Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in SAGIN
In this article, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloa...
Uloženo v:
| Vydáno v: | IEEE transactions on wireless communications Ročník 20; číslo 2; s. 911 - 925 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1536-1276, 1558-2248 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this article, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions, in which the tasks can be processed at the UAV or offloaded to the nearby base station or the remote satellite. Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint. To this end, we first formulate the online scheduling problem as an energy-constrained Markov decision process (MDP). Then, considering the task arrival dynamics, we develop a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the algorithm evaluates the risk, which measures the energy consumption that exceeds the constraint, for each state and searches the optimal parameter weighing the minimization of delay and risk while learning the optimal policy. Extensive simulation results demonstrate that the proposed algorithm can reduce the task processing delay by up to 30% compared to probabilistic configuration methods while satisfying the UAV energy capacity constraint. |
|---|---|
| AbstractList | In this article, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions, in which the tasks can be processed at the UAV or offloaded to the nearby base station or the remote satellite. Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint. To this end, we first formulate the online scheduling problem as an energy-constrained Markov decision process (MDP). Then, considering the task arrival dynamics, we develop a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the algorithm evaluates the risk, which measures the energy consumption that exceeds the constraint, for each state and searches the optimal parameter weighing the minimization of delay and risk while learning the optimal policy. Extensive simulation results demonstrate that the proposed algorithm can reduce the task processing delay by up to 30% compared to probabilistic configuration methods while satisfying the UAV energy capacity constraint. |
| Author | Zhou, Conghao He, Hongli Yang, Peng Shen, Xuemin Lyu, Feng Cheng, Nan Wu, Wen |
| Author_xml | – sequence: 1 givenname: Conghao orcidid: 0000-0002-5727-2432 surname: Zhou fullname: Zhou, Conghao email: c89zhou@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: Wen orcidid: 0000-0002-0458-1282 surname: Wu fullname: Wu, Wen email: w77wu@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada – sequence: 3 givenname: Hongli orcidid: 0000-0002-1283-2168 surname: He fullname: He, Hongli email: hongli_he@zju.edu.cn organization: School of Information Engineering, Zhejiang University, Hangzhou, China – sequence: 4 givenname: Peng orcidid: 0000-0001-8964-0597 surname: Yang fullname: Yang, Peng email: yangpeng@hust.edu.cn organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China – sequence: 5 givenname: Feng orcidid: 0000-0002-2990-5415 surname: Lyu fullname: Lyu, Feng email: fenglyu@csu.edu.cn organization: School of Computer Science and Engineering, Central South University, Changsha, China – sequence: 6 givenname: Nan orcidid: 0000-0001-7907-2071 surname: Cheng fullname: Cheng, Nan email: nancheng@xidian.edu.cn organization: Key State Laboratory of ISN, Xidian University, Xi'an, China – sequence: 7 givenname: Xuemin orcidid: 0000-0002-4140-287X surname: Shen fullname: Shen, Xuemin email: sshen@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada |
| BookMark | eNp9kLtPwzAQxi1UJNrCjsRiiTnFzzzGqoVSUVGJBjFajnMGl9QpTjr0vydREQMD053uvu8evxEa-NoDQteUTCgl2V3-NpswwsiEE5ZRwc_QkEqZRoyJdNDnPI4oS-ILNGqaLSE0iaUcoqc5wB6_gPO2DgZ24Fu8Ah288--4K-E5VPoYrYPrOlDiZZ3jXDefeGM-oDxUvcx5vJkuls-X6NzqqoGrnzhGrw_3-ewxWq0Xy9l0FRkukzaKhbRgUmZkWcbSdkdbC6kWhWAc4qIQRsqkLDJRZBI4EZRl0kpbEs0Kk2aMj9Htae4-1F8HaFq1rQ_BdytV92yaCJEK0anISWVC3TQBrNoHt9PhqChRPTLVIVM9MvWDrLPEfyzGtbp1tW-DdtV_xpuT0QHA756MMSZpxr8BsmV5Mw |
| CODEN | ITWCAX |
| CitedBy_id | crossref_primary_10_1109_TVT_2023_3345940 crossref_primary_10_1109_LCOMM_2023_3295057 crossref_primary_10_1109_JIOT_2024_3421616 crossref_primary_10_1109_JIOT_2023_3300696 crossref_primary_10_1109_TITS_2023_3299842 crossref_primary_10_1109_TGCN_2022_3196670 crossref_primary_10_1109_TNSM_2024_3391664 crossref_primary_10_1016_j_adhoc_2023_103371 crossref_primary_10_1109_JIOT_2024_3420884 crossref_primary_10_1109_TWC_2022_3216315 crossref_primary_10_1109_JIOT_2021_3078746 crossref_primary_10_1016_j_adhoc_2025_103801 crossref_primary_10_1109_LCOMM_2022_3160839 crossref_primary_10_1109_TVT_2022_3228583 crossref_primary_10_1109_TVT_2022_3232391 crossref_primary_10_1109_JIOT_2022_3222200 crossref_primary_10_1109_JIOT_2025_3546812 crossref_primary_10_1109_JSAC_2024_3365869 crossref_primary_10_1109_TWC_2023_3314701 crossref_primary_10_1109_TWC_2022_3175472 crossref_primary_10_1109_TCCN_2024_3510562 crossref_primary_10_1109_JIOT_2024_3416157 crossref_primary_10_1109_TVT_2024_3440385 crossref_primary_10_1109_TMC_2023_3282243 crossref_primary_10_1109_JIOT_2024_3357869 crossref_primary_10_1109_TWC_2024_3398199 crossref_primary_10_1109_TVT_2024_3388512 crossref_primary_10_1109_TAES_2022_3228832 crossref_primary_10_1109_TVT_2022_3231295 crossref_primary_10_1038_s41598_024_67886_x crossref_primary_10_1109_TNSE_2021_3130251 crossref_primary_10_1007_s12083_021_01160_z crossref_primary_10_1109_TVT_2023_3312676 crossref_primary_10_1016_j_vehcom_2025_100949 crossref_primary_10_1109_TGCN_2022_3205330 crossref_primary_10_1109_JIOT_2023_3287737 crossref_primary_10_1109_JIOT_2022_3189445 crossref_primary_10_1109_MNET_2025_3526225 crossref_primary_10_1109_TMC_2022_3208457 crossref_primary_10_1109_JSYST_2022_3165061 crossref_primary_10_1109_JIOT_2021_3133110 crossref_primary_10_1109_TCE_2024_3519276 crossref_primary_10_1016_j_jnca_2022_103564 crossref_primary_10_1109_JIOT_2023_3237209 crossref_primary_10_1109_TMC_2024_3489619 crossref_primary_10_1109_JIOT_2022_3224847 crossref_primary_10_1109_JIOT_2024_3371486 crossref_primary_10_1109_JIOT_2024_3485640 crossref_primary_10_1109_TNSM_2021_3103533 crossref_primary_10_1109_TPDS_2023_3332333 crossref_primary_10_1109_JIOT_2024_3425854 crossref_primary_10_1109_TITS_2025_3549493 crossref_primary_10_3390_s24061837 crossref_primary_10_1109_JIOT_2024_3457855 crossref_primary_10_1155_2024_9922714 crossref_primary_10_1109_JIOT_2023_3336600 crossref_primary_10_1016_j_phycom_2025_102719 crossref_primary_10_1109_JIOT_2023_3265030 crossref_primary_10_1109_JIOT_2021_3083065 crossref_primary_10_1109_JIOT_2021_3138263 crossref_primary_10_1109_TGCN_2022_3186841 crossref_primary_10_1109_TVT_2024_3431878 crossref_primary_10_1016_j_cosrev_2025_100734 crossref_primary_10_3390_s21186199 crossref_primary_10_1109_JIOT_2022_3229270 crossref_primary_10_1109_TCOMM_2024_3478111 crossref_primary_10_1109_TVT_2022_3165145 crossref_primary_10_1109_COMST_2023_3347172 crossref_primary_10_1016_j_adhoc_2025_104009 crossref_primary_10_1016_j_comnet_2024_110277 crossref_primary_10_1016_j_vehcom_2023_100633 crossref_primary_10_1002_dac_70134 crossref_primary_10_1109_JIOT_2023_3329869 crossref_primary_10_1109_TVT_2023_3248062 crossref_primary_10_1145_3606018 crossref_primary_10_1007_s11235_025_01320_z crossref_primary_10_1109_JIOT_2023_3289793 crossref_primary_10_1109_TMC_2024_3355868 crossref_primary_10_1109_TITS_2022_3179987 crossref_primary_10_3390_en16083465 crossref_primary_10_1109_TNSE_2023_3349321 crossref_primary_10_3390_rs14174377 crossref_primary_10_1109_TVT_2022_3195788 crossref_primary_10_1109_JIOT_2022_3231341 crossref_primary_10_1016_j_cja_2021_12_013 crossref_primary_10_1109_TNSE_2024_3379552 crossref_primary_10_1016_j_comnet_2024_110866 crossref_primary_10_1109_TVT_2023_3337250 crossref_primary_10_1109_MNET_2025_3551322 crossref_primary_10_1109_TCOMM_2025_3525566 crossref_primary_10_1109_COMST_2021_3130901 crossref_primary_10_1109_TMC_2024_3429571 crossref_primary_10_1016_j_comnet_2025_111680 crossref_primary_10_1109_ACCESS_2024_3428518 crossref_primary_10_1109_JIOT_2024_3386888 crossref_primary_10_1109_JIOT_2023_3319130 crossref_primary_10_1109_COMST_2022_3199901 crossref_primary_10_3390_su16167039 crossref_primary_10_1109_TCOMM_2022_3186997 crossref_primary_10_1109_ACCESS_2024_3460656 crossref_primary_10_1109_TMC_2024_3502643 crossref_primary_10_1007_s11432_024_4258_x crossref_primary_10_1109_JIOT_2022_3222295 crossref_primary_10_1109_TCCN_2023_3346824 crossref_primary_10_1109_JIOT_2022_3230916 crossref_primary_10_1007_s10586_023_03991_2 crossref_primary_10_1186_s13677_023_00538_z crossref_primary_10_1002_widm_1521 crossref_primary_10_1109_COMST_2023_3245614 crossref_primary_10_1109_ACCESS_2024_3405487 crossref_primary_10_1016_j_jnca_2023_103647 crossref_primary_10_1109_ACCESS_2024_3507829 crossref_primary_10_1186_s13677_024_00701_0 crossref_primary_10_1007_s11071_024_09656_y crossref_primary_10_1109_JSAC_2024_3459073 crossref_primary_10_3390_rs13234853 crossref_primary_10_3390_drones9020108 crossref_primary_10_1007_s10586_024_04828_2 crossref_primary_10_1109_IOTM_001_2300080 crossref_primary_10_1109_TWC_2022_3200366 crossref_primary_10_1109_JIOT_2022_3220677 crossref_primary_10_1007_s43926_024_00084_3 crossref_primary_10_1109_MNET_2024_3353806 crossref_primary_10_1109_JIOT_2023_3323289 crossref_primary_10_1109_TCC_2022_3163750 crossref_primary_10_1007_s11432_024_4523_1 crossref_primary_10_1109_TVT_2022_3205625 crossref_primary_10_1109_MWC_001_2100338 crossref_primary_10_1109_TCCN_2024_3457525 crossref_primary_10_1109_JIOT_2023_3263574 crossref_primary_10_1109_TWC_2023_3282630 crossref_primary_10_3390_app132112015 crossref_primary_10_1109_JIOT_2025_3586100 crossref_primary_10_1109_JIOT_2025_3567149 crossref_primary_10_1109_TVT_2024_3362841 crossref_primary_10_1109_TIM_2024_3351262 crossref_primary_10_1109_JIOT_2023_3344570 crossref_primary_10_1109_COMST_2021_3135829 crossref_primary_10_1109_TVT_2025_3539588 crossref_primary_10_1109_ACCESS_2024_3361484 crossref_primary_10_1109_ACCESS_2024_3505546 crossref_primary_10_1109_JIOT_2022_3161356 crossref_primary_10_1109_TCCN_2023_3307929 crossref_primary_10_3390_jsan11040057 crossref_primary_10_1109_JIOT_2022_3222831 crossref_primary_10_3390_s22239124 crossref_primary_10_1007_s43926_025_00134_4 crossref_primary_10_1002_ett_4890 crossref_primary_10_1109_TVT_2024_3421351 crossref_primary_10_1109_TVT_2024_3369106 crossref_primary_10_3389_fphy_2023_1292702 crossref_primary_10_1109_TVT_2023_3319483 crossref_primary_10_1109_COMST_2022_3221119 crossref_primary_10_1109_TWC_2024_3464610 crossref_primary_10_1109_TWC_2025_3542758 crossref_primary_10_1109_TWC_2022_3160857 crossref_primary_10_1016_j_vehcom_2025_100899 crossref_primary_10_1109_JIOT_2023_3237727 crossref_primary_10_1109_TMC_2024_3437785 crossref_primary_10_1109_TCOMM_2023_3297198 crossref_primary_10_1109_TSC_2025_3547221 crossref_primary_10_1109_TCE_2023_3323146 crossref_primary_10_1109_TWC_2022_3162400 crossref_primary_10_1109_TMC_2024_3394568 crossref_primary_10_1016_j_asoc_2025_113079 crossref_primary_10_1109_TAES_2024_3409519 crossref_primary_10_1109_TSC_2024_3478730 crossref_primary_10_1109_JIOT_2021_3125971 crossref_primary_10_1109_TVT_2023_3238771 crossref_primary_10_1109_JIOT_2022_3194927 crossref_primary_10_3390_app142311282 crossref_primary_10_3390_s22093136 crossref_primary_10_3390_math11184014 crossref_primary_10_1109_JIOT_2023_3329346 crossref_primary_10_1109_TWC_2022_3204915 crossref_primary_10_1109_TNSE_2025_3554100 crossref_primary_10_1109_COMST_2021_3073009 crossref_primary_10_1016_j_comcom_2023_05_013 crossref_primary_10_1109_TITS_2022_3221975 crossref_primary_10_1109_TVT_2024_3367657 crossref_primary_10_1109_TITS_2021_3114295 crossref_primary_10_1109_TGCN_2023_3330481 crossref_primary_10_1109_TVT_2023_3280482 crossref_primary_10_1109_JSAC_2023_3310066 crossref_primary_10_1109_JIOT_2021_3084449 crossref_primary_10_1109_TMC_2022_3222848 crossref_primary_10_1109_JIOT_2024_3465656 crossref_primary_10_1109_COMST_2022_3223224 crossref_primary_10_1109_TWC_2025_3547794 crossref_primary_10_1007_s10462_023_10684_0 crossref_primary_10_1109_TWC_2022_3171824 crossref_primary_10_1109_TITS_2025_3551636 crossref_primary_10_1109_TNSE_2023_3346445 crossref_primary_10_1109_JIOT_2023_3333826 crossref_primary_10_1109_TWC_2022_3231379 crossref_primary_10_1109_JIOT_2022_3153089 crossref_primary_10_3390_app14072905 crossref_primary_10_1109_ACCESS_2024_3502400 crossref_primary_10_1109_TNSE_2023_3288990 crossref_primary_10_1016_j_ins_2023_119154 crossref_primary_10_1109_JIOT_2024_3502791 |
| Cites_doi | 10.1109/TWC.2019.2926279 10.1109/TVT.2018.2811942 10.1109/MCOM.2018.1701008 10.1109/TWC.2019.2912611 10.1109/72.97934 10.1109/ICC.2019.8761265 10.1109/COMST.2020.2970550 10.1109/TWC.2017.2688328 10.1109/LCOMM.2014.013114.131950 10.1109/JSAC.2018.2864419 10.1038/nature14236 10.1109/TWC.2017.2789293 10.1109/JIOT.2019.2911455 10.1109/MCOM.2018.1701092 10.1109/MWC.2018.1800365 10.1109/JPROC.2019.2918951 10.1109/JSAC.2017.2760160 10.1109/TNET.2015.2487344 10.1613/jair.1666 10.1109/JSAC.2018.2864425 10.1109/TWC.2020.3017207 10.1109/JSAC.2017.2760186 10.1109/TWC.2019.2945951 10.1109/GLOBECOM38437.2019.9013393 10.1109/JSAC.2019.2906789 10.1109/49.345873 10.1109/OJVT.2020.2965100 10.1109/AERO.2019.8741719 10.1109/JIOT.2017.2750180 10.1109/JSAC.2019.2927070 10.1109/JSAC.2014.141109 10.1109/TC.2016.2536019 10.1109/TII.2019.2949347 10.1109/MWC.2019.1800301 10.1109/TWC.2020.2964765 10.1109/TITS.2019.2920813 10.1109/MCOM.2017.1601156 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TWC.2020.3029143 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2248 |
| EndPage | 925 |
| ExternalDocumentID | 10_1109_TWC_2020_3029143 9222519 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada funderid: 10.13039/501100000038 – fundername: National Natural Science Foundation of China (NSFC) grantid: 62071356; 91638204; 62002389 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c357t-645fec82c5dd65f202ffe8a4b423e6bb4c557db94b95e3041295f5fd0a2bc8923 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 238 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617385600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1276 |
| IngestDate | Fri Jul 25 12:21:17 EDT 2025 Tue Nov 18 22:38:01 EST 2025 Sat Nov 29 06:23:50 EST 2025 Wed Aug 27 05:44:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-645fec82c5dd65f202ffe8a4b423e6bb4c557db94b95e3041295f5fd0a2bc8923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8964-0597 0000-0002-1283-2168 0000-0002-5727-2432 0000-0002-0458-1282 0000-0001-7907-2071 0000-0002-2990-5415 0000-0002-4140-287X |
| PQID | 2488744844 |
| PQPubID | 105736 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_9222519 crossref_primary_10_1109_TWC_2020_3029143 proquest_journals_2488744844 crossref_citationtrail_10_1109_TWC_2020_3029143 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Feb. 2021-2-00 20210201 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-Feb. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on wireless communications |
| PublicationTitleAbbrev | TWC |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref15 ref36 ref14 abadi (ref42) 2016 ref31 ref33 ref32 ref10 buchen (ref11) 2015 ref2 ref1 ref39 ref17 ref38 ref16 ref19 hennessy (ref30) 2011 ref18 ref24 ref23 ref26 puterman (ref35) 2014 ref25 ref20 ref41 ref22 mnih (ref37) 2015; 518 ref21 ref28 ref27 ref29 (ref12) 2019 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref31 doi: 10.1109/TWC.2019.2926279 – ident: ref28 doi: 10.1109/TVT.2018.2811942 – ident: ref20 doi: 10.1109/MCOM.2018.1701008 – ident: ref9 doi: 10.1109/TWC.2019.2912611 – ident: ref38 doi: 10.1109/72.97934 – start-page: 1 year: 2015 ident: ref11 article-title: Small satellite market observations publication-title: Proc 29th Annu AIAA/USU Conf Samll Satell – ident: ref21 doi: 10.1109/ICC.2019.8761265 – ident: ref4 doi: 10.1109/COMST.2020.2970550 – ident: ref29 doi: 10.1109/TWC.2017.2688328 – ident: ref41 doi: 10.1109/LCOMM.2014.013114.131950 – ident: ref19 doi: 10.1109/JSAC.2018.2864419 – volume: 518 start-page: 529 year: 2015 ident: ref37 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref14 doi: 10.1109/TWC.2017.2789293 – ident: ref24 doi: 10.1109/JIOT.2019.2911455 – ident: ref23 doi: 10.1109/MCOM.2018.1701092 – ident: ref18 doi: 10.1109/MWC.2018.1800365 – ident: ref7 doi: 10.1109/JPROC.2019.2918951 – ident: ref27 doi: 10.1109/JSAC.2017.2760160 – ident: ref25 doi: 10.1109/TNET.2015.2487344 – ident: ref39 doi: 10.1613/jair.1666 – ident: ref15 doi: 10.1109/JSAC.2018.2864425 – ident: ref36 doi: 10.1109/TWC.2020.3017207 – ident: ref26 doi: 10.1109/JSAC.2017.2760186 – year: 2019 ident: ref12 publication-title: Technical Specification Group Radio Access Network Study on New Radio (NR) to Support Non-Terrestrial Networks (Release 15) – ident: ref40 doi: 10.1109/TWC.2019.2945951 – ident: ref1 doi: 10.1109/GLOBECOM38437.2019.9013393 – ident: ref8 doi: 10.1109/JSAC.2019.2906789 – ident: ref33 doi: 10.1109/49.345873 – ident: ref3 doi: 10.1109/OJVT.2020.2965100 – ident: ref34 doi: 10.1109/AERO.2019.8741719 – ident: ref16 doi: 10.1109/JIOT.2017.2750180 – ident: ref6 doi: 10.1109/JSAC.2019.2927070 – ident: ref32 doi: 10.1109/JSAC.2014.141109 – year: 2011 ident: ref30 publication-title: Computer Architecture A Quantitative Approach – ident: ref17 doi: 10.1109/TC.2016.2536019 – ident: ref5 doi: 10.1109/TII.2019.2949347 – ident: ref13 doi: 10.1109/MWC.2019.1800301 – ident: ref2 doi: 10.1109/TWC.2020.2964765 – start-page: 265 year: 2016 ident: ref42 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc OSDI – year: 2014 ident: ref35 publication-title: Markov Decision Processes Discrete Stochastic Dynamic Programming – ident: ref10 doi: 10.1109/TITS.2019.2920813 – ident: ref22 doi: 10.1109/MCOM.2017.1601156 |
| SSID | ssj0017655 |
| Score | 2.689055 |
| Snippet | In this article, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 911 |
| SubjectTerms | Algorithms Computation Computer aided scheduling constrained MDP Constraints Delay Delays edge computing Energy consumption Heuristic algorithms Internet of Things IoT Machine learning Markov processes Optimization Processor scheduling reinforcement learning Risk Scheduling Space-air-ground integrated network Task analysis Task scheduling Unmanned aerial vehicles US Department of Transportation |
| Title | Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in SAGIN |
| URI | https://ieeexplore.ieee.org/document/9222519 https://www.proquest.com/docview/2488744844 |
| Volume | 20 |
| WOSCitedRecordID | wos000617385600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2248 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017655 issn: 1536-1276 databaseCode: RIE dateStart: 20020101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5z-KAP3qY4nZIHXwTraps0zePYnA5hiqu4t5LL6RiObewi-O9Nsq4MFMG3UhJIz2mS7-ScfB9CV0RLERMeeVIJE6Do0KyDd4p6THEItAwZVcqJTbBuN-73-UsJ3RR3YQDAFZ_BrX10uXw9UUt7VFbnNjixHJ9bjEWru1pFxoBFTuHUTGCrK8OKlKTP68l70wSCgYlP_YC7-zkbW5DTVPmxELvdpb3_v3EdoL0cReLGyu2HqATjI7S7wS1YQU8tgCl-BceMqtwhIM7JVAfYvMItGIkv79nyHBvUiTuTBCdi_oF7xo3a1qcP8HCMe42HTvcYvbXvk-ajlysneCqkbOFFhGag4kBRrSOamY_PMogFkQY8QSQlUZQyLTmRnEJoKbc4zWimfRFIFRvMd4LK48kYThE2GAAMZhAykwGJIyksgyEw7iuhA66zKqqvjZmqnFbcqluMUhde-Dw15k-t-dPc_FV0XfSYrig1_mhbseYu2uWWrqLa2l9pPufmqRme5fKPCTn7vdc52glsRYqrua6h8mK2hAu0rT4Xw_ns0v1O3zr0xn8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6ICuqDtynOax58EayrWdI2j2M6HeoUV9G3ksupiLLJLoL_3iTriqAIvpWSQHpOk3wn5-T7AA6ZUTJhIgqUljZAMXW7Dp5qHsRaIDWqHnOtvdhE3OkkT0_ibgaOy7swiOiLz_DEPfpcvunrsTsqqwkXnDiOzznOGA0nt7XKnEEceY1TO4WdskxcJiVDUUsfmzYUpDZCDanwN3S-bUJeVeXHUuz3l9bK_0a2CssFjiSNiePXYAZ767D0jV2wAldniO_kHj03qvbHgKSgU30m9hU5wzf5Gdw6pmOLO0m7n5JUDl9J1zrSuAr1Z_LSI93GRbuzAQ-t87R5GRTaCYGu83gURIznqBOquTERz-3H5zkmkikLnzBSimnOY6MEU4Jj3ZFuCZ7z3ISSKp1Y1LcJs71-D7eAWBSAFjVIlSvKkkhJx2GIsQi1NFSYvAq1qTEzXRCLO32Lt8wHGKHIrPkzZ_6sMH8Vjsoe7xNSjT_aVpy5y3aFpauwO_VXVsy6YWaH59j8E8a2f-91AAuX6c11dt3uXO3AInX1Kb4CexdmR4Mx7sG8_hi9DAf7_tf6ArtxycY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+Delay-Oriented+IoT+Task+Scheduling+in+SAGIN&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhou%2C+Conghao&rft.au=Wu%2C+Wen&rft.au=He%2C+Hongli&rft.au=Yang%2C+Peng&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=20&rft.issue=2&rft.spage=911&rft.epage=925&rft_id=info:doi/10.1109%2FTWC.2020.3029143&rft.externalDocID=9222519 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |