A Comparison of Natural Language Understanding Platforms for Chatbots in Software Engineering
Chatbots are envisioned to dramatically change the future of Software Engineering, allowing practitioners to chat and inquire about their software projects and interact with different services using natural language. At the heart of every chatbot is a Natural Language Understanding (NLU) component t...
Saved in:
| Published in: | IEEE transactions on software engineering Vol. 48; no. 8; pp. 3087 - 3102 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.08.2022
IEEE Computer Society |
| Subjects: | |
| ISSN: | 0098-5589, 1939-3520 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Chatbots are envisioned to dramatically change the future of Software Engineering, allowing practitioners to chat and inquire about their software projects and interact with different services using natural language. At the heart of every chatbot is a Natural Language Understanding (NLU) component that enables the chatbot to understand natural language input. Recently, many NLU platforms were provided to serve as an off-the-shelf NLU component for chatbots, however, selecting the best NLU for Software Engineering chatbots remains an open challenge. Therefore, in this paper, we evaluate four of the most commonly used NLUs, namely IBM Watson, Google Dialogflow, Rasa, and Microsoft LUIS to shed light on which NLU should be used in Software Engineering based chatbots. Specifically, we examine the NLUs' performance in classifying intents, confidence scores stability, and extracting entities. To evaluate the NLUs, we use two datasets that reflect two common tasks performed by Software Engineering practitioners, 1) the task of chatting with the chatbot to ask questions about software repositories 2) the task of asking development questions on Q&A forums (e.g., Stack Overflow). According to our findings, IBM Watson is the best performing NLU when considering the three aspects (intents classification, confidence scores, and entity extraction). However, the results from each individual aspect show that, in intents classification, IBM Watson performs the best with an F1-measure<inline-formula><tex-math notation="LaTeX">></tex-math> <mml:math><mml:mo>></mml:mo></mml:math><inline-graphic xlink:href="abdellatif-ieq1-3078384.gif"/> </inline-formula>84%, but in confidence scores, Rasa comes on top with a median confidence score higher than 0.91. Our results also show that all NLUs, except for Dialogflow, generally provide trustable confidence scores. For entity extraction, Microsoft LUIS and IBM Watson outperform other NLUs in the two SE tasks. Our results provide guidance to software engineering practitioners when deciding which NLU to use in their chatbots. |
|---|---|
| AbstractList | Chatbots are envisioned to dramatically change the future of Software Engineering, allowing practitioners to chat and inquire about their software projects and interact with different services using natural language. At the heart of every chatbot is a Natural Language Understanding (NLU) component that enables the chatbot to understand natural language input. Recently, many NLU platforms were provided to serve as an off-the-shelf NLU component for chatbots, however, selecting the best NLU for Software Engineering chatbots remains an open challenge. Therefore, in this paper, we evaluate four of the most commonly used NLUs, namely IBM Watson, Google Dialogflow, Rasa, and Microsoft LUIS to shed light on which NLU should be used in Software Engineering based chatbots. Specifically, we examine the NLUs' performance in classifying intents, confidence scores stability, and extracting entities. To evaluate the NLUs, we use two datasets that reflect two common tasks performed by Software Engineering practitioners, 1) the task of chatting with the chatbot to ask questions about software repositories 2) the task of asking development questions on Q&A forums (e.g., Stack Overflow). According to our findings, IBM Watson is the best performing NLU when considering the three aspects (intents classification, confidence scores, and entity extraction). However, the results from each individual aspect show that, in intents classification, IBM Watson performs the best with an F1-measure<inline-formula><tex-math notation="LaTeX">></tex-math> <mml:math><mml:mo>></mml:mo></mml:math><inline-graphic xlink:href="abdellatif-ieq1-3078384.gif"/> </inline-formula>84%, but in confidence scores, Rasa comes on top with a median confidence score higher than 0.91. Our results also show that all NLUs, except for Dialogflow, generally provide trustable confidence scores. For entity extraction, Microsoft LUIS and IBM Watson outperform other NLUs in the two SE tasks. Our results provide guidance to software engineering practitioners when deciding which NLU to use in their chatbots. Chatbots are envisioned to dramatically change the future of Software Engineering, allowing practitioners to chat and inquire about their software projects and interact with different services using natural language. At the heart of every chatbot is a Natural Language Understanding (NLU) component that enables the chatbot to understand natural language input. Recently, many NLU platforms were provided to serve as an off-the-shelf NLU component for chatbots, however, selecting the best NLU for Software Engineering chatbots remains an open challenge. Therefore, in this paper, we evaluate four of the most commonly used NLUs, namely IBM Watson, Google Dialogflow, Rasa, and Microsoft LUIS to shed light on which NLU should be used in Software Engineering based chatbots. Specifically, we examine the NLUs’ performance in classifying intents, confidence scores stability, and extracting entities. To evaluate the NLUs, we use two datasets that reflect two common tasks performed by Software Engineering practitioners, 1) the task of chatting with the chatbot to ask questions about software repositories 2) the task of asking development questions on Q&A forums (e.g., Stack Overflow). According to our findings, IBM Watson is the best performing NLU when considering the three aspects (intents classification, confidence scores, and entity extraction). However, the results from each individual aspect show that, in intents classification, IBM Watson performs the best with an F1-measure[Formula Omitted]84%, but in confidence scores, Rasa comes on top with a median confidence score higher than 0.91. Our results also show that all NLUs, except for Dialogflow, generally provide trustable confidence scores. For entity extraction, Microsoft LUIS and IBM Watson outperform other NLUs in the two SE tasks. Our results provide guidance to software engineering practitioners when deciding which NLU to use in their chatbots. |
| Author | Abdellatif, Ahmad Costa, Diego Elias Badran, Khaled Shihab, Emad |
| Author_xml | – sequence: 1 givenname: Ahmad orcidid: 0000-0003-1863-9147 surname: Abdellatif fullname: Abdellatif, Ahmad email: a_bdella@encs.concordia.ca organization: Department of Computer Science and Software Engineering, Data-Driven Analysis of Software (DAS) Lab, Concordia University, Montréal, QC, Canada – sequence: 2 givenname: Khaled surname: Badran fullname: Badran, Khaled email: k_badran@encs.concordia.ca organization: Department of Computer Science and Software Engineering, Data-Driven Analysis of Software (DAS) Lab, Concordia University, Montréal, QC, Canada – sequence: 3 givenname: Diego Elias orcidid: 0000-0001-7084-2594 surname: Costa fullname: Costa, Diego Elias email: d_damasc@encs.concordia.ca organization: Department of Computer Science and Software Engineering, Data-Driven Analysis of Software (DAS) Lab, Concordia University, Montréal, QC, Canada – sequence: 4 givenname: Emad orcidid: 0000-0003-1285-9878 surname: Shihab fullname: Shihab, Emad email: eshihab@encs.concordia.ca organization: Department of Computer Science and Software Engineering, Data-Driven Analysis of Software (DAS) Lab, Concordia University, Montréal, QC, Canada |
| BookMark | eNp9kE1LAzEQhoNUsFbvgpeA562TZLObHEupH1BUaHuUJbs7WyNtUpMU8d-7peLBg5cZGJ5nXnjPycB5h4RcMRgzBvp2uZiNOXA2FlAqofITMmRa6ExIDgMyBNAqk1LpM3Ie4zsAyLKUQ_I6oVO_3Zlgo3fUd_TJpH0wGzo3br03a6Qr12KIybjWujV92ZjU-bCNtJ90-mZS7VOk1tGF79KnCUhnbm0dYujxC3LamU3Ey589Iqu72XL6kM2f7x-nk3nWCFmmrGygVgVAwTrdIMfCcNRNjQWqDk1e8lr115zzutBN27RM1QgCWKGkFC1nYkRujn93wX_sMabq3e-D6yMrXvak1lyKnoIj1QQfY8Cu2gW7NeGrYlAdSqz6EqtDidVPib1S_FEam0yy3qVg7OY_8fooWkT8zdE5L3LIxTfNeoFO |
| CODEN | IESEDJ |
| CitedBy_id | crossref_primary_10_1016_j_procs_2024_03_243 crossref_primary_10_1111_joie_12347 crossref_primary_10_3233_JIFS_224279 crossref_primary_10_1007_s11042_025_20659_8 crossref_primary_10_1016_j_ijinfomgt_2023_102699 crossref_primary_10_1007_s11423_025_10472_3 crossref_primary_10_2196_50767 crossref_primary_10_3390_ai5020041 crossref_primary_10_1016_j_jss_2025_112600 crossref_primary_10_1111_joor_13986 crossref_primary_10_7717_peerj_cs_866 crossref_primary_10_1016_j_pmcj_2023_101797 crossref_primary_10_1145_3660812 crossref_primary_10_3390_app13116777 crossref_primary_10_1007_s42001_023_00218_7 crossref_primary_10_25046_aj100103 crossref_primary_10_3390_electronics10182300 crossref_primary_10_1080_10494820_2023_2232823 crossref_primary_10_1186_s12909_024_05371_9 crossref_primary_10_1145_3637228 crossref_primary_10_1016_j_procir_2023_09_130 crossref_primary_10_1109_ACCESS_2023_3339553 crossref_primary_10_22395_rium_v24n47a4 crossref_primary_10_1145_3730578 crossref_primary_10_1055_a_2673_6412 crossref_primary_10_1134_S0361768824700774 crossref_primary_10_1016_j_datak_2025_102461 crossref_primary_10_1007_s10115_024_02074_x crossref_primary_10_3390_app11104510 crossref_primary_10_1145_3704806 |
| Cites_doi | 10.1109/SANER.2016.10 10.1109/chase.2017.14 10.1145/3338906.3340442 10.1145/3180155.3180238 10.1145/3379597.3387472 10.1109/ICSE-NIER.2017.17 10.1109/Innovate-Data.2018.00010 10.1002/spe.1053 10.3115/1556328.1556341 10.1145/1806799.1806828 10.1109/CHASE.2015.13 10.1093/nsr/nwx106 10.1007/s10664-019-09788-5 10.1109/ASE.2017.8115628 10.1109/BotSE.2019.00020 10.1109/BotSE.2019.00008 10.1109/ASE.2017.8115681 10.1109/MS.2017.31 10.1145/3274451 10.1177/001316446002000104 10.1109/ESEM.2011.36 10.1145/2568225.2568233 10.1145/3387940.3391505 10.1177/2515245919847421 10.1109/SNAMS.2018.8554770 10.1145/2851581.2892311 10.1145/3387940.3391501 10.1109/MS.2017.4541027 10.1191/1478088706qp0630a 10.1145/2950290.2983989 10.1177/001316447303300309 10.1145/3173574.3173632 10.1109/IALP.2018.8629181 10.1145/3387940.3391534 10.1145/1978942.1979366 10.5220/0007252100190030 10.1109/BotSE.2019.00015 10.1109/BotSE.2019.00016 10.2200/s00196ed1v01y200906aim006 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2022 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2022 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2021.3078384 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 3102 |
| ExternalDocumentID | 10_1109_TSE_2021_3078384 9426404 |
| Genre | orig-research |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABPPZ ABQJQ ABVLG ACGFO ACGOD ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS EDO EJD HZ~ I-F IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P Q2X RIA RIE RNS RXW S10 TAE TN5 TWZ UHB UPT WH7 YZZ AAYXX CITATION JQ2 K9. |
| ID | FETCH-LOGICAL-c357t-7c0b860061f9ce2e6a2e9cbe6e8fea472b8e2e422b69cdcd18be030168553d213 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 52 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846878500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-5589 |
| IngestDate | Fri Oct 03 03:50:28 EDT 2025 Sat Nov 29 03:10:26 EST 2025 Tue Nov 18 21:32:40 EST 2025 Wed Aug 27 02:02:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-7c0b860061f9ce2e6a2e9cbe6e8fea472b8e2e422b69cdcd18be030168553d213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1863-9147 0000-0001-7084-2594 0000-0003-1285-9878 |
| PQID | 2703099253 |
| PQPubID | 21418 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1109_TSE_2021_3078384 proquest_journals_2703099253 crossref_citationtrail_10_1109_TSE_2021_3078384 ieee_primary_9426404 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2022 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref13 (ref69) 2019 ref15 ref52 ref55 ref54 (ref56) 2020 ref17 ref18 (ref27) 2020 ref50 (ref57) 2020 ref46 (ref42) 2020 ref45 Conference (ref7) 2019 (ref22) 2020 ref85 ref44 Angara (ref79) 2018 (ref33) 2019 Brundage (ref86) 2020 (ref59) 2020 Braun (ref14) ref49 (ref28) 2019 (ref10) 2020 (ref16) 2020 ref9 Abdellatif (ref31) 2021 ref4 Ask (ref25) 2016 (ref30) 2020 ref3 ref6 ref5 ref82 ref84 ref83 (ref8) 2019 ref80 (ref48) 2020 (ref34) 2019 ref78 ref37 (ref51) 2020 (ref58) 2020 ref36 Canonico (ref19) 2018 (ref68) 2020 ref75 ref74 ref77 ref76 Gregori (ref20) 2017 Munir (ref47) 2016; 21 (ref21) 2020 ref2 ref1 ref39 (ref81) 2020 (ref11) 2020 ref38 (ref41) 2020 Han (ref53) Elsevier (ref64) 2020 Urli (ref71) ref70 (ref61) 2019 ref72 ref24 (ref63) 2019 (ref29) 2020 (ref35) 2019 ref66 ref65 (ref23) 2019 (ref40) 2020 (ref60) 2020 Urli (ref12) (ref26) 2020 Lebeuf (ref73) 2018 (ref67) 2019 ref62 (ref32) 2019 (ref43) 2020 |
| References_xml | – year: 2021 ident: ref31 article-title: A comparison of natural language understanding platforms for chatbots in software engineering | zenodo – year: 2020 ident: ref11 article-title: Dependabot – year: 2019 ident: ref61 article-title: Duckling – year: 2020 ident: ref59 article-title: Dialogflow matches irrelevant phrases to existing intents – year: 2020 ident: ref40 article-title: Developer entities – year: 2018 ident: ref19 article-title: A comparison and critique of natural language understanding tools publication-title: Cloud Comput. – ident: ref37 doi: 10.1109/SANER.2016.10 – ident: ref83 doi: 10.1109/chase.2017.14 – year: 2020 ident: ref27 article-title: LUIS (language understanding) cognitive services – year: 2020 ident: ref42 article-title: Training data format – ident: ref54 doi: 10.1145/3338906.3340442 – year: 2020 ident: ref56 article-title: Training phrases – year: 2019 ident: ref63 article-title: multiple entity recognition issue #427 – ident: ref74 doi: 10.1145/3180155.3180238 – ident: ref5 doi: 10.1145/3379597.3387472 – year: 2019 ident: ref69 article-title: A slack slash command app to file browser bugs in JIRA – ident: ref75 doi: 10.1109/ICSE-NIER.2017.17 – ident: ref15 doi: 10.1109/Innovate-Data.2018.00010 – year: 2019 ident: ref8 article-title: 1st international workshop on bots in software engineering – start-page: 95 volume-title: Proc. 40th Int. Conf. Softw. Eng. Softw. Eng. Pract. ident: ref71 article-title: How to design a program repair bot? Insights from the repairnator project – year: 2020 ident: ref86 article-title: Toward trustworthy ai development: Mechanisms for supporting verifiable claims – year: 2019 ident: ref35 article-title: Watson assistant v1 – year: 2020 ident: ref41 article-title: Entity types - language understanding - azure cognitive services – ident: ref62 doi: 10.1002/spe.1053 – year: 2017 ident: ref20 article-title: Evaluation of modern tools for an OMSCS advisor chatbot – year: 2020 ident: ref22 article-title: Artificial intelligence - comparison between LUIS.ai vs API.ai vs WIT.ai? – ident: ref80 doi: 10.3115/1556328.1556341 – ident: ref84 doi: 10.1145/1806799.1806828 – start-page: 95 volume-title: Proc. 40th Int. Conf. Softw. Eng. Softw. Eng. Pract. ident: ref12 article-title: How to design a program repair bot?: Insights from the repairnator project – ident: ref46 doi: 10.1109/CHASE.2015.13 – year: 2020 ident: ref68 article-title: Good example utterances - language understanding - azure cognitive services – ident: ref66 doi: 10.1093/nsr/nwx106 – year: 2019 ident: ref23 article-title: NLP - build chatbot for education purporse – ident: ref3 doi: 10.1007/s10664-019-09788-5 – year: 2019 ident: ref34 article-title: Query – year: 2020 ident: ref10 article-title: Code deployment tools – year: 2020 ident: ref21 article-title: Natural language processing – ident: ref77 doi: 10.1109/ASE.2017.8115628 – year: 2020 ident: ref26 article-title: The impact of conversational bots in the customer experience – ident: ref70 doi: 10.1109/BotSE.2019.00020 – ident: ref72 doi: 10.1109/BotSE.2019.00008 – ident: ref2 doi: 10.1109/ASE.2017.8115681 – ident: ref39 doi: 10.1109/MS.2017.31 – year: 2020 ident: ref64 article-title: History dialogflow documentation – year: 2020 ident: ref60 article-title: Entities – ident: ref9 doi: 10.1145/3274451 – ident: ref49 doi: 10.1177/001316446002000104 – year: 2019 ident: ref32 article-title: Confidence and fallback intents – ident: ref44 doi: 10.1109/ESEM.2011.36 – ident: ref82 doi: 10.1145/2568225.2568233 – year: 2019 ident: ref7 article-title: The chatbot conference – start-page: 174 volume-title: Proc. 18th Annu. SIGdial Meeting Discourse Dialogue. ident: ref14 article-title: Evaluating natural language understanding services for conversational question answering systems – year: 2016 ident: ref25 article-title: The state of chatbots publication-title: Rep., Forrester Res., Cambridge, MA, USA, Rep. 20 – year: 2019 ident: ref67 article-title: rasa/crf_entity_extractor.py at master rasahq/rasa – year: 2020 ident: ref16 article-title: Chatbot for AWS monitoring – year: 2020 ident: ref43 article-title: Creating entities – ident: ref78 doi: 10.1145/3387940.3391505 – year: 2018 ident: ref73 article-title: A taxonomy of software bots: Towards a deeper understanding of software bot characteristics – ident: ref85 doi: 10.1177/2515245919847421 – ident: ref13 doi: 10.1109/SNAMS.2018.8554770 – ident: ref17 doi: 10.1145/2851581.2892311 – year: 2018 ident: ref79 article-title: Towards a deeper understanding of current conversational frameworks through the design and development of a cognitive agent – ident: ref6 doi: 10.1145/3387940.3391501 – ident: ref24 doi: 10.1109/MS.2017.4541027 – ident: ref45 doi: 10.1191/1478088706qp0630a – ident: ref1 doi: 10.1145/2950290.2983989 – ident: ref50 doi: 10.1177/001316447303300309 – year: 2020 ident: ref57 article-title: Defining intents – ident: ref18 doi: 10.1145/3173574.3173632 – ident: ref55 doi: 10.1109/IALP.2018.8629181 – volume-title: Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems) year: Elsevier ident: ref53 – ident: ref4 doi: 10.1145/3387940.3391534 – year: 2020 ident: ref81 article-title: Dialogflow agent validation – year: 2019 ident: ref28 article-title: IBM Watson – ident: ref38 doi: 10.1145/1978942.1979366 – volume: 21 start-page: 684 issue: 2 volume-title: Empirical Softw. Eng. year: 2016 ident: ref47 article-title: Open innovation in software engineering: A systematic mapping study – ident: ref36 doi: 10.5220/0007252100190030 – year: 2020 ident: ref58 article-title: Chatbot dialogflow returning answers with confidence score below ML classification threshold – year: 2020 ident: ref48 article-title: Frequently asked questions – year: 2019 ident: ref33 article-title: Prediction scores - language understanding - azure cognitive services – year: 2020 ident: ref29 article-title: Dialogflow – year: 2020 ident: ref30 article-title: Rasa: Open source conversational AI – ident: ref52 doi: 10.1109/BotSE.2019.00015 – ident: ref76 doi: 10.1109/BotSE.2019.00016 – ident: ref65 doi: 10.2200/s00196ed1v01y200906aim006 – year: 2020 ident: ref51 article-title: PHP mysqli query returns empty error message |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.5690336 |
| Snippet | Chatbots are envisioned to dramatically change the future of Software Engineering, allowing practitioners to chat and inquire about their software projects and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3087 |
| SubjectTerms | Chatbot Chatbots Classification empirical software engineering Feature extraction Java Natural language natural language understanding platforms Questions Software Software chatbots Software engineering Stability analysis Task analysis XML |
| Title | A Comparison of Natural Language Understanding Platforms for Chatbots in Software Engineering |
| URI | https://ieeexplore.ieee.org/document/9426404 https://www.proquest.com/docview/2703099253 |
| Volume | 48 |
| WOSCitedRecordID | wos000846878500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5zePDi1ClOp-TgRbBbm7b5OI6x4UHGYBvsIiVJ3-JgdLJ2-vdtsrYqiuAllJJA6ZO8H3k_HoTupEhcKmTihOaOKWDKc6SvwNHFSDnV0mOJJZtgkwlfLsW0gR7qWhgAsMln0DOPNpYfb_TOXJX1hVHfpvnnAWNsX6v1mc7BWFj1xwxDLqqQpCv689mocASJ1_NNzIoH31SQ5VT5IYitdhm3_vddJ-i4tCLxYA_7KWpAeoZaFUMDLg9sGz0P8LAmGsSbBE-k7bOBn8prSrz4WtyCp2uZGys2w8WIhy8yV5s8w6sUzwpx_S63gL80MDxHi_FoPnx0SkIFR_shyx2mXcWpsVoSoYEAlQSEVkCBJyADRhQv3gaEKCp0rGOPKzAuE-Vh6MfE8y9QM92kcIlwUthRwpexGysIhGYy4CKmhS3nByzQhHRQv_rHkS67jRvSi3VkvQ5XRAUqkUElKlHpoPt6xeu-08Yfc9sGhXpeCUAHdSsYo_IoZhExMk0IEvpXv6-6RkfE1DTYrL4uaubbHdygQ_2Wr7Ltrd1lH8kCz-4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6ICvriXZzXPPgiWNemuT7KUBTnEJzgi5QkPUVBNtmq_n2brJ2KIvgSSkmg9EvOJefyARwaXcRCmyLi_o6JSZtEJrUYuWoUSjiTyCKQTcheT93f65sZOJ7WwiBiSD7DE_8YYvn50L36q7K29urbN_-c44zRZFKt9ZnQISVvOmRyrnQTlIx1u397VrmCNDlJfdRKsW9KKLCq_BDFQb-cL__vy1ZgqbYjyekE-FWYwcEaLDccDaQ-suvwcEo6U6pBMixIz4ROG6RbX1SSu6_lLeTm2ZTejh2TaiSdR1PaYTkmTwNyWwnsdzNC8qWF4QbcnZ_1OxdRTakQuZTLMpIutkp4u6XQDikKQ1E7iwJVgYZJalX1llFqhXa5yxNl0TtNQnGe5jRJN2F2MBzgFpCisqR0avI4t8i0k4YpnYvKmkuZZI7SFrSbf5y5ut-4p714zoLfEeusQiXzqGQ1Ki04mq54mfTa-GPuukdhOq8GoAW7DYxZfRjHGfVSTWvK0-3fVx3AwkX_upt1L3tXO7BIfYVDyPHbhdly9Ip7MO_eyqfxaD_suA_C0dM1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Natural+Language+Understanding+Platforms+for+Chatbots+in+Software+Engineering&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Abdellatif%2C+Ahmad&rft.au=Badran%2C+Khaled&rft.au=Costa%2C+Diego+Elias&rft.au=Shihab%2C+Emad&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=0098-5589&rft.volume=48&rft.issue=8&rft.spage=3087&rft.epage=3102&rft_id=info:doi/10.1109%2FTSE.2021.3078384&rft.externalDocID=9426404 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |