Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich Tasks
Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. It is nontrivial to manually design a robot controller that combines these modalities, which have very different characteristics. While deep reinforcement learning has shown success in learnin...
Uloženo v:
| Vydáno v: | IEEE transactions on robotics Ročník 36; číslo 3; s. 582 - 596 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1552-3098, 1941-0468 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. It is nontrivial to manually design a robot controller that combines these modalities, which have very different characteristics. While deep reinforcement learning has shown success in learning control policies for high-dimensional inputs, these algorithms are generally intractable to train directly on real robots due to sample complexity. In this article, we use self-supervision to learn a compact and multimodal representation of our sensory inputs, which can then be used to improve the sample efficiency of our policy learning. Evaluating our method on a peg insertion task, we show that it generalizes over varying geometries, configurations, and clearances, while being robust to external perturbations. We also systematically study different self-supervised learning objectives and representation learning architectures. Results are presented in simulation and on a physical robot. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1552-3098 1941-0468 |
| DOI: | 10.1109/TRO.2019.2959445 |