Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich Tasks
Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. It is nontrivial to manually design a robot controller that combines these modalities, which have very different characteristics. While deep reinforcement learning has shown success in learnin...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on robotics Jg. 36; H. 3; S. 582 - 596 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1552-3098, 1941-0468 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. It is nontrivial to manually design a robot controller that combines these modalities, which have very different characteristics. While deep reinforcement learning has shown success in learning control policies for high-dimensional inputs, these algorithms are generally intractable to train directly on real robots due to sample complexity. In this article, we use self-supervision to learn a compact and multimodal representation of our sensory inputs, which can then be used to improve the sample efficiency of our policy learning. Evaluating our method on a peg insertion task, we show that it generalizes over varying geometries, configurations, and clearances, while being robust to external perturbations. We also systematically study different self-supervised learning objectives and representation learning architectures. Results are presented in simulation and on a physical robot. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1552-3098 1941-0468 |
| DOI: | 10.1109/TRO.2019.2959445 |