ident: B6
  article-title: A multi-rate dynamic energy flow analysis method for integrated electricity-gas-heat system with different time-scale
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/tpwrd.2022.3186762
– volume: 12
  start-page: 733
  year: 2019
  ident: B24
  article-title: A continuation power flow model of multi-area AC/DC interconnected bulk systems incorporating voltage source converter-based multi-terminal DC networks and its decoupling algorithm
  publication-title: Energies
  doi: 10.3390/en12040733
– volume: 33
  start-page: 5217
  year: 2018
  ident: B28
  article-title: Bayesian probabilistic power flow analysis using Jacobian approximate Bayesian computation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/tpwrs.2018.2810641
– volume: 9
  start-page: 142
  ident: B22
  article-title: Cyber-physical integrated planning of distribution networks considering spatial-temporal flexible resources
  publication-title: Prot. Control Mod. Power Syst.
  doi: 10.23919/pcmp.2023.000316
– volume: 14
  start-page: 1553
  year: 2019
  ident: B21
  article-title: A new on-line power flow calculation method with computation loads separation technique in DC power systems
  publication-title: J. Electr. Eng. and Technol.
  doi: 10.1007/s42835-019-00198-7
– volume: 1
  start-page: 1711
  year: 2017
  ident: B8
  article-title: Distribution loss reduction in residential and commercial pilots by using AMI system
  publication-title: CIRED-Open Access Proc. J.
  doi: 10.1049/oap-cired.2017.0500
– volume: 8
  start-page: 20
  year: 2023
  ident: B12
  article-title: Voltage imbalance mitigation in an active distribution network using decentralized current control
  publication-title: Prot. Control Mod. Power Syst.
  doi: 10.1186/s41601-023-00293-y
– volume: 15
  start-page: 3333
  ident: B17
  article-title: Applying large language models to power systems: potential security threats
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/tsg.2024.3373256
– volume: 30
  start-page: 824
  year: 2017
  ident: B5
  article-title: Answering natural language questions by subgraph matching over knowledge graphs
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/tkde.2017.2766634
– volume: 12
  start-page: 12330
  year: 2023
  ident: B10
  article-title: Distribution network power flow calculation based on the BPNN optimized by GA‐ADAM
  publication-title: J. Eng.
  doi: 10.1049/tje2.12330
– volume: 14
  start-page: 275
  year: 2021
  ident: B15
  article-title: A review of parallel heterogeneous computing algorithms in power systems
  publication-title: Algorithms
  doi: 10.3390/a14100275
– volume: 37
  start-page: 377
  year: 2013
  ident: B3
  article-title: PCA-ELM: a robust and pruned extreme learning machine approach based on principal component analysis
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-012-9253-x
– year: 2018
  ident: B11
  article-title: Backward/forward method for three-phase power flow calculation in low voltage distribution networks with EV charging points
  doi: 10.1109/IICPE.2018.8709560
SSID ssj0001325410
Score 2.2732499
Snippet IntroductionIn response to the issues of complexity and low efficiency in line loss calculations for actual distribution networks, this paper proposes a fast...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms bulk synchronous parallel computing model
distribution network
graph model
hierarchical forward-backward sweep
line loss calculation
Title Fast power flow calculation for distribution networks based on graph models and hierarchical forward-backward sweep parallel algorithm
URI https://doaj.org/article/227ab490679d42ec9e6bdcaac9f53b72
Volume 12
WOSCitedRecordID wos001308958500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29S8UwEA8iDjqIn_hNBjcp9iNtk1HFh4OKg4JbSXKJCrXv8Vp1c_Tv9i6t8lx0cSklTUO4Oy531-vvx9ghQWZlkIkIrC0jQiOMJLgksgpKbRPthAmQ-Zfl9bW8v1c3M1Rf1BPWwwP3gjtO01IboajeASJ1VrnCgNXaKp9npgzeF6OemWQqVFcyTHySuP9LBrMwdexRHQ-YD6aCnANxZf44iWYA-8PJMlphy0NIyE_6rayyOdessaUZoMB19jHSbccnxGjGfT1-4yhZOxBvcQw7ORD-7UBdxZu-tbvldEQBx5EAS80D603LdQOcGLDDNwRciBYIvbOGanl4w9s35yacUMHr2tVc1w_j6VP3-LzB7kbnt2cX0cCgENksL7tIFiC0F1JZXRgD3hVFrAxmHRrDOAdGGci1z4TX-EAqbbw13mPYlUgvShlnm2y-GTdui_Ey8UmsPGgnC-Fy9AROAFhQGMLFuY63WfIlzcoO8OLEclFXmGaQBqqggYo0UA0a2GZH3-9MenCNX2efkpK-ZxIwdhhAc6kGc6n-Mped_1hkly3Sxqi0nMo9Nt9NX9w-W7Cv3VM7PQiWiNer9_NPmjTpqQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+power+flow+calculation+for+distribution+networks+based+on+graph+models+and+hierarchical+forward-backward+sweep+parallel+algorithm&rft.jtitle=Frontiers+in+energy+research&rft.au=Wang%2C+Xinrui&rft.au=Chen%2C+Wengang&rft.au=Tian%2C+Ruimin&rft.au=Ji%2C+Yuze&rft.date=2024-08-28&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=12&rft_id=info:doi/10.3389%2Ffenrg.2024.1465900&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2024_1465900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon