A Characterization of All Single-Integral, Non-Kernel Divergence Estimators

Divergence measures have been used for a long time for different purposes in information theory and statistics. In particular, density-based minimum divergence estimation is a popular tool in the statistical literature. Given the sampled data and a parametric model, we estimate the model parameter b...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 65; no. 12; pp. 7976 - 7984
Main Authors: Jana, Soham, Basu, Ayanendranath
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Divergence measures have been used for a long time for different purposes in information theory and statistics. In particular, density-based minimum divergence estimation is a popular tool in the statistical literature. Given the sampled data and a parametric model, we estimate the model parameter by choosing the member of the model family that is closest to the data distribution in terms of the given divergence. In the absolutely continuous set up, when the distributions from the model family and the unknown data generating distribution are assumed to have densities, the application of kernel based non-parametric smoothing is sometimes unavoidable to get an estimate of the true data density. The use of kernels (or other non-parametric smoothing techniques) makes the estimation process considerably more complex, as now one has to impose necessary conditions not just on the model but also on the kernel and its bandwidth. In higher dimensions the efficiency of the kernel density estimator (KDE) often becomes too low for the minimum divergence procedure to be practically useful. It can, therefore, lead to a significant advantage to have a divergence which allows minimum divergence estimation bypassing the use of non-parametric smoothing. For the same reason, characterizing the class of such divergences would be a notable achievement. In this work, we provide a characterization of the class of divergences that bypasses the use of non-parametric smoothing in the construction of divergences, providing a solution to this very important problem.
AbstractList Divergence measures have been used for a long time for different purposes in information theory and statistics. In particular, density-based minimum divergence estimation is a popular tool in the statistical literature. Given the sampled data and a parametric model, we estimate the model parameter by choosing the member of the model family that is closest to the data distribution in terms of the given divergence. In the absolutely continuous set up, when the distributions from the model family and the unknown data generating distribution are assumed to have densities, the application of kernel based non-parametric smoothing is sometimes unavoidable to get an estimate of the true data density. The use of kernels (or other non-parametric smoothing techniques) makes the estimation process considerably more complex, as now one has to impose necessary conditions not just on the model but also on the kernel and its bandwidth. In higher dimensions the efficiency of the kernel density estimator (KDE) often becomes too low for the minimum divergence procedure to be practically useful. It can, therefore, lead to a significant advantage to have a divergence which allows minimum divergence estimation bypassing the use of non-parametric smoothing. For the same reason, characterizing the class of such divergences would be a notable achievement. In this work, we provide a characterization of the class of divergences that bypasses the use of non-parametric smoothing in the construction of divergences, providing a solution to this very important problem.
Author Jana, Soham
Basu, Ayanendranath
Author_xml – sequence: 1
  givenname: Soham
  orcidid: 0000-0001-7547-9333
  surname: Jana
  fullname: Jana, Soham
  email: soham.jana@yale.edu
  organization: Department of Statistics and Data Science, Yale University, New Haven, CT, USA
– sequence: 2
  givenname: Ayanendranath
  orcidid: 0000-0003-1416-9109
  surname: Basu
  fullname: Basu, Ayanendranath
  email: ayanbasu@isical.ac.in
  organization: Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
BookMark eNp9kEFLAzEQRoNUsK3eBS8LXt2abHY22WOpVYtFD9ZzSLNJTVmTmqSC_nq3tnjw4Olj4HszzBugnvNOI3RO8IgQXF8vZotRgUk9KmrKoGBHqE8AWF5XUPZQH2PC87os-QkaxLjuxhJI0UcP42zyKoNUSQf7JZP1LvMmG7dt9mzdqtX5zCW9CrK9yh69yx90cLrNbuyHDivtlM6mMdk3mXyIp-jYyDbqs0MO0cvtdDG5z-dPd7PJeJ4rCizllalKvmwaLjEoQ7mRrDQECF02tGYlLCVZMtMAx6bB0GVDjAGASlVgqGJ0iC73ezfBv291TGLtt8F1J0VBSQUM04J3rWrfUsHHGLQRyqafB1OQthUEi5040YkTO3HiIK4D8R9wE7oPw-d_yMUesVrr3zrnhOKa0W_I8Xo-
CODEN IETTAW
CitedBy_id crossref_primary_10_1080_02331888_2022_2070622
crossref_primary_10_1007_s10463_022_00862_2
crossref_primary_10_1109_TIT_2024_3366538
crossref_primary_10_1007_s42519_020_00162_z
crossref_primary_10_1109_TIT_2022_3210436
Cites_doi 10.1007/s00184-015-0556-6
10.1080/10485252.2011.599385
10.1109/TIT.2008.929943
10.1016/j.stamet.2016.01.003
10.1162/neco.2008.04-08-771
10.1093/biomet/88.3.865
10.1201/b10956
10.1111/j.2517-6161.1984.tb01318.x
10.1111/j.1467-842X.2010.00574.x
10.1017/CBO9780511804441
10.1214/aos/1176350820
10.1080/01621459.1986.10478264
10.1214/aos/1176325512
10.1080/14786440009463897
10.1111/j.2517-6161.1966.tb00626.x
10.1214/aoms/1177707038
10.1093/biomet/85.3.549
10.1109/TIT.2003.813509
10.1214/aoms/1177703732
10.1080/01621459.1987.10478501
10.1002/9780470316849
10.1016/j.jspi.2012.03.019
10.1214/aos/1176343842
10.1109/TIT.2011.2178139
10.1007/978-1-4899-3324-9
10.1201/b14876
10.1006/jmva.1997.1731
10.1016/j.jspi.2008.04.022
10.1214/11-AIHP425
10.1080/01621459.1989.10478744
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2019.2937527
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 7984
ExternalDocumentID 10_1109_TIT_2019_2937527
8813097
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-6f648bdd8a05cf38fa74f1513bd39745ba1b7fd580fd05d58d1ff5556c65f3c73
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512370800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Sep 07 03:32:55 EDT 2025
Tue Nov 18 20:59:37 EST 2025
Sat Nov 29 03:31:42 EST 2025
Wed Aug 27 02:40:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-6f648bdd8a05cf38fa74f1513bd39745ba1b7fd580fd05d58d1ff5556c65f3c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1416-9109
0000-0001-7547-9333
PQID 2316570328
PQPubID 36024
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TIT_2019_2937527
proquest_journals_2316570328
ieee_primary_8813097
crossref_primary_10_1109_TIT_2019_2937527
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
banerjee (ref34) 2005; 6
ref12
ref37
ref15
ref36
ref14
csiszár (ref4) 1967; 2
ref30
ref11
ref32
ref10
ref2
ref1
ref39
vajda (ref17) 1989
ref38
ref19
devroye (ref20) 1985
liese (ref16) 1987; 95
ref24
itakura (ref31) 1968
ref23
ref26
ref25
pardo (ref18) 2006
ref21
ref28
mukherjee (ref33) 2018
ref27
ref29
ref8
ref7
ref9
ref6
ref5
csiszár (ref3) 1963; 8
scott (ref22) 1992
References_xml – ident: ref14
  doi: 10.1007/s00184-015-0556-6
– ident: ref38
  doi: 10.1080/10485252.2011.599385
– ident: ref36
  doi: 10.1109/TIT.2008.929943
– ident: ref15
  doi: 10.1016/j.stamet.2016.01.003
– ident: ref32
  doi: 10.1162/neco.2008.04-08-771
– volume: 8
  start-page: 85
  year: 1963
  ident: ref3
  article-title: Eine informationstheoretische ungleichung und ihre anwendung auf beweis der ergodizitaet von markoffschen ketten
  publication-title: Publ Math Inst Hungar Acad Sci
– ident: ref29
  doi: 10.1093/biomet/88.3.865
– ident: ref19
  doi: 10.1201/b10956
– start-page: 280
  year: 1968
  ident: ref31
  article-title: Analysis synthesis telephony based on the maximum likelihood method
  publication-title: Proc 6th Int Congr Acoust
– ident: ref12
  doi: 10.1111/j.2517-6161.1984.tb01318.x
– ident: ref27
  doi: 10.1111/j.1467-842X.2010.00574.x
– ident: ref37
  doi: 10.1017/CBO9780511804441
– volume: 95
  year: 1987
  ident: ref16
  publication-title: Convex Statistical Distances
– ident: ref9
  doi: 10.1214/aos/1176350820
– ident: ref8
  doi: 10.1080/01621459.1986.10478264
– ident: ref13
  doi: 10.1214/aos/1176325512
– year: 2006
  ident: ref18
  publication-title: Statistical Inference Based on Divergence Measures
– ident: ref1
  doi: 10.1080/14786440009463897
– year: 1989
  ident: ref17
  publication-title: Theory of Statistical Inference and Information
– volume: 2
  start-page: 229
  year: 1967
  ident: ref4
  article-title: Information-type measures of difference of probability distributions and indirect observation
  publication-title: Stud Sci Math Hungarica
– ident: ref5
  doi: 10.1111/j.2517-6161.1966.tb00626.x
– ident: ref2
  doi: 10.1214/aoms/1177707038
– ident: ref25
  doi: 10.1093/biomet/85.3.549
– ident: ref35
  doi: 10.1109/TIT.2003.813509
– year: 2018
  ident: ref33
  article-title: The B-exponential divergence and its generalizations with applications to parametric estimation
– ident: ref6
  doi: 10.1214/aoms/1177703732
– ident: ref10
  doi: 10.1080/01621459.1987.10478501
– year: 1992
  ident: ref22
  publication-title: Multivariate Density Estimation Theory Practice and Visualization
  doi: 10.1002/9780470316849
– ident: ref28
  doi: 10.1016/j.jspi.2012.03.019
– ident: ref7
  doi: 10.1214/aos/1176343842
– ident: ref30
  doi: 10.1109/TIT.2011.2178139
– volume: 6
  start-page: 1705
  year: 2005
  ident: ref34
  article-title: Clustering with bregman divergences
  publication-title: J Mach Learn Res
– year: 1985
  ident: ref20
  publication-title: Nonparametric Density Estimation The $L_ 1 $ View
– ident: ref21
  doi: 10.1007/978-1-4899-3324-9
– ident: ref23
  doi: 10.1201/b14876
– ident: ref39
  doi: 10.1006/jmva.1997.1731
– ident: ref26
  doi: 10.1016/j.jspi.2008.04.022
– ident: ref24
  doi: 10.1214/11-AIHP425
– ident: ref11
  doi: 10.1080/01621459.1989.10478744
SSID ssj0014512
Score 2.3465714
Snippet Divergence measures have been used for a long time for different purposes in information theory and statistics. In particular, density-based minimum divergence...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7976
SubjectTerms Bandwidth
Bregman divergence
characterization
Data models
Density
Divergence
Estimation
Information theory
Kernel
Kernels
Mathematical model
non-kernel divergence
Parameter estimation
Robustness
single-integral
Smoothing
Smoothing methods
Title A Characterization of All Single-Integral, Non-Kernel Divergence Estimators
URI https://ieeexplore.ieee.org/document/8813097
https://www.proquest.com/docview/2316570328
Volume 65
WOSCitedRecordID wos000512370800020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4MenG6K0yk5eBHWrW2avvQ45oZDGIITditNmoBQN9kP_36TtisDRfDUFpJS8jXvR_LyfQD3XLMQUaAjGSonQEwcoRQ6SRiip0zI4CU8F5vA2YwvFtFLDXrVWRilVF58pvr2Nt_LT1dyZ5fKBpwbixthHeqIYXFWq9oxCJhXMIN7ZgKbnGO_JelGg_l0bmu4or5xbcisfsyBC8o1VX4Y4ty7TJr_-64zOC2jSDIsYD-Hmlq2oLlXaCDlhG3ByQHdYBueh2RU8TMXxy_JSpNhlpFX0yBTzrQgj8h6ZGaVhdV6qTLyaEs3cs5OMjYG4cOm6ZsLeJuM56MnpxRTcCRluHVCHQZcpClPXCY15TrBQBt3T0VqQpKAicQTqFPGXZ26zFxTT2vGWChDpqlEegmN5WqproAkyvdE6vuSChqYByFopFiASSQ8ir7owGA_vrEsmcat4EUW5xmHG8UGkdgiEpeIdOCh6vFZsGz80bZtEajalYPfge4ewrichpvYBK-2tIf6_Pr3XjdwbN9d1Kd0obFd79QtHMmv7ftmfZf_Yd9-_M2V
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQH7-J0ah58EezWNk1P-jim4tgcghN8K02agFA32cXfb9IbA0XwqS0ktORrziU5-T6Aa65ZiCjQkQyVEyAmjlAKnSQM0VMmZPASnotN4GjE396i5zW4rc_CKKXy4jPVtrf5Xn46lUu7VNbh3FjcCNdhwypnlae16j2DgHkFN7hnprDJOqpNSTfqjPtjW8UVtY1zQ2YVZFacUK6q8sMU5_7lYe9_X7YPu2UcSboF8AewpiaHsFdpNJByyh7Czgrh4BEMuqRXMzQXBzDJVJNulpEX0yBTTr-gj8huychqC6vZRGXkzhZv5Kyd5N6YhA-bqM-P4fXhftx7dEo5BUdShgsn1GHARZryxGVSU64TDLRx-FSkJigJmEg8gTpl3NWpy8w19bRmjIUyZJpKpCfQmEwn6hRIonxPpL4vqaCBeRCCRooFmETCo-iLJnSq8Y1lyTVuJS-yOM853Cg2iMQWkbhEpAk3dY_Pgmfjj7ZHFoG6XTn4TWhVEMblRJzHJny1xT3U52e_97qCrcfx0zAe9keDc9i27ymqVVrQWMyW6gI25dfifT67zP-2b18c0N4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Characterization+of+All+Single-Integral%2C+Non-Kernel+Divergence+Estimators&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Jana%2C+Soham&rft.au=Basu%2C+Ayanendranath&rft.date=2019-12-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=65&rft.issue=12&rft.spage=7976&rft.epage=7984&rft_id=info:doi/10.1109%2FTIT.2019.2937527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2019_2937527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon