Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in SAGIN

In this article, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on wireless communications Ročník 20; číslo 2; s. 911 - 925
Hlavní autori: Zhou, Conghao, Wu, Wen, He, Hongli, Yang, Peng, Lyu, Feng, Cheng, Nan, Shen, Xuemin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1536-1276, 1558-2248
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this article, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions, in which the tasks can be processed at the UAV or offloaded to the nearby base station or the remote satellite. Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint. To this end, we first formulate the online scheduling problem as an energy-constrained Markov decision process (MDP). Then, considering the task arrival dynamics, we develop a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the algorithm evaluates the risk, which measures the energy consumption that exceeds the constraint, for each state and searches the optimal parameter weighing the minimization of delay and risk while learning the optimal policy. Extensive simulation results demonstrate that the proposed algorithm can reduce the task processing delay by up to 30% compared to probabilistic configuration methods while satisfying the UAV energy capacity constraint.
AbstractList In this article, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services. In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions, in which the tasks can be processed at the UAV or offloaded to the nearby base station or the remote satellite. Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint. To this end, we first formulate the online scheduling problem as an energy-constrained Markov decision process (MDP). Then, considering the task arrival dynamics, we develop a novel deep risk-sensitive reinforcement learning algorithm. Specifically, the algorithm evaluates the risk, which measures the energy consumption that exceeds the constraint, for each state and searches the optimal parameter weighing the minimization of delay and risk while learning the optimal policy. Extensive simulation results demonstrate that the proposed algorithm can reduce the task processing delay by up to 30% compared to probabilistic configuration methods while satisfying the UAV energy capacity constraint.
Author Zhou, Conghao
He, Hongli
Yang, Peng
Shen, Xuemin
Lyu, Feng
Cheng, Nan
Wu, Wen
Author_xml – sequence: 1
  givenname: Conghao
  orcidid: 0000-0002-5727-2432
  surname: Zhou
  fullname: Zhou, Conghao
  email: c89zhou@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: Wen
  orcidid: 0000-0002-0458-1282
  surname: Wu
  fullname: Wu, Wen
  email: w77wu@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 3
  givenname: Hongli
  orcidid: 0000-0002-1283-2168
  surname: He
  fullname: He, Hongli
  email: hongli_he@zju.edu.cn
  organization: School of Information Engineering, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Peng
  orcidid: 0000-0001-8964-0597
  surname: Yang
  fullname: Yang, Peng
  email: yangpeng@hust.edu.cn
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 5
  givenname: Feng
  orcidid: 0000-0002-2990-5415
  surname: Lyu
  fullname: Lyu, Feng
  email: fenglyu@csu.edu.cn
  organization: School of Computer Science and Engineering, Central South University, Changsha, China
– sequence: 6
  givenname: Nan
  orcidid: 0000-0001-7907-2071
  surname: Cheng
  fullname: Cheng, Nan
  email: nancheng@xidian.edu.cn
  organization: Key State Laboratory of ISN, Xidian University, Xi'an, China
– sequence: 7
  givenname: Xuemin
  orcidid: 0000-0002-4140-287X
  surname: Shen
  fullname: Shen, Xuemin
  email: sshen@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
BookMark eNp9kLtPwzAQxi1UJNrCjsRiiTnFzzzGqoVSUVGJBjFajnMGl9QpTjr0vydREQMD053uvu8evxEa-NoDQteUTCgl2V3-NpswwsiEE5ZRwc_QkEqZRoyJdNDnPI4oS-ILNGqaLSE0iaUcoqc5wB6_gPO2DgZ24Fu8Ah288--4K-E5VPoYrYPrOlDiZZ3jXDefeGM-oDxUvcx5vJkuls-X6NzqqoGrnzhGrw_3-ewxWq0Xy9l0FRkukzaKhbRgUmZkWcbSdkdbC6kWhWAc4qIQRsqkLDJRZBI4EZRl0kpbEs0Kk2aMj9Htae4-1F8HaFq1rQ_BdytV92yaCJEK0anISWVC3TQBrNoHt9PhqChRPTLVIVM9MvWDrLPEfyzGtbp1tW-DdtV_xpuT0QHA756MMSZpxr8BsmV5Mw
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_TVT_2023_3345940
crossref_primary_10_1109_LCOMM_2023_3295057
crossref_primary_10_1109_JIOT_2024_3421616
crossref_primary_10_1109_JIOT_2023_3300696
crossref_primary_10_1109_TITS_2023_3299842
crossref_primary_10_1109_TGCN_2022_3196670
crossref_primary_10_1109_TNSM_2024_3391664
crossref_primary_10_1016_j_adhoc_2023_103371
crossref_primary_10_1109_JIOT_2024_3420884
crossref_primary_10_1109_TWC_2022_3216315
crossref_primary_10_1109_JIOT_2021_3078746
crossref_primary_10_1016_j_adhoc_2025_103801
crossref_primary_10_1109_LCOMM_2022_3160839
crossref_primary_10_1109_TVT_2022_3228583
crossref_primary_10_1109_TVT_2022_3232391
crossref_primary_10_1109_JIOT_2022_3222200
crossref_primary_10_1109_JIOT_2025_3546812
crossref_primary_10_1109_JSAC_2024_3365869
crossref_primary_10_1109_TWC_2023_3314701
crossref_primary_10_1109_TWC_2022_3175472
crossref_primary_10_1109_TCCN_2024_3510562
crossref_primary_10_1109_JIOT_2024_3416157
crossref_primary_10_1109_TVT_2024_3440385
crossref_primary_10_1109_TMC_2023_3282243
crossref_primary_10_1109_JIOT_2024_3357869
crossref_primary_10_1109_TWC_2024_3398199
crossref_primary_10_1109_TVT_2024_3388512
crossref_primary_10_1109_TAES_2022_3228832
crossref_primary_10_1109_TVT_2022_3231295
crossref_primary_10_1038_s41598_024_67886_x
crossref_primary_10_1109_TNSE_2021_3130251
crossref_primary_10_1007_s12083_021_01160_z
crossref_primary_10_1109_TVT_2023_3312676
crossref_primary_10_1016_j_vehcom_2025_100949
crossref_primary_10_1109_TGCN_2022_3205330
crossref_primary_10_1109_JIOT_2023_3287737
crossref_primary_10_1109_JIOT_2022_3189445
crossref_primary_10_1109_MNET_2025_3526225
crossref_primary_10_1109_TMC_2022_3208457
crossref_primary_10_1109_JSYST_2022_3165061
crossref_primary_10_1109_JIOT_2021_3133110
crossref_primary_10_1109_TCE_2024_3519276
crossref_primary_10_1016_j_jnca_2022_103564
crossref_primary_10_1109_JIOT_2023_3237209
crossref_primary_10_1109_TMC_2024_3489619
crossref_primary_10_1109_JIOT_2022_3224847
crossref_primary_10_1109_JIOT_2024_3371486
crossref_primary_10_1109_JIOT_2024_3485640
crossref_primary_10_1109_TNSM_2021_3103533
crossref_primary_10_1109_TPDS_2023_3332333
crossref_primary_10_1109_JIOT_2024_3425854
crossref_primary_10_1109_TITS_2025_3549493
crossref_primary_10_3390_s24061837
crossref_primary_10_1109_JIOT_2024_3457855
crossref_primary_10_1155_2024_9922714
crossref_primary_10_1109_JIOT_2023_3336600
crossref_primary_10_1016_j_phycom_2025_102719
crossref_primary_10_1109_JIOT_2023_3265030
crossref_primary_10_1109_JIOT_2021_3083065
crossref_primary_10_1109_JIOT_2021_3138263
crossref_primary_10_1109_TGCN_2022_3186841
crossref_primary_10_1109_TVT_2024_3431878
crossref_primary_10_1016_j_cosrev_2025_100734
crossref_primary_10_3390_s21186199
crossref_primary_10_1109_JIOT_2022_3229270
crossref_primary_10_1109_TCOMM_2024_3478111
crossref_primary_10_1109_TVT_2022_3165145
crossref_primary_10_1109_COMST_2023_3347172
crossref_primary_10_1016_j_adhoc_2025_104009
crossref_primary_10_1016_j_comnet_2024_110277
crossref_primary_10_1016_j_vehcom_2023_100633
crossref_primary_10_1002_dac_70134
crossref_primary_10_1109_JIOT_2023_3329869
crossref_primary_10_1109_TVT_2023_3248062
crossref_primary_10_1145_3606018
crossref_primary_10_1007_s11235_025_01320_z
crossref_primary_10_1109_JIOT_2023_3289793
crossref_primary_10_1109_TMC_2024_3355868
crossref_primary_10_1109_TITS_2022_3179987
crossref_primary_10_3390_en16083465
crossref_primary_10_1109_TNSE_2023_3349321
crossref_primary_10_3390_rs14174377
crossref_primary_10_1109_TVT_2022_3195788
crossref_primary_10_1109_JIOT_2022_3231341
crossref_primary_10_1016_j_cja_2021_12_013
crossref_primary_10_1109_TNSE_2024_3379552
crossref_primary_10_1016_j_comnet_2024_110866
crossref_primary_10_1109_TVT_2023_3337250
crossref_primary_10_1109_MNET_2025_3551322
crossref_primary_10_1109_TCOMM_2025_3525566
crossref_primary_10_1109_COMST_2021_3130901
crossref_primary_10_1109_TMC_2024_3429571
crossref_primary_10_1016_j_comnet_2025_111680
crossref_primary_10_1109_ACCESS_2024_3428518
crossref_primary_10_1109_JIOT_2024_3386888
crossref_primary_10_1109_JIOT_2023_3319130
crossref_primary_10_1109_COMST_2022_3199901
crossref_primary_10_3390_su16167039
crossref_primary_10_1109_TCOMM_2022_3186997
crossref_primary_10_1109_ACCESS_2024_3460656
crossref_primary_10_1109_TMC_2024_3502643
crossref_primary_10_1007_s11432_024_4258_x
crossref_primary_10_1109_JIOT_2022_3222295
crossref_primary_10_1109_TCCN_2023_3346824
crossref_primary_10_1109_JIOT_2022_3230916
crossref_primary_10_1007_s10586_023_03991_2
crossref_primary_10_1186_s13677_023_00538_z
crossref_primary_10_1002_widm_1521
crossref_primary_10_1109_COMST_2023_3245614
crossref_primary_10_1109_ACCESS_2024_3405487
crossref_primary_10_1016_j_jnca_2023_103647
crossref_primary_10_1109_ACCESS_2024_3507829
crossref_primary_10_1186_s13677_024_00701_0
crossref_primary_10_1007_s11071_024_09656_y
crossref_primary_10_1109_JSAC_2024_3459073
crossref_primary_10_3390_rs13234853
crossref_primary_10_3390_drones9020108
crossref_primary_10_1007_s10586_024_04828_2
crossref_primary_10_1109_IOTM_001_2300080
crossref_primary_10_1109_TWC_2022_3200366
crossref_primary_10_1109_JIOT_2022_3220677
crossref_primary_10_1007_s43926_024_00084_3
crossref_primary_10_1109_MNET_2024_3353806
crossref_primary_10_1109_JIOT_2023_3323289
crossref_primary_10_1109_TCC_2022_3163750
crossref_primary_10_1007_s11432_024_4523_1
crossref_primary_10_1109_TVT_2022_3205625
crossref_primary_10_1109_MWC_001_2100338
crossref_primary_10_1109_TCCN_2024_3457525
crossref_primary_10_1109_JIOT_2023_3263574
crossref_primary_10_1109_TWC_2023_3282630
crossref_primary_10_3390_app132112015
crossref_primary_10_1109_JIOT_2025_3586100
crossref_primary_10_1109_JIOT_2025_3567149
crossref_primary_10_1109_TVT_2024_3362841
crossref_primary_10_1109_TIM_2024_3351262
crossref_primary_10_1109_JIOT_2023_3344570
crossref_primary_10_1109_COMST_2021_3135829
crossref_primary_10_1109_TVT_2025_3539588
crossref_primary_10_1109_ACCESS_2024_3361484
crossref_primary_10_1109_ACCESS_2024_3505546
crossref_primary_10_1109_JIOT_2022_3161356
crossref_primary_10_1109_TCCN_2023_3307929
crossref_primary_10_3390_jsan11040057
crossref_primary_10_1109_JIOT_2022_3222831
crossref_primary_10_3390_s22239124
crossref_primary_10_1007_s43926_025_00134_4
crossref_primary_10_1002_ett_4890
crossref_primary_10_1109_TVT_2024_3421351
crossref_primary_10_1109_TVT_2024_3369106
crossref_primary_10_3389_fphy_2023_1292702
crossref_primary_10_1109_TVT_2023_3319483
crossref_primary_10_1109_COMST_2022_3221119
crossref_primary_10_1109_TWC_2024_3464610
crossref_primary_10_1109_TWC_2025_3542758
crossref_primary_10_1109_TWC_2022_3160857
crossref_primary_10_1016_j_vehcom_2025_100899
crossref_primary_10_1109_JIOT_2023_3237727
crossref_primary_10_1109_TMC_2024_3437785
crossref_primary_10_1109_TCOMM_2023_3297198
crossref_primary_10_1109_TSC_2025_3547221
crossref_primary_10_1109_TCE_2023_3323146
crossref_primary_10_1109_TWC_2022_3162400
crossref_primary_10_1109_TMC_2024_3394568
crossref_primary_10_1016_j_asoc_2025_113079
crossref_primary_10_1109_TAES_2024_3409519
crossref_primary_10_1109_TSC_2024_3478730
crossref_primary_10_1109_JIOT_2021_3125971
crossref_primary_10_1109_TVT_2023_3238771
crossref_primary_10_1109_JIOT_2022_3194927
crossref_primary_10_3390_app142311282
crossref_primary_10_3390_s22093136
crossref_primary_10_3390_math11184014
crossref_primary_10_1109_JIOT_2023_3329346
crossref_primary_10_1109_TWC_2022_3204915
crossref_primary_10_1109_TNSE_2025_3554100
crossref_primary_10_1109_COMST_2021_3073009
crossref_primary_10_1016_j_comcom_2023_05_013
crossref_primary_10_1109_TITS_2022_3221975
crossref_primary_10_1109_TVT_2024_3367657
crossref_primary_10_1109_TITS_2021_3114295
crossref_primary_10_1109_TGCN_2023_3330481
crossref_primary_10_1109_TVT_2023_3280482
crossref_primary_10_1109_JSAC_2023_3310066
crossref_primary_10_1109_JIOT_2021_3084449
crossref_primary_10_1109_TMC_2022_3222848
crossref_primary_10_1109_JIOT_2024_3465656
crossref_primary_10_1109_COMST_2022_3223224
crossref_primary_10_1109_TWC_2025_3547794
crossref_primary_10_1007_s10462_023_10684_0
crossref_primary_10_1109_TWC_2022_3171824
crossref_primary_10_1109_TITS_2025_3551636
crossref_primary_10_1109_TNSE_2023_3346445
crossref_primary_10_1109_JIOT_2023_3333826
crossref_primary_10_1109_TWC_2022_3231379
crossref_primary_10_1109_JIOT_2022_3153089
crossref_primary_10_3390_app14072905
crossref_primary_10_1109_ACCESS_2024_3502400
crossref_primary_10_1109_TNSE_2023_3288990
crossref_primary_10_1016_j_ins_2023_119154
crossref_primary_10_1109_JIOT_2024_3502791
Cites_doi 10.1109/TWC.2019.2926279
10.1109/TVT.2018.2811942
10.1109/MCOM.2018.1701008
10.1109/TWC.2019.2912611
10.1109/72.97934
10.1109/ICC.2019.8761265
10.1109/COMST.2020.2970550
10.1109/TWC.2017.2688328
10.1109/LCOMM.2014.013114.131950
10.1109/JSAC.2018.2864419
10.1038/nature14236
10.1109/TWC.2017.2789293
10.1109/JIOT.2019.2911455
10.1109/MCOM.2018.1701092
10.1109/MWC.2018.1800365
10.1109/JPROC.2019.2918951
10.1109/JSAC.2017.2760160
10.1109/TNET.2015.2487344
10.1613/jair.1666
10.1109/JSAC.2018.2864425
10.1109/TWC.2020.3017207
10.1109/JSAC.2017.2760186
10.1109/TWC.2019.2945951
10.1109/GLOBECOM38437.2019.9013393
10.1109/JSAC.2019.2906789
10.1109/49.345873
10.1109/OJVT.2020.2965100
10.1109/AERO.2019.8741719
10.1109/JIOT.2017.2750180
10.1109/JSAC.2019.2927070
10.1109/JSAC.2014.141109
10.1109/TC.2016.2536019
10.1109/TII.2019.2949347
10.1109/MWC.2019.1800301
10.1109/TWC.2020.2964765
10.1109/TITS.2019.2920813
10.1109/MCOM.2017.1601156
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2020.3029143
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 925
ExternalDocumentID 10_1109_TWC_2020_3029143
9222519
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada
  funderid: 10.13039/501100000038
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62071356; 91638204; 62002389
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-645fec82c5dd65f202ffe8a4b423e6bb4c557db94b95e3041295f5fd0a2bc8923
IEDL.DBID RIE
ISICitedReferencesCount 238
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617385600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1276
IngestDate Fri Jul 25 12:21:17 EDT 2025
Tue Nov 18 22:38:01 EST 2025
Sat Nov 29 06:23:50 EST 2025
Wed Aug 27 05:44:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-645fec82c5dd65f202ffe8a4b423e6bb4c557db94b95e3041295f5fd0a2bc8923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8964-0597
0000-0002-1283-2168
0000-0002-5727-2432
0000-0002-0458-1282
0000-0001-7907-2071
0000-0002-2990-5415
0000-0002-4140-287X
PQID 2488744844
PQPubID 105736
PageCount 15
ParticipantIDs ieee_primary_9222519
crossref_primary_10_1109_TWC_2020_3029143
proquest_journals_2488744844
crossref_citationtrail_10_1109_TWC_2020_3029143
PublicationCentury 2000
PublicationDate 2021-Feb.
2021-2-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref36
ref14
abadi (ref42) 2016
ref31
ref33
ref32
ref10
buchen (ref11) 2015
ref2
ref1
ref39
ref17
ref38
ref16
ref19
hennessy (ref30) 2011
ref18
ref24
ref23
ref26
puterman (ref35) 2014
ref25
ref20
ref41
ref22
mnih (ref37) 2015; 518
ref21
ref28
ref27
ref29
(ref12) 2019
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref31
  doi: 10.1109/TWC.2019.2926279
– ident: ref28
  doi: 10.1109/TVT.2018.2811942
– ident: ref20
  doi: 10.1109/MCOM.2018.1701008
– ident: ref9
  doi: 10.1109/TWC.2019.2912611
– ident: ref38
  doi: 10.1109/72.97934
– start-page: 1
  year: 2015
  ident: ref11
  article-title: Small satellite market observations
  publication-title: Proc 29th Annu AIAA/USU Conf Samll Satell
– ident: ref21
  doi: 10.1109/ICC.2019.8761265
– ident: ref4
  doi: 10.1109/COMST.2020.2970550
– ident: ref29
  doi: 10.1109/TWC.2017.2688328
– ident: ref41
  doi: 10.1109/LCOMM.2014.013114.131950
– ident: ref19
  doi: 10.1109/JSAC.2018.2864419
– volume: 518
  start-page: 529
  year: 2015
  ident: ref37
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref14
  doi: 10.1109/TWC.2017.2789293
– ident: ref24
  doi: 10.1109/JIOT.2019.2911455
– ident: ref23
  doi: 10.1109/MCOM.2018.1701092
– ident: ref18
  doi: 10.1109/MWC.2018.1800365
– ident: ref7
  doi: 10.1109/JPROC.2019.2918951
– ident: ref27
  doi: 10.1109/JSAC.2017.2760160
– ident: ref25
  doi: 10.1109/TNET.2015.2487344
– ident: ref39
  doi: 10.1613/jair.1666
– ident: ref15
  doi: 10.1109/JSAC.2018.2864425
– ident: ref36
  doi: 10.1109/TWC.2020.3017207
– ident: ref26
  doi: 10.1109/JSAC.2017.2760186
– year: 2019
  ident: ref12
  publication-title: Technical Specification Group Radio Access Network Study on New Radio (NR) to Support Non-Terrestrial Networks (Release 15)
– ident: ref40
  doi: 10.1109/TWC.2019.2945951
– ident: ref1
  doi: 10.1109/GLOBECOM38437.2019.9013393
– ident: ref8
  doi: 10.1109/JSAC.2019.2906789
– ident: ref33
  doi: 10.1109/49.345873
– ident: ref3
  doi: 10.1109/OJVT.2020.2965100
– ident: ref34
  doi: 10.1109/AERO.2019.8741719
– ident: ref16
  doi: 10.1109/JIOT.2017.2750180
– ident: ref6
  doi: 10.1109/JSAC.2019.2927070
– ident: ref32
  doi: 10.1109/JSAC.2014.141109
– year: 2011
  ident: ref30
  publication-title: Computer Architecture A Quantitative Approach
– ident: ref17
  doi: 10.1109/TC.2016.2536019
– ident: ref5
  doi: 10.1109/TII.2019.2949347
– ident: ref13
  doi: 10.1109/MWC.2019.1800301
– ident: ref2
  doi: 10.1109/TWC.2020.2964765
– start-page: 265
  year: 2016
  ident: ref42
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: Proc OSDI
– year: 2014
  ident: ref35
  publication-title: Markov Decision Processes Discrete Stochastic Dynamic Programming
– ident: ref10
  doi: 10.1109/TITS.2019.2920813
– ident: ref22
  doi: 10.1109/MCOM.2017.1601156
SSID ssj0017655
Score 2.6890142
Snippet In this article, we investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 911
SubjectTerms Algorithms
Computation
Computer aided scheduling
constrained MDP
Constraints
Delay
Delays
edge computing
Energy consumption
Heuristic algorithms
Internet of Things
IoT
Machine learning
Markov processes
Optimization
Processor scheduling
reinforcement learning
Risk
Scheduling
Space-air-ground integrated network
Task analysis
Task scheduling
Unmanned aerial vehicles
US Department of Transportation
Title Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in SAGIN
URI https://ieeexplore.ieee.org/document/9222519
https://www.proquest.com/docview/2488744844
Volume 20
WOSCitedRecordID wos000617385600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2248
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017655
  issn: 1536-1276
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5VPOjBt1itkoMXwdg1m2Q3x9L6KEIVrehtSWZniyit2Cr4703S7VJQBG_LksDuN3nMl5l8Q8iRM7mRAnKWgomZcByEGZsqZiMDsfFZlRZCsYmk10ufnvRtjZxUd2EQMSSf4al_DLH8fAQf_qisqT058RqfC0mipne1qohBokKFUzeBfV2ZpApJRrrZf2w7IsgdP424Dvdz5ragUFPlx0IcdpeLtf991zpZLb1I2pqafYPUcLhJVua0BbfIdQfxjd5hUEaFcAhISzHVAXWvaAdfzRe78TrHzuuk3VGf9s34hd47M-Y-P31An4f0vnXZ7W2Th4vzfvuKlZUTGMQymTAlZIGQcpB5rmThfr4oMDXCOucJlbUCpExyq4XVEmMvuaVlIYs8MtxC6ny-HbI4HA1xl9DYcOeExACAkUDQzl8540rbCCC1hqs6ac7AzKCUFffVLV6zQC8inTn4Mw9_VsJfJ8dVj7eppMYfbbc83FW7Euk6aczslZVzbpxxtxYljm0Ksfd7r32yzH1GSsi5bpDFyfsHHpAl-Jw8j98Pw3D6BnDFxhA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgW1yfOXgRrFvTpG2O4nNRV9GK3koynYoou7IPwX9vkq1FUARvpSTQfpPHfJnJNwA71uRaCiyCFHUUCMtBAm3SODChxki7rEqDvthE0m6nj4_qZgz26rswROSTz2jfPfpYftHFoTsqaypHTpzG54QUgoej21p1zCCJfY1TO4VdZZmkDkqGqpk9HFkqyC1DDbnyN3S-bUK-qsqPpdjvL6dz__uyeZit_Eh2ODL8AoxRZxFmvqkLLsHFMdEbuyWvjYr-GJBVcqpPzL5ix_SqP4Jrp3Rs_U7W6mYs0_0XdmcNWbgM9Sf23GF3h2et9jLcn55kR-dBVTshwEgmgyAWsiRMOcqiiGVpf74sKdXCWPeJYmMESpkURgmjJEVOdEvJUpZFqLnB1Hp9KzDe6XZoFVikuXVDIkSkUBAq67Ec8FiZEDE1mscNaH6BmWMlLO7qW7zmnmCEKrfw5w7-vIK_Abt1j7eRqMYfbZcc3HW7CukGbHzZK69mXT_ndjVKLN8UYu33XtswdZ5dXeaXrfbFOkxzl5_iM7A3YHzQG9ImTOL74Lnf2_JD6xPrlslX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+for+Delay-Oriented+IoT+Task+Scheduling+in+SAGIN&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Zhou%2C+Conghao&rft.au=Wu%2C+Wen&rft.au=He%2C+Hongli&rft.au=Yang%2C+Peng&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=20&rft.issue=2&rft.spage=911&rft.epage=925&rft_id=info:doi/10.1109%2FTWC.2020.3029143&rft.externalDocID=9222519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon