Robust WiFi Localization by Fusing Derivative Fingerprints of RSS and Multiple Classifiers
It is notable that localization accuracy using received signal strength (RSS) fingerprints solely is very vulnerable to dynamic environments. Utilizing multiple fingerprints gleaned from RSS for localization is a propitious strategy to overcome the RSS susceptibility. Brimful utilization via fusing...
Saved in:
| Published in: | IEEE transactions on industrial informatics Vol. 16; no. 5; pp. 3177 - 3186 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1551-3203, 1941-0050 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | It is notable that localization accuracy using received signal strength (RSS) fingerprints solely is very vulnerable to dynamic environments. Utilizing multiple fingerprints gleaned from RSS for localization is a propitious strategy to overcome the RSS susceptibility. Brimful utilization via fusing multiple fingerprint functions which supplement each other are not harnessed by existing fusion-based techniques, resulting in low localization accuracy. This paper presents a novel and robust WiFi localization modus operandi by fusing DerIvative Fingerprints of RSS with MultIple Classifiers (DIFMIC). DIFMIC first constructs a multiple fingerprints group by gleaning hyperbolic location fingerprint (HLF) and signal strength differences fingerprint (DIFF) from RSS fingerprints. Then, it obtains Multiple Fingerprints Trained Classifiers (MFTCs) via training each basic classifier with each fingerprint. To fully leverage the inherent supplementation among fingerprints and classifiers, a two-layer fusion profile (weights) joint optimization algorithm with multiple constraints is proposed. We also propose a Fusion Profile Selection (FPS) algorithm to intelligently choose fusion weights from the two-layer fusion profile for a more accurate localization. DIFMIC shows more leverage in combining multiple information, thus exhibiting better robustness in WiFi positioning. Results from our experiments reflect that DIFMIC performs better than other existing methods in real environments. |
|---|---|
| AbstractList | It is notable that localization accuracy using received signal strength (RSS) fingerprints solely is very vulnerable to dynamic environments. Utilizing multiple fingerprints gleaned from RSS for localization is a propitious strategy to overcome the RSS susceptibility. Brimful utilization via fusing multiple fingerprint functions which supplement each other are not harnessed by existing fusion-based techniques, resulting in low localization accuracy. This paper presents a novel and robust WiFi localization modus operandi by fusing DerIvative Fingerprints of RSS with MultIple Classifiers (DIFMIC). DIFMIC first constructs a multiple fingerprints group by gleaning hyperbolic location fingerprint (HLF) and signal strength differences fingerprint (DIFF) from RSS fingerprints. Then, it obtains Multiple Fingerprints Trained Classifiers (MFTCs) via training each basic classifier with each fingerprint. To fully leverage the inherent supplementation among fingerprints and classifiers, a two-layer fusion profile (weights) joint optimization algorithm with multiple constraints is proposed. We also propose a Fusion Profile Selection (FPS) algorithm to intelligently choose fusion weights from the two-layer fusion profile for a more accurate localization. DIFMIC shows more leverage in combining multiple information, thus exhibiting better robustness in WiFi positioning. Results from our experiments reflect that DIFMIC performs better than other existing methods in real environments. |
| Author | Elikplim, Nkrow Raphael Ansari, Nirwan Wang, Lei Li, Lin Guo, Xiansheng |
| Author_xml | – sequence: 1 givenname: Xiansheng orcidid: 0000-0002-8440-1607 surname: Guo fullname: Guo, Xiansheng email: xsguo@uestc.edu.cn organization: Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Nkrow Raphael orcidid: 0000-0003-0223-943X surname: Elikplim fullname: Elikplim, Nkrow Raphael email: nkrowraph@gmail.com organization: Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Nirwan orcidid: 0000-0001-8541-3565 surname: Ansari fullname: Ansari, Nirwan email: nirwan.ansari@njit.edu organization: Department of Electrical and Computer Engineering, Advanced Networking Laboratory, New Jersey Institute of Technology, Newark, NJ, USA – sequence: 4 givenname: Lin orcidid: 0000-0002-8383-7468 surname: Li fullname: Li, Lin email: linli9419@gmail.com organization: Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Lei orcidid: 0000-0002-0979-9520 surname: Wang fullname: Wang, Lei email: louiewang@foxmail.com organization: Department of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNp9kM9LwzAUx4NMcJveBS8Bz515TdIlR5lWBxNhmwheStamklGbmaSD-debueHBg6f3g-_3fXmfAeq1ttUIXQIZARB5s5xORykBOUolkCxjJ6gPkkFCCCe92HMOCU0JPUMD79eE0DGhso_e5nbV-YBfTW7wzJaqMV8qGNvi1Q7nnTftO77TzmzjcqtxHmftNs60wWNb4_ligVVb4aeuCWbTaDxplPemNtr5c3Raq8bri2Mdopf8fjl5TGbPD9PJ7SwpKR-HJFuxmnPJWEYrqFMoq1KCEABMga4k5VoSJRXwkopMiYqlNYOxXCnBNJeQ0iG6PtzdOPvZaR-Kte1cGyOLlHIhgRMho4ocVKWz3jtdF_GLD-V2BZBiT7CIBIs9weJIMFqyP5bShB84wSnT_Ge8OhiN1vo3R2RCsEj9G6ATfso |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1016_j_compeleceng_2021_107619 crossref_primary_10_1007_s11036_023_02127_5 crossref_primary_10_1080_19479832_2020_1864788 crossref_primary_10_1109_JSEN_2024_3432154 crossref_primary_10_1109_JSEN_2025_3586680 crossref_primary_10_1088_1361_6501_add6c2 crossref_primary_10_1109_JIOT_2025_3525722 crossref_primary_10_1109_JSEN_2022_3172860 crossref_primary_10_3389_fphy_2020_619363 crossref_primary_10_1109_JIOT_2021_3098356 crossref_primary_10_3390_s22249899 crossref_primary_10_1109_TIM_2025_3557108 crossref_primary_10_1088_1757_899X_1244_1_012007 crossref_primary_10_1007_s11036_020_01680_7 crossref_primary_10_1109_TVT_2019_2923143 crossref_primary_10_3390_s24216876 crossref_primary_10_3390_a16110529 crossref_primary_10_1109_TIM_2023_3284938 crossref_primary_10_1007_s12145_024_01580_4 crossref_primary_10_1016_j_phycom_2022_101829 crossref_primary_10_1109_JIOT_2025_3562271 crossref_primary_10_1109_MCOM_001_1900737 crossref_primary_10_1109_JSEN_2020_3023096 crossref_primary_10_1109_TII_2024_3413342 crossref_primary_10_3390_ijgi11010071 crossref_primary_10_1109_TMC_2021_3131318 crossref_primary_10_3390_s22239127 crossref_primary_10_1109_COMST_2022_3178209 crossref_primary_10_1109_JIOT_2023_3297521 crossref_primary_10_1109_TGCN_2019_2956626 crossref_primary_10_1109_TVT_2021_3121470 crossref_primary_10_1007_s12555_020_0978_4 crossref_primary_10_1109_JIOT_2023_3330736 crossref_primary_10_1109_JSAC_2024_3414000 crossref_primary_10_1109_JSAC_2023_3322759 crossref_primary_10_1109_TNSE_2022_3233004 crossref_primary_10_3390_s24134128 crossref_primary_10_3390_s24020550 crossref_primary_10_1109_TNSE_2023_3304986 crossref_primary_10_3390_s20195476 crossref_primary_10_1016_j_sigpro_2021_108030 crossref_primary_10_1109_ACCESS_2020_3012717 crossref_primary_10_1109_JIOT_2023_3329825 crossref_primary_10_1002_int_22712 crossref_primary_10_1109_ACCESS_2021_3126148 crossref_primary_10_1109_TWC_2022_3142064 crossref_primary_10_1109_JIOT_2021_3053632 crossref_primary_10_1109_TNSE_2019_2942266 crossref_primary_10_1002_aisy_202300292 crossref_primary_10_3390_rs14236052 crossref_primary_10_1109_TWC_2025_3563766 crossref_primary_10_1109_LWC_2022_3152610 crossref_primary_10_1109_JIOT_2022_3210686 crossref_primary_10_1109_JIOT_2021_3095185 crossref_primary_10_1109_TII_2024_3485769 crossref_primary_10_1109_TVT_2021_3131909 crossref_primary_10_1109_TIM_2021_3050169 crossref_primary_10_1109_ACCESS_2020_3018140 crossref_primary_10_1109_TWC_2024_3408925 crossref_primary_10_1002_int_22524 crossref_primary_10_1109_JIOT_2024_3355164 crossref_primary_10_3390_s22155917 crossref_primary_10_1109_JIOT_2022_3208367 crossref_primary_10_1109_JIOT_2024_3521084 crossref_primary_10_1109_TVT_2019_2961086 crossref_primary_10_1109_COMST_2019_2951036 crossref_primary_10_1109_TCCN_2023_3330062 crossref_primary_10_1109_TVT_2023_3275203 crossref_primary_10_1109_TITS_2023_3309963 crossref_primary_10_4018_IJWLTT_330428 crossref_primary_10_1109_JSEN_2024_3352669 crossref_primary_10_1109_ACCESS_2020_3007147 crossref_primary_10_1109_TII_2022_3217533 crossref_primary_10_1109_TII_2022_3218666 crossref_primary_10_1016_j_measurement_2020_108689 crossref_primary_10_1109_MIE_2022_3205431 crossref_primary_10_1109_JIOT_2021_3097511 crossref_primary_10_1109_LAWP_2022_3230819 crossref_primary_10_1109_TWC_2021_3052606 crossref_primary_10_1109_TVT_2019_2934416 crossref_primary_10_1007_s10846_021_01500_4 crossref_primary_10_1109_TIM_2022_3179474 crossref_primary_10_1109_TNSE_2023_3300768 |
| Cites_doi | 10.1109/TSMCC.2007.905750 10.1109/TMC.2011.243 10.1109/JSEN.2016.2558184 10.1145/2639108.2639142 10.1109/TWC.2008.070373 10.1145/3090094 10.1109/LCOMM.2012.022112.120131 10.1109/TNET.2017.2680448 10.1109/JIOT.2017.2787594 10.1145/2543581.2543592 10.1109/TMC.2007.42 10.1109/SURV.2009.090103 10.1145/2829988.2787487 10.1007/978-3-642-04385-7_6 10.1109/TVT.2018.2833029 10.1109/JIOT.2018.2870659 10.1109/TWC.2011.101211.101957 10.1109/TCOMM.2015.2442989 10.1109/COMST.2015.2464084 10.1109/TVT.2017.2731874 10.1109/TWC.2014.2314640 10.1109/TWC.2010.05.090061 10.3390/data3010003 10.1145/2676430 10.1023/A:1016003126882 10.1109/TVT.2012.2225074 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2019.2910664 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 3186 |
| ExternalDocumentID | 10_1109_TII_2019_2910664 8688470 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Application Foundation Projects of Science – fundername: Technology Department in Sichuan Province grantid: 2018JY0242; 2018JY0218 – fundername: National Natural Science Foundation of China grantid: 61371184; 61671137; 61771114; 61771316 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c357t-6b4f5594463d1f21cdc9188114a1ed935e90a9a15c386a8d42f4179ba84e59123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519588700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:19:42 EDT 2025 Tue Nov 18 21:35:28 EST 2025 Sat Nov 29 04:16:51 EST 2025 Wed Aug 27 02:36:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-6b4f5594463d1f21cdc9188114a1ed935e90a9a15c386a8d42f4179ba84e59123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8440-1607 0000-0002-0979-9520 0000-0001-8541-3565 0000-0003-0223-943X 0000-0002-8383-7468 |
| PQID | 2358915089 |
| PQPubID | 85507 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TII_2019_2910664 ieee_primary_8688470 crossref_primary_10_1109_TII_2019_2910664 proquest_journals_2358915089 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 wang (ref19) 0 ref10 ref2 ref1 ref17 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 kjrgaard (ref16) 0 ref29 ref8 (ref30) 0 ref7 ref9 ref4 ref3 ref6 ref5 gwon (ref11) 0 |
| References_xml | – ident: ref26 doi: 10.1109/TSMCC.2007.905750 – ident: ref13 doi: 10.1109/TMC.2011.243 – ident: ref2 doi: 10.1109/JSEN.2016.2558184 – ident: ref22 doi: 10.1145/2639108.2639142 – ident: ref27 doi: 10.1109/TWC.2008.070373 – ident: ref14 doi: 10.1145/3090094 – year: 0 ident: ref16 article-title: Hyperbolic location fingerprinting: A calibration-free solution for handling differences in signal strength – ident: ref10 doi: 10.1109/LCOMM.2012.022112.120131 – ident: ref24 doi: 10.1109/TNET.2017.2680448 – ident: ref20 doi: 10.1109/JIOT.2017.2787594 – ident: ref5 doi: 10.1145/2543581.2543592 – ident: ref25 doi: 10.1109/TMC.2007.42 – year: 0 ident: ref30 article-title: Airocov – ident: ref1 doi: 10.1109/SURV.2009.090103 – ident: ref15 doi: 10.1145/2829988.2787487 – ident: ref17 doi: 10.1007/978-3-642-04385-7_6 – year: 0 ident: ref11 article-title: Robust indoor location estimation of stationary and mobile users – ident: ref12 doi: 10.1109/TVT.2018.2833029 – ident: ref21 doi: 10.1109/JIOT.2018.2870659 – ident: ref9 doi: 10.1109/TWC.2011.101211.101957 – ident: ref28 doi: 10.1109/TCOMM.2015.2442989 – ident: ref4 doi: 10.1109/COMST.2015.2464084 – year: 0 ident: ref19 article-title: Fusion of multiple positioning algorithms – ident: ref6 doi: 10.1109/TVT.2017.2731874 – ident: ref7 doi: 10.1109/TWC.2014.2314640 – ident: ref18 doi: 10.1109/TWC.2010.05.090061 – ident: ref29 doi: 10.3390/data3010003 – ident: ref23 doi: 10.1145/2676430 – ident: ref3 doi: 10.1023/A:1016003126882 – ident: ref8 doi: 10.1109/TVT.2012.2225074 |
| SSID | ssj0037039 |
| Score | 2.5705874 |
| Snippet | It is notable that localization accuracy using received signal strength (RSS) fingerprints solely is very vulnerable to dynamic environments. Utilizing... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3177 |
| SubjectTerms | Algorithms Classifiers Fingerprint recognition Fingerprints indoor localization Localization Machine learning Machine learning algorithms Optimization Position measurement received signal strength (RSS) Robustness Signal strength Training two-layer fusion profile WiFi Wireless fidelity |
| Title | Robust WiFi Localization by Fusing Derivative Fingerprints of RSS and Multiple Classifiers |
| URI | https://ieeexplore.ieee.org/document/8688470 https://www.proquest.com/docview/2358915089 |
| Volume | 16 |
| WOSCitedRecordID | wos000519588700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBrylOp-TgRbBb26xtchS1OJhDtqnDS0mTVArSytoN_O_Ny9qhKIK3Hl6gvF_6Xn_vE6Fz4hBJoLuHECkgzais2E1sKwmEy1RAE9sUYz4NguGQTqfsYQ1drnphlFKm-Ex14NHk8mUu5hAq61KfamOqCfp6EPjLXq3a6hJ9c5mZjeo5FnFtUqckbdad9PtQw8U6rvaNvt_75oLMTpUfhth4l3Dnf--1i7arv0h8tYR9D62pbB9tfZkt2EQvozyeFyV-TsMUD8BjVR2XOP7AIZS7v-IbLbswk79xaMJ7EOUrC5wneDQeY55JfF8VHGKzPTNNYHP2AXoMbyfXd1a1SMESxAtKy497iWYOmvkR6SSuI6RgDqWaCnFHSUY8xWzOuOMJQn1OZc9NYDFZzGlPw6h92yFqZHmmjhAW0vG5pDGFjlpPMiqY0Aw75hoBQjzRQt1at5GopozDsou3yLANm0UajQjQiCo0WuhideJ9OWHjD9kmaH8lVym-hdo1fFH1CRYR9AAzmHbPjn8_dYI2XSDPpnqxjRrlbK5O0YZYlGkxOzO36xOfEMt3 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6MKagP3sV5zYMvgt3aZm2TR1GLwzlE5wVfSpukUpBNtk7w35uTpUNRBN_6kEDJl57T79w-gCPqUUmxu4dSKTDNqJzMz10nj4TPVcRy1xRjPnSjXo89PfGbGpzMemGUUqb4TDXx0eTy5VBMMFTWYiHTxlQT9DlUzrLdWpXdpfrucjMdNfAc6ru0Skq6vNXvdLCKizd97R3DsP3NCRlVlR-m2PiXeOV_b7YKy_Y_kpxOgV-Dmhqsw9KX6YIb8Hw7zCbjkjwWcUG66LNszyXJPkiMBe8v5FyvfTezv0lsAnwY5yvHZJiT27s7kg4kubYlh8ToZxY5amdvwn180T-7dKyUgiNoEJVOmLVzzR0096PSy31PSME9xjQZSj0lOQ0Ud1OeeoGgLEyZbPs5SpNlKWtrILV324L6YDhQ20CE9MJUsoxhT20gORNcaI6dpRoBSgPRgFZ1tomwc8ZR7uI1MXzD5YlGI0E0EotGA45nO96mMzb-WLuBpz9bZw--AXsVfIn9CMcJdgFznHfPd37fdQgLl_3rbtLt9K52YdFHKm1qGfegXo4mah_mxXtZjEcH5qZ9AmR4zsA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+WiFi+Localization+by+Fusing+Derivative+Fingerprints+of+RSS+and+Multiple+Classifiers&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Guo%2C+Xiansheng&rft.au=Nkrow%2C+Raphael+Elikplim&rft.au=Ansari%2C+Nirwan&rft.au=Li%2C+Lin&rft.date=2020-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=5&rft.spage=3177&rft_id=info:doi/10.1109%2FTII.2019.2910664&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |