Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis

The purposes of this study were to assess whether CT texture analysis and CT features are predictive of pancreatic neuroendocrine tumor (PNET) grade based on the World Health Organization (WHO) classification and to identify features related to disease progression after surgery. Preoperative contras...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:American journal of roentgenology (1976) Ročník 210; číslo 2; s. 341
Hlavní autori: Canellas, Rodrigo, Burk, Kristine S, Parakh, Anushri, Sahani, Dushyant V
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.02.2018
Predmet:
ISSN:1546-3141, 1546-3141
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The purposes of this study were to assess whether CT texture analysis and CT features are predictive of pancreatic neuroendocrine tumor (PNET) grade based on the World Health Organization (WHO) classification and to identify features related to disease progression after surgery. Preoperative contrast-enhanced CT images of 101 patients with PNETs were assessed. The images were evaluated for tumor location, tumor size, tumor pattern, predominantly solid or cystic composition, presence of calcification, presence of heterogeneous enhancement on contrast-enhanced images, presence of pancreatic duct dilatation, presence of pancreatic atrophy, presence of vascular involvement by the tumor, and presence of lymphadenopathy. Texture features were also extracted from CT images. Surgically verified tumors were graded according to the WHO classification, and patients underwent CT or MRI follow-up after surgical resection. Data were analyzed with chi-square tests, kappa statistics, logistic regression analysis, and Kaplan-Meier curves. The CT features predictive of a more aggressive tumor (grades 2 and 3) were size larger than 2.0 cm (odds ratio [OR], 3.3; p = 0.014), presence of vascular involvement (OR, 25.2; p = 0.003), presence of pancreatic ductal dilatation (OR, 6.0; p = 0.002), and presence of lymphadenopathy (OR, 6.8; p = 0.002). The texture parameter entropy (OR, 3.7; p = 0.008) was also predictive of more aggressive tumors. Differences in progression-free survival distribution were found for grade 1 versus grades 2 and 3 tumors (χ [df, 1] = 21.6; p < 0.001); for PNETs with vascular involvement (χ [df, 1] = 20.8; p < 0.001); and for tumors with entropy (spatial scale filter 2) values greater than 4.65 (χ (df, 1) = 4.4; p = 0.037). CT texture analysis and CT features are predictive of PNET aggressiveness and can be used to identify patients at risk of early disease progression after surgical resection.
AbstractList The purposes of this study were to assess whether CT texture analysis and CT features are predictive of pancreatic neuroendocrine tumor (PNET) grade based on the World Health Organization (WHO) classification and to identify features related to disease progression after surgery. Preoperative contrast-enhanced CT images of 101 patients with PNETs were assessed. The images were evaluated for tumor location, tumor size, tumor pattern, predominantly solid or cystic composition, presence of calcification, presence of heterogeneous enhancement on contrast-enhanced images, presence of pancreatic duct dilatation, presence of pancreatic atrophy, presence of vascular involvement by the tumor, and presence of lymphadenopathy. Texture features were also extracted from CT images. Surgically verified tumors were graded according to the WHO classification, and patients underwent CT or MRI follow-up after surgical resection. Data were analyzed with chi-square tests, kappa statistics, logistic regression analysis, and Kaplan-Meier curves. The CT features predictive of a more aggressive tumor (grades 2 and 3) were size larger than 2.0 cm (odds ratio [OR], 3.3; p = 0.014), presence of vascular involvement (OR, 25.2; p = 0.003), presence of pancreatic ductal dilatation (OR, 6.0; p = 0.002), and presence of lymphadenopathy (OR, 6.8; p = 0.002). The texture parameter entropy (OR, 3.7; p = 0.008) was also predictive of more aggressive tumors. Differences in progression-free survival distribution were found for grade 1 versus grades 2 and 3 tumors (χ [df, 1] = 21.6; p < 0.001); for PNETs with vascular involvement (χ [df, 1] = 20.8; p < 0.001); and for tumors with entropy (spatial scale filter 2) values greater than 4.65 (χ (df, 1) = 4.4; p = 0.037). CT texture analysis and CT features are predictive of PNET aggressiveness and can be used to identify patients at risk of early disease progression after surgical resection.
The purposes of this study were to assess whether CT texture analysis and CT features are predictive of pancreatic neuroendocrine tumor (PNET) grade based on the World Health Organization (WHO) classification and to identify features related to disease progression after surgery.OBJECTIVEThe purposes of this study were to assess whether CT texture analysis and CT features are predictive of pancreatic neuroendocrine tumor (PNET) grade based on the World Health Organization (WHO) classification and to identify features related to disease progression after surgery.Preoperative contrast-enhanced CT images of 101 patients with PNETs were assessed. The images were evaluated for tumor location, tumor size, tumor pattern, predominantly solid or cystic composition, presence of calcification, presence of heterogeneous enhancement on contrast-enhanced images, presence of pancreatic duct dilatation, presence of pancreatic atrophy, presence of vascular involvement by the tumor, and presence of lymphadenopathy. Texture features were also extracted from CT images. Surgically verified tumors were graded according to the WHO classification, and patients underwent CT or MRI follow-up after surgical resection. Data were analyzed with chi-square tests, kappa statistics, logistic regression analysis, and Kaplan-Meier curves.MATERIALS AND METHODSPreoperative contrast-enhanced CT images of 101 patients with PNETs were assessed. The images were evaluated for tumor location, tumor size, tumor pattern, predominantly solid or cystic composition, presence of calcification, presence of heterogeneous enhancement on contrast-enhanced images, presence of pancreatic duct dilatation, presence of pancreatic atrophy, presence of vascular involvement by the tumor, and presence of lymphadenopathy. Texture features were also extracted from CT images. Surgically verified tumors were graded according to the WHO classification, and patients underwent CT or MRI follow-up after surgical resection. Data were analyzed with chi-square tests, kappa statistics, logistic regression analysis, and Kaplan-Meier curves.The CT features predictive of a more aggressive tumor (grades 2 and 3) were size larger than 2.0 cm (odds ratio [OR], 3.3; p = 0.014), presence of vascular involvement (OR, 25.2; p = 0.003), presence of pancreatic ductal dilatation (OR, 6.0; p = 0.002), and presence of lymphadenopathy (OR, 6.8; p = 0.002). The texture parameter entropy (OR, 3.7; p = 0.008) was also predictive of more aggressive tumors. Differences in progression-free survival distribution were found for grade 1 versus grades 2 and 3 tumors (χ2 [df, 1] = 21.6; p < 0.001); for PNETs with vascular involvement (χ2 [df, 1] = 20.8; p < 0.001); and for tumors with entropy (spatial scale filter 2) values greater than 4.65 (χ2 (df, 1) = 4.4; p = 0.037).RESULTSThe CT features predictive of a more aggressive tumor (grades 2 and 3) were size larger than 2.0 cm (odds ratio [OR], 3.3; p = 0.014), presence of vascular involvement (OR, 25.2; p = 0.003), presence of pancreatic ductal dilatation (OR, 6.0; p = 0.002), and presence of lymphadenopathy (OR, 6.8; p = 0.002). The texture parameter entropy (OR, 3.7; p = 0.008) was also predictive of more aggressive tumors. Differences in progression-free survival distribution were found for grade 1 versus grades 2 and 3 tumors (χ2 [df, 1] = 21.6; p < 0.001); for PNETs with vascular involvement (χ2 [df, 1] = 20.8; p < 0.001); and for tumors with entropy (spatial scale filter 2) values greater than 4.65 (χ2 (df, 1) = 4.4; p = 0.037).CT texture analysis and CT features are predictive of PNET aggressiveness and can be used to identify patients at risk of early disease progression after surgical resection.CONCLUSIONCT texture analysis and CT features are predictive of PNET aggressiveness and can be used to identify patients at risk of early disease progression after surgical resection.
Author Parakh, Anushri
Canellas, Rodrigo
Burk, Kristine S
Sahani, Dushyant V
Author_xml – sequence: 1
  givenname: Rodrigo
  surname: Canellas
  fullname: Canellas, Rodrigo
  organization: 1 Department of Radiology, Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, White 270, 55 Fruit St, Boston, MA 02114
– sequence: 2
  givenname: Kristine S
  surname: Burk
  fullname: Burk, Kristine S
  organization: 1 Department of Radiology, Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, White 270, 55 Fruit St, Boston, MA 02114
– sequence: 3
  givenname: Anushri
  surname: Parakh
  fullname: Parakh, Anushri
  organization: 1 Department of Radiology, Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, White 270, 55 Fruit St, Boston, MA 02114
– sequence: 4
  givenname: Dushyant V
  surname: Sahani
  fullname: Sahani, Dushyant V
  organization: 1 Department of Radiology, Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, White 270, 55 Fruit St, Boston, MA 02114
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29140113$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1Lw0AQhhdR7IfePMsevaRmNpuPPdZiq1K0SDxKmO5OIJLu1t0E7L83YgVP8w7vM89hJuzUOkuMXUE8EwLk7fzpdQb5DAoJ-QkbQyqzKAEJp__yiE1C-IjjOC9Ufs5GQoGMAZIxe994Mo3uGme5q_kGrfaEXaP5M_XekTVO-8YSL_ud83zl0RC_w0CGDxeLki8HuvcUOFrDS_r6WfjcYnsITbhgZzW2gS6Pc8relvfl4iFav6weF_N1pJM076JM5ypVCLIWKoa0zuNCKyyk1BqEMkpuUaTFllCIodHZgBqiItNJrZFQiym7-fXuvfvsKXTVrgma2hYtuT5UoDI5SJNEDuj1Ee23OzLV3jc79Ifq7yXiG5whZF8
CitedBy_id crossref_primary_10_1007_s42058_023_00124_x
crossref_primary_10_1007_s00330_020_07376_6
crossref_primary_10_1016_j_acra_2020_01_002
crossref_primary_10_1007_s00259_021_05338_8
crossref_primary_10_1259_bjr_20230503
crossref_primary_10_3390_healthcare10061039
crossref_primary_10_1177_17588359231179310
crossref_primary_10_3390_cancers13143607
crossref_primary_10_1007_s00330_022_08996_w
crossref_primary_10_3892_ol_2019_10378
crossref_primary_10_3390_cancers13153766
crossref_primary_10_1002_cam4_1746
crossref_primary_10_1007_s00261_025_04865_4
crossref_primary_10_1007_s11547_021_01333_z
crossref_primary_10_1159_000503291
crossref_primary_10_3389_fonc_2023_979437
crossref_primary_10_1016_j_acra_2023_07_024
crossref_primary_10_1007_s00261_025_04921_z
crossref_primary_10_1111_jgh_15380
crossref_primary_10_3390_diagnostics11050870
crossref_primary_10_1186_s12880_025_01555_x
crossref_primary_10_3389_fendo_2025_1616523
crossref_primary_10_3390_jcm12206510
crossref_primary_10_1002_ueg2_12723
crossref_primary_10_1007_s00330_019_06176_x
crossref_primary_10_1016_j_acra_2019_07_012
crossref_primary_10_3390_diagnostics13182877
crossref_primary_10_1016_j_diii_2023_09_001
crossref_primary_10_1097_JP9_0000000000000139
crossref_primary_10_1097_MPA_0000000000001495
crossref_primary_10_1016_j_ejrad_2021_109803
crossref_primary_10_1007_s00261_019_02372_x
crossref_primary_10_1007_s11307_023_01832_7
crossref_primary_10_3390_cancers14071654
crossref_primary_10_3389_fonc_2024_1332387
crossref_primary_10_1186_s12876_023_03076_9
crossref_primary_10_1007_s00330_019_06583_0
crossref_primary_10_1186_s40644_018_0170_8
crossref_primary_10_3389_fonc_2021_606677
crossref_primary_10_3748_wjg_v28_i26_3008
crossref_primary_10_1007_s00261_018_1763_1
crossref_primary_10_1177_0284185120946711
crossref_primary_10_3390_cancers13102448
crossref_primary_10_1186_s12944_022_01669_z
crossref_primary_10_1097_RCT_0000000000001049
crossref_primary_10_1007_s00261_022_03430_7
crossref_primary_10_1016_j_acra_2021_05_017
crossref_primary_10_1097_RCT_0000000000001443
crossref_primary_10_2147_CMAR_S245344
crossref_primary_10_3233_CBM_220080
crossref_primary_10_3390_cancers12061486
crossref_primary_10_1007_s00330_020_06867_w
crossref_primary_10_3390_cancers13184710
crossref_primary_10_1080_17474124_2024_2342837
crossref_primary_10_3166_onco_2019_0046
crossref_primary_10_1109_JBHI_2023_3293009
crossref_primary_10_3390_diagnostics13020238
crossref_primary_10_1371_journal_pone_0211566
crossref_primary_10_1186_s12880_020_00442_x
crossref_primary_10_1109_JBHI_2021_3070708
crossref_primary_10_1177_02841851221106598
crossref_primary_10_1007_s00261_021_03230_5
crossref_primary_10_1007_s11547_021_01405_0
crossref_primary_10_1007_s00330_023_10186_1
crossref_primary_10_1053_j_sult_2019_08_001
crossref_primary_10_3390_diagnostics12020397
crossref_primary_10_1016_j_ejrad_2021_110100
crossref_primary_10_1080_21681163_2025_2500429
crossref_primary_10_1016_j_ejmp_2018_12_005
crossref_primary_10_1016_j_critrevonc_2022_103713
crossref_primary_10_1007_s00330_021_08316_8
crossref_primary_10_1007_s11547_022_01529_x
crossref_primary_10_2217_fon_2022_1136
crossref_primary_10_1016_j_diii_2020_06_006
crossref_primary_10_1155_2018_6878409
crossref_primary_10_1007_s00261_020_02706_0
crossref_primary_10_1016_j_ejrad_2019_108778
crossref_primary_10_1080_14737140_2018_1496822
crossref_primary_10_3390_healthcare10081511
crossref_primary_10_1007_s12020_023_03515_3
crossref_primary_10_3390_cancers17061047
crossref_primary_10_5114_pjr_191838
crossref_primary_10_1097_MPA_0000000000001927
crossref_primary_10_3389_fonc_2020_521831
crossref_primary_10_1067_j_cpradiol_2020_08_002
crossref_primary_10_1186_s40644_023_00549_8
crossref_primary_10_1007_s00261_018_01889_x
crossref_primary_10_1016_j_ejrad_2023_111284
crossref_primary_10_3389_fonc_2020_00831
crossref_primary_10_1007_s00261_020_02833_8
crossref_primary_10_1158_1078_0432_CCR_18_1305
crossref_primary_10_1007_s00261_022_03466_9
crossref_primary_10_1038_s44276_023_00010_0
crossref_primary_10_1016_j_ejrad_2019_108743
crossref_primary_10_1097_MD_0000000000020093
crossref_primary_10_1007_s11604_020_01057_6
crossref_primary_10_1016_j_diii_2020_03_002
crossref_primary_10_1007_s11604_020_01038_9
crossref_primary_10_1007_s40336_024_00617_4
crossref_primary_10_1016_j_heliyon_2024_e34344
crossref_primary_10_1002_jmri_27176
crossref_primary_10_1109_TMI_2020_3021254
crossref_primary_10_1007_s00330_022_09351_9
crossref_primary_10_3390_endocrines2010003
crossref_primary_10_1007_s00261_020_02406_9
crossref_primary_10_1007_s00261_024_04759_x
crossref_primary_10_1259_bjr_20220783
crossref_primary_10_5306_wjco_v12_i10_897
crossref_primary_10_1016_j_pan_2019_05_462
crossref_primary_10_7555_JBR_34_20200039
crossref_primary_10_1007_s00261_022_03713_z
crossref_primary_10_1016_j_beem_2023_101827
crossref_primary_10_1016_j_hbpd_2021_12_006
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2214/AJR.17.18417
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1546-3141
ExternalDocumentID 29140113
Genre Journal Article
GroupedDBID ---
-DD
.55
.GJ
1CY
1KJ
23M
2WC
34G
39C
3O-
53G
5GY
5RE
AAEJM
AAWTL
ABOCM
ACRZS
ADBBV
AENEX
AFFNX
AI.
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CGR
CS3
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
J5H
L7B
LSO
MJL
NPM
P2P
SJN
TR2
TRR
TWZ
UDS
VH1
W2D
W8F
WH7
WOQ
X7M
YJK
YQI
YQJ
ZGI
ZVN
ZXP
7X8
ID FETCH-LOGICAL-c357t-6c7959a14f29015f708c9a844cc129d94ba258bea2208cc69a1dee86c3fcaeac2
IEDL.DBID 7X8
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423108800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-3141
IngestDate Thu Oct 02 11:38:43 EDT 2025
Thu Apr 03 07:01:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CT texture analysis
pancreatic neuroendocrine tumors
WHO classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-6c7959a14f29015f708c9a844cc129d94ba258bea2208cc69a1dee86c3fcaeac2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29140113
PQID 1964708334
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1964708334
pubmed_primary_29140113
PublicationCentury 2000
PublicationDate 2018-Feb
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of roentgenology (1976)
PublicationTitleAlternate AJR Am J Roentgenol
PublicationYear 2018
SSID ssj0007897
Score 2.580448
Snippet The purposes of this study were to assess whether CT texture analysis and CT features are predictive of pancreatic neuroendocrine tumor (PNET) grade based on...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 341
SubjectTerms Contrast Media
Disease Progression
Female
Humans
Magnetic Resonance Imaging
Male
Middle Aged
Neoplasm Grading
Neuroendocrine Tumors - diagnostic imaging
Neuroendocrine Tumors - pathology
Neuroendocrine Tumors - surgery
Pancreatic Neoplasms - diagnostic imaging
Pancreatic Neoplasms - pathology
Pancreatic Neoplasms - surgery
Postoperative Complications - diagnostic imaging
Predictive Value of Tests
Radiographic Image Interpretation, Computer-Assisted
Retrospective Studies
Tomography, X-Ray Computed
Title Prediction of Pancreatic Neuroendocrine Tumor Grade Based on CT Features and Texture Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/29140113
https://www.proquest.com/docview/1964708334
Volume 210
WOSCitedRecordID wos000423108800024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qRHzxfpk3IvjarU2Tpn2SOZwibBSpsBcpuYIPtrPb_P2etB178UHwJbS0oWlyevKdnPT7ELpLtAwMo6EHjk9B4VsvcVyElsN8rWPmh6YRm-CTSTydJmm74DZvt1WufGLtqHWp3Bp53xFHccALIb2ffXlONcplV1sJjU3UCQHKOKvm0zVbOI8bcRVGI_A1NGg2vhMS0P7g5bUX8B7EN61U2a_gsp5kRvv_bd4B2mvhJR409nCINkxxhHbGbQL9GL2nlTt2o4FLi1MY8xo1KlyzdJgCnuT-B8TZ8rOs8FMltMEPMNNpDDWGGXaQcQkhOhaFxhl4djjBK2aTE_Q2esyGz16rsOCpkPGFFyknNS4Cal06lVl4A5WImFKlAAfohEpBWCyNIASuqAhu1cbEkQqtEuCyySnaKsrCnCOsGJNc84g5zjPrWyEDX1AN8FBKGSWki25XHZeDBbu0hChMuZzn667rorOm9_NZQ7WRk8QFgEF48Yfal2gX0EzcbKm-Qh0L36-5Rtvqe_Exr25q04Byko5_ACd1wtE
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Pancreatic+Neuroendocrine+Tumor+Grade+Based+on+CT+Features+and+Texture+Analysis&rft.jtitle=American+journal+of+roentgenology+%281976%29&rft.au=Canellas%2C+Rodrigo&rft.au=Burk%2C+Kristine+S&rft.au=Parakh%2C+Anushri&rft.au=Sahani%2C+Dushyant+V&rft.date=2018-02-01&rft.eissn=1546-3141&rft.volume=210&rft.issue=2&rft.spage=341&rft_id=info:doi/10.2214%2FAJR.17.18417&rft_id=info%3Apmid%2F29140113&rft_id=info%3Apmid%2F29140113&rft.externalDocID=29140113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-3141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-3141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-3141&client=summon