Data-driven novel deep learning applications for the prediction of rainfall using meteorological data
Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contempora...
Uloženo v:
| Vydáno v: | Frontiers in environmental science Ročník 12 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Frontiers Media S.A
16.08.2024
|
| Témata: | |
| ISSN: | 2296-665X, 2296-665X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contemporary challenges. In this study, to predict rainfall, 12,852 data points from open-source global weather data for three cities in Indonesia were utilized, incorporating input variables such as maximum temperature (°C), minimum temperature (°C), wind speed (m/s), relative humidity (%), and solar radiation (MJ/m
2
). Three novel and robust Deep Learning models were used: Recurrent Neural Network (DRNN), Deep Gated Recurrent Unit (DGRU), and Deep Long Short-Term Memory (DLSTM). Evaluation of the results, including statistical metrics like Root-Mean-Square Errors and Correction Coefficient (R
2
), revealed that the Deep Long Short-Term Memory model outperformed DRNN and Deep Gated Recurrent Unit with values of 0.1289 and 0.9995, respectively. DLSTM networks offer several advantages for rainfall prediction, particularly in sequential data like time series prediction, excelling in handling long-term dependencies important for capturing weather patterns over extended periods. Equipped with memory cell architecture and forget gates, DLSTM networks effectively retain and retrieve relevant information. Furthermore, DLSTM networks enable parallelization, enhancing computational efficiency, and offer flexibility in model design and regularization techniques for improved generalization performance. Additionally, the results indicate that maximum temperature and solar radiation parameters exhibit an indirect influence on rainfall, while minimum temperature, wind speed, and relative humidity parameters have a direct relationship with rainfall. |
|---|---|
| AbstractList | Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contemporary challenges. In this study, to predict rainfall, 12,852 data points from open-source global weather data for three cities in Indonesia were utilized, incorporating input variables such as maximum temperature (°C), minimum temperature (°C), wind speed (m/s), relative humidity (%), and solar radiation (MJ/m
2
). Three novel and robust Deep Learning models were used: Recurrent Neural Network (DRNN), Deep Gated Recurrent Unit (DGRU), and Deep Long Short-Term Memory (DLSTM). Evaluation of the results, including statistical metrics like Root-Mean-Square Errors and Correction Coefficient (R
2
), revealed that the Deep Long Short-Term Memory model outperformed DRNN and Deep Gated Recurrent Unit with values of 0.1289 and 0.9995, respectively. DLSTM networks offer several advantages for rainfall prediction, particularly in sequential data like time series prediction, excelling in handling long-term dependencies important for capturing weather patterns over extended periods. Equipped with memory cell architecture and forget gates, DLSTM networks effectively retain and retrieve relevant information. Furthermore, DLSTM networks enable parallelization, enhancing computational efficiency, and offer flexibility in model design and regularization techniques for improved generalization performance. Additionally, the results indicate that maximum temperature and solar radiation parameters exhibit an indirect influence on rainfall, while minimum temperature, wind speed, and relative humidity parameters have a direct relationship with rainfall. Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contemporary challenges. In this study, to predict rainfall, 12,852 data points from open-source global weather data for three cities in Indonesia were utilized, incorporating input variables such as maximum temperature (°C), minimum temperature (°C), wind speed (m/s), relative humidity (%), and solar radiation (MJ/m2). Three novel and robust Deep Learning models were used: Recurrent Neural Network (DRNN), Deep Gated Recurrent Unit (DGRU), and Deep Long Short-Term Memory (DLSTM). Evaluation of the results, including statistical metrics like Root-Mean-Square Errors and Correction Coefficient (R2), revealed that the Deep Long Short-Term Memory model outperformed DRNN and Deep Gated Recurrent Unit with values of 0.1289 and 0.9995, respectively. DLSTM networks offer several advantages for rainfall prediction, particularly in sequential data like time series prediction, excelling in handling long-term dependencies important for capturing weather patterns over extended periods. Equipped with memory cell architecture and forget gates, DLSTM networks effectively retain and retrieve relevant information. Furthermore, DLSTM networks enable parallelization, enhancing computational efficiency, and offer flexibility in model design and regularization techniques for improved generalization performance. Additionally, the results indicate that maximum temperature and solar radiation parameters exhibit an indirect influence on rainfall, while minimum temperature, wind speed, and relative humidity parameters have a direct relationship with rainfall. |
| Author | Li, Hongli Li, Shanzhi Ghorbani, Hamzeh |
| Author_xml | – sequence: 1 givenname: Hongli surname: Li fullname: Li, Hongli – sequence: 2 givenname: Shanzhi surname: Li fullname: Li, Shanzhi – sequence: 3 givenname: Hamzeh surname: Ghorbani fullname: Ghorbani, Hamzeh |
| BookMark | eNp9kNtKAzEQhoNUsNa-gFd5ga3J5rCbS6mnguCNgnchm0xqyjZZsmvBt3d7EMQLr2YY8v0z-S7RJKYICF1TsmCsVjce4q5flKTkC8q5ULI6Q9OyVLKQUrxPfvUXaN73G0IIZaXglE4R3JnBFC6HHUQc0w5a7AA63ILJMcQ1Nl3XBmuGkGKPfcp4-ADcZXDB7mc4eZxNiN60Lf7s98QWBkg5tWk9cmPcuOAKnY8Pepif6gy9Pdy_Lp-K55fH1fL2ubBMVEMhGqVMxZmpvKJlQxpGlJfOS1E3de0VAw5VLYkUyvFaCBC0UUCNbJpKUunZDK2OuS6Zje5y2Jr8pZMJ-jBIea1NHoJtQZvKKuqsKilX3I-bqXPWscYSWQsYBc1QfcyyOfV9Bq9tGA4ehvHDraZE7-3rg329t69P9ke0_IP-nPIP9A2Dk41k |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128627 crossref_primary_10_1080_1573062X_2025_2519094 crossref_primary_10_1021_acsomega_5c02050 crossref_primary_10_1016_j_eswa_2025_128070 crossref_primary_10_1371_journal_pone_0314108 crossref_primary_10_1371_journal_pone_0325271 crossref_primary_10_1007_s44196_025_00880_x crossref_primary_10_1007_s12145_025_01876_z crossref_primary_10_1002_msd2_70004 crossref_primary_10_1016_j_eswa_2025_128156 |
| Cites_doi | 10.1016/j.eswa.2023.122935 10.48550/arXiv.1708.06834 10.1109/msp.2019.2931595 10.1016/j.knosys.2019.05.028 10.2166/hydro.2024.014 10.31018/jans.v11i1.1951 10.1109/tetci.2023.3259434 10.1016/j.scitotenv.2022.158760 10.1109/tnsre.2018.2872919 10.1162/089976600300015015 10.1038/s41598-018-24271-9 10.1186/s40537-021-00444-8 10.48550/arXiv.1704.06857 10.5220/0006922101420153 10.1007/978-94-015-1252-7_2 10.14569/ijacsa.2020.0110174 10.1016/j.jhydrol.2017.03.003 10.1175/1520-0442(2002)015<3645:lpoimr>2.0.co;2 10.1162/neco.1997.9.8.1735 10.1002/2016rg000544 10.1016/j.knosys.2022.109125 10.3390/w15040826 10.3390/a11110172 10.1007/s10546-020-00586-x 10.1109/MWSCAS.2017.8053243 10.1109/72.279181 10.11591/ijeecs.v35.i2.pp1325-1332 10.1016/j.neunet.2020.11.003 10.1016/j.grets.2024.100104 10.1016/j.cosrev.2009.03.005 10.1007/s00024-022-03189-4 10.1016/j.atmosres.2020.104845 10.1175/jcli-d-23-0446.1 10.3390/w12030912 10.1016/j.neucom.2018.09.082 10.1002/widm.1253 10.1080/1463922x.2022.2135786 10.2991/icaita-16.2016.13 10.3390/geosciences11030128 10.1109/jiot.2023.3254051 10.2118/180277-MS 10.1613/jair.1.11196 10.1016/j.atmosres.2014.10.016 10.1016/j.engappai.2019.07.011 10.1038/s41598-022-17429-z 10.3390/su151813724 10.1016/j.aej.2023.09.060 10.1016/j.patrec.2014.01.008 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3389/fenvs.2024.1445967 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2296-665X |
| ExternalDocumentID | oai_doaj_org_article_a7c91dc921494f5b91ddcd3bc0685e01 10_3389_fenvs_2024_1445967 |
| GroupedDBID | 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFS ADBBV AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M7P M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC ZBA |
| ID | FETCH-LOGICAL-c357t-5b99a743a7f912b0b309f6df658b88f93e4e7860659d4855e51b9e1a6bb7616f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302093400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2296-665X |
| IngestDate | Tue Oct 14 18:57:11 EDT 2025 Sat Nov 29 03:29:16 EST 2025 Tue Nov 18 22:01:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-5b99a743a7f912b0b309f6df658b88f93e4e7860659d4855e51b9e1a6bb7616f3 |
| OpenAccessLink | https://doaj.org/article/a7c91dc921494f5b91ddcd3bc0685e01 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a7c91dc921494f5b91ddcd3bc0685e01 crossref_citationtrail_10_3389_fenvs_2024_1445967 crossref_primary_10_3389_fenvs_2024_1445967 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-16 |
| PublicationDateYYYYMMDD | 2024-08-16 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in environmental science |
| PublicationYear | 2024 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Sagheer (B40) 2019; 323 Gers (B22) 2000; 12 Song (B44) 2020; 12 Kumar (B29) 2023; 15 Beniston (B8) 2003; 59 Wang (B47) 2018; 26 Neftci (B36) 2019; 36 Lukoševičius (B34) 2009; 3 Norel (B38) 2021; 11 Zhang (B49) 2018; 8 Che (B11) 2018; 8 Al-Mudhafar (B2) 2016 Fei (B20) 2018; 11 Fabbri (B17) 2018 Hupkes (B27) 2018; 61 Chang (B10) 2017; 548 Campos (B9) 2017 Fang (B19) 2019; 85 Hermans (B25) 2013; 26 Tricha (B46) 2024; 35 Spiegel (B45) 2011 Bengio (B6) 2003; 16 Zhang (B50) 2021; 134 Fahad (B18) 2023; 854 Längkvist (B30) 2014; 42 Nicholson (B37) 2017; 55 Dey (B15) 2017 Azam (B4) 2022; 12 Alzubaidi (B3) 2021; 8 Chen (B12) 2016 Dwivedi (B16) 2019; 11 Bengio (B7) 1994; 5 Deo (B14) 2015; 153 Hochreiter (B26) 1997; 9 Baljon (B5) 2023; 15 Zhang (B48) 2024; 243 Goutham (B23) 2021; 179 Saleh (B41) 2024; 2 Li (B33) 2019; 181 Sheng (B43); 10 Markuna (B35) 2023; 180 Akhtar (B1) 2023; 24 Latif (B31) 2023; 82 Sheng (B42); 7 Knight (B28) 2024; 37 Latif (B32) 2024; 26 Pham (B39) 2020; 237 Zulqarnain (B51) 2020; 11 Garcia-Garcia (B21) 2017 DelSole (B13) 2002; 15 He (B24) 2022; 251 |
| References_xml | – volume: 243 start-page: 122935 year: 2024 ident: B48 article-title: Multi-lead-time short-term runoff forecasting based on ensemble attention temporal convolutional network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122935 – start-page: 170806834 year: 2017 ident: B9 article-title: Skip rnn: learning to skip state updates in recurrent neural networks publication-title: arXiv Prepr. arXiv doi: 10.48550/arXiv.1708.06834 – volume: 36 start-page: 51 year: 2019 ident: B36 article-title: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks publication-title: IEEE Signal Process. Mag. doi: 10.1109/msp.2019.2931595 – volume: 181 start-page: 104785 year: 2019 ident: B33 article-title: EA-LSTM: evolutionary attention-based LSTM for time series prediction publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2019.05.028 – volume: 26 start-page: 904 year: 2024 ident: B32 article-title: Developing an innovative machine learning model for rainfall prediction in a semi-arid region publication-title: J. Hydroinformatics doi: 10.2166/hydro.2024.014 – start-page: 34 volume-title: Pattern recognition and classification for multivariate time series year: 2011 ident: B45 – volume: 11 start-page: 35 year: 2019 ident: B16 article-title: Forecasting monthly rainfall using autoregressive integrated moving average model (ARIMA) and artificial neural network (ANN) model: a case study of Junagadh, Gujarat, India publication-title: J. Appl. Nat. Sci. doi: 10.31018/jans.v11i1.1951 – volume: 26 year: 2013 ident: B25 article-title: Training and analysing deep recurrent neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 1083 ident: B42 article-title: A survey on data-driven runoff forecasting models based on neural networks publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/tetci.2023.3259434 – volume: 854 start-page: 158760 year: 2023 ident: B18 article-title: Implementing a novel deep learning technique for rainfall forecasting via climatic variables: an approach via hierarchical clustering analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158760 – volume: 26 start-page: 2115 year: 2018 ident: B47 article-title: Large-scale circuitry interactions upon earthquake experiences revealed by recurrent neural networks publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. doi: 10.1109/tnsre.2018.2872919 – volume: 12 start-page: 2451 year: 2000 ident: B22 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 8 start-page: 6085 year: 2018 ident: B11 article-title: Recurrent neural networks for multivariate time series with missing values publication-title: Sci. Rep. doi: 10.1038/s41598-018-24271-9 – volume: 8 start-page: 53 year: 2021 ident: B3 article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – start-page: 170406857 year: 2017 ident: B21 article-title: A review on deep learning techniques applied to semantic segmentation publication-title: arXiv Prepr. arXiv doi: 10.48550/arXiv.1704.06857 – start-page: 142 year: 2018 ident: B17 article-title: Dow jones trading with deep learning: the unreasonable effectiveness of recurrent publication-title: Neural Netw. doi: 10.5220/0006922101420153 – volume: 59 start-page: 5 year: 2003 ident: B8 article-title: Climatic change in mountain regions: a review of possible impacts publication-title: Clim. Change doi: 10.1007/978-94-015-1252-7_2 – volume: 11 year: 2020 ident: B51 article-title: An improved deep learning approach based on variant two-state gated recurrent unit and word embeddings for sentiment classification publication-title: Int. J. Adv. Comput. Sci. Appl. doi: 10.14569/ijacsa.2020.0110174 – volume: 548 start-page: 305 year: 2017 ident: B10 article-title: Multi-scale quantitative precipitation forecasting using nonlinear and nonstationary teleconnection signals and artificial neural network models publication-title: J. Hydrology doi: 10.1016/j.jhydrol.2017.03.003 – volume: 15 start-page: 3645 year: 2002 ident: B13 article-title: Linear prediction of Indian monsoon rainfall publication-title: J. Clim. doi: 10.1175/1520-0442(2002)015<3645:lpoimr>2.0.co;2 – volume: 9 start-page: 1735 year: 1997 ident: B26 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 55 start-page: 590 year: 2017 ident: B37 article-title: Climate and climatic variability of rainfall over eastern Africa publication-title: Rev. Geophys. doi: 10.1002/2016rg000544 – volume: 251 start-page: 109125 year: 2022 ident: B24 article-title: Modeling and predicting rainfall time series using seasonal-trend decomposition and machine learning publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2022.109125 – volume: 15 start-page: 826 year: 2023 ident: B5 article-title: Rainfall prediction rate in Saudi Arabia using improved machine learning techniques publication-title: Water doi: 10.3390/w15040826 – volume: 11 start-page: 172 year: 2018 ident: B20 article-title: Bidirectional grid long short-term memory (bigridlstm): a method to address context-sensitivity and vanishing gradient publication-title: Algorithms doi: 10.3390/a11110172 – volume: 179 start-page: 133 year: 2021 ident: B23 article-title: Using machine-learning methods to improve surface wind speed from the outputs of a numerical weather prediction model publication-title: Boundary-Layer Meteorol. doi: 10.1007/s10546-020-00586-x – start-page: 1597 year: 2017 ident: B15 article-title: Gate-variants of gated recurrent unit (GRU) neural networks publication-title: IEEE doi: 10.1109/MWSCAS.2017.8053243 – volume: 5 start-page: 157 year: 1994 ident: B7 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – volume: 35 start-page: 1325 year: 2024 ident: B46 article-title: Evaluating machine learning models for precipitation prediction in Casablanca City publication-title: Indonesian J. Electr. Eng. Comput. Sci. doi: 10.11591/ijeecs.v35.i2.pp1325-1332 – volume: 134 start-page: 1 year: 2021 ident: B50 article-title: Episodic memory governs choices: an rnn-based reinforcement learning model for decision-making task publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.11.003 – volume: 2 start-page: 100104 year: 2024 ident: B41 article-title: A comprehensive review towards resilient rainfall forecasting models using artificial intelligence techniques publication-title: Green Technol. Sustain. doi: 10.1016/j.grets.2024.100104 – volume: 3 start-page: 127 year: 2009 ident: B34 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.03.005 – volume: 180 start-page: 335 year: 2023 ident: B35 article-title: Application of innovative machine learning techniques for long-term rainfall prediction publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-022-03189-4 – volume: 237 start-page: 104845 year: 2020 ident: B39 article-title: Development of advanced artificial intelligence models for daily rainfall prediction publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2020.104845 – volume: 37 start-page: 2519 year: 2024 ident: B28 article-title: Remote midlatitude control of rainfall onset at the southern African tropical edge publication-title: J. Clim. doi: 10.1175/jcli-d-23-0446.1 – volume: 12 start-page: 912 year: 2020 ident: B44 article-title: Uncertainty quantification in machine learning modeling for multi-step time series forecasting: example of recurrent neural networks in discharge simulations publication-title: Water doi: 10.3390/w12030912 – volume: 323 start-page: 203 year: 2019 ident: B40 article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.082 – volume: 8 start-page: e1253 year: 2018 ident: B49 article-title: Deep learning for sentiment analysis: a survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1253 – volume: 24 start-page: 564 year: 2023 ident: B1 article-title: Optimized cascaded CNN for intelligent rainfall prediction model: a research towards statistic-based machine learning publication-title: Theor. Issues Ergonomics Sci. doi: 10.1080/1463922x.2022.2135786 – start-page: 50 year: 2016 ident: B12 article-title: LSTM networks for mobile human activity recognition publication-title: Atlantis Press doi: 10.2991/icaita-16.2016.13 – volume: 11 start-page: 128 year: 2021 ident: B38 article-title: Climate variability indices—a guided tour publication-title: Geosciences doi: 10.3390/geosciences11030128 – volume: 10 start-page: 12736 ident: B43 article-title: A novel residual gated recurrent unit framework for runoff forecasting publication-title: IEEE Internet Things J. doi: 10.1109/jiot.2023.3254051 – volume-title: Incorporation of bootstrapping and cross-validation for efficient multivariate facies and petrophysical modeling year: 2016 ident: B2 doi: 10.2118/180277-MS – volume: 61 start-page: 907 year: 2018 ident: B27 article-title: Visualisation and 'diagnostic classifiers' reveal how recurrent and recursive neural networks process hierarchical structure publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.11196 – volume: 153 start-page: 512 year: 2015 ident: B14 article-title: Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.10.016 – volume: 85 start-page: 533 year: 2019 ident: B19 article-title: Performance enhancing techniques for deep learning models in time series forecasting publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.07.011 – volume: 12 start-page: 14454 year: 2022 ident: B4 article-title: Modeling resilient modulus of subgrade soils using LSSVM optimized with swarm intelligence algorithms publication-title: Sci. Rep. doi: 10.1038/s41598-022-17429-z – volume: 15 start-page: 13724 year: 2023 ident: B29 article-title: A comparison of machine learning models for predicting rainfall in urban metropolitan cities publication-title: Sustainability doi: 10.3390/su151813724 – volume: 82 start-page: 16 year: 2023 ident: B31 article-title: Assessing rainfall prediction models: exploring the advantages of machine learning and remote sensing approaches publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2023.09.060 – volume: 16 year: 2003 ident: B6 article-title: No unbiased estimator of the variance of k-fold cross-validation publication-title: Adv. Neural Inf. Process. Syst. – volume: 42 start-page: 11 year: 2014 ident: B30 article-title: A review of unsupervised feature learning and deep learning for time-series modeling publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.01.008 |
| SSID | ssj0001325411 |
| Score | 2.3288205 |
| Snippet | Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| SubjectTerms | deep learning mode DLSTM meteorological parameters rainfall modeling rainfall predicting |
| Title | Data-driven novel deep learning applications for the prediction of rainfall using meteorological data |
| URI | https://doaj.org/article/a7c91dc921494f5b91ddcd3bc0685e01 |
| Volume | 12 |
| WOSCitedRecordID | wos001302093400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-665X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325411 issn: 2296-665X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2296-665X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325411 issn: 2296-665X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2296-665X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325411 issn: 2296-665X databaseCode: M7P dateStart: 20131025 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2296-665X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325411 issn: 2296-665X databaseCode: BENPR dateStart: 20131025 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2296-665X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325411 issn: 2296-665X databaseCode: PIMPY dateStart: 20131025 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2296-665X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001325411 issn: 2296-665X databaseCode: M2P dateStart: 20131025 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYWBBvCrKo_LAhqLGedjxSKEVA6oqBFK3yI7tCimkVRr6-7lL0scEC9niOJH15Wx_57O_I-Qe_J5AmVB7BriHF2no6YqbxNMic3CFjutaxPVVTCbJbCane6m-cE9YIw_cADdQIpPMZDIAKh-5WMONyeDjmc-T2DYnt3wh95ypenUlBMeHseaUDHhhcuBssUZ57iDCeGYs68Tyu5loT7C_nlnGp-SkpYT0sWnKGTmwxTnpjnYn0OBh2wVXF8Q-q0p5psRRihaLtc2psXZJ2_QPc7ofkqZASSlQPLosMSCDZXThKKaFcCrPKe56n9MvIM6LcjMKUtw0ekk-xqP3pxevzZXgZWEsKg-AkQrYgBJOskD7OvSl48YBwdBJ4mRoIysSjlFUg3owNmZaWqa41oIz7sIu6RSLwl4RqqxSXMXWoDK-ihIdhzCBcYtDUaCd6BG2wS3NWiFxzGeRp-BQINZpjXWKWKct1j3ysH1n2cho_Fp7iL9jWxMlsOsCMIy0NYz0L8O4_o-P3JBjbBguIjN-SzpV-W3vyFG2rj5XZZ8cDkeT6Vu_tr0fUUvgGw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+novel+deep+learning+applications+for+the+prediction+of+rainfall+using+meteorological+data&rft.jtitle=Frontiers+in+environmental+science&rft.au=Hongli+Li&rft.au=Shanzhi+Li&rft.au=Hamzeh+Ghorbani&rft.date=2024-08-16&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-665X&rft.volume=12&rft_id=info:doi/10.3389%2Ffenvs.2024.1445967&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7c91dc921494f5b91ddcd3bc0685e01 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-665X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-665X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-665X&client=summon |