Data-driven novel deep learning applications for the prediction of rainfall using meteorological data

Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contempora...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in environmental science Ročník 12
Hlavní autoři: Li, Hongli, Li, Shanzhi, Ghorbani, Hamzeh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Frontiers Media S.A 16.08.2024
Témata:
ISSN:2296-665X, 2296-665X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contemporary challenges. In this study, to predict rainfall, 12,852 data points from open-source global weather data for three cities in Indonesia were utilized, incorporating input variables such as maximum temperature (°C), minimum temperature (°C), wind speed (m/s), relative humidity (%), and solar radiation (MJ/m 2 ). Three novel and robust Deep Learning models were used: Recurrent Neural Network (DRNN), Deep Gated Recurrent Unit (DGRU), and Deep Long Short-Term Memory (DLSTM). Evaluation of the results, including statistical metrics like Root-Mean-Square Errors and Correction Coefficient (R 2 ), revealed that the Deep Long Short-Term Memory model outperformed DRNN and Deep Gated Recurrent Unit with values of 0.1289 and 0.9995, respectively. DLSTM networks offer several advantages for rainfall prediction, particularly in sequential data like time series prediction, excelling in handling long-term dependencies important for capturing weather patterns over extended periods. Equipped with memory cell architecture and forget gates, DLSTM networks effectively retain and retrieve relevant information. Furthermore, DLSTM networks enable parallelization, enhancing computational efficiency, and offer flexibility in model design and regularization techniques for improved generalization performance. Additionally, the results indicate that maximum temperature and solar radiation parameters exhibit an indirect influence on rainfall, while minimum temperature, wind speed, and relative humidity parameters have a direct relationship with rainfall.
AbstractList Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contemporary challenges. In this study, to predict rainfall, 12,852 data points from open-source global weather data for three cities in Indonesia were utilized, incorporating input variables such as maximum temperature (°C), minimum temperature (°C), wind speed (m/s), relative humidity (%), and solar radiation (MJ/m 2 ). Three novel and robust Deep Learning models were used: Recurrent Neural Network (DRNN), Deep Gated Recurrent Unit (DGRU), and Deep Long Short-Term Memory (DLSTM). Evaluation of the results, including statistical metrics like Root-Mean-Square Errors and Correction Coefficient (R 2 ), revealed that the Deep Long Short-Term Memory model outperformed DRNN and Deep Gated Recurrent Unit with values of 0.1289 and 0.9995, respectively. DLSTM networks offer several advantages for rainfall prediction, particularly in sequential data like time series prediction, excelling in handling long-term dependencies important for capturing weather patterns over extended periods. Equipped with memory cell architecture and forget gates, DLSTM networks effectively retain and retrieve relevant information. Furthermore, DLSTM networks enable parallelization, enhancing computational efficiency, and offer flexibility in model design and regularization techniques for improved generalization performance. Additionally, the results indicate that maximum temperature and solar radiation parameters exhibit an indirect influence on rainfall, while minimum temperature, wind speed, and relative humidity parameters have a direct relationship with rainfall.
Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining terrestrial ecosystems. Accurate prediction is crucial given the intricate interplay of atmospheric and oceanic phenomena, especially amidst contemporary challenges. In this study, to predict rainfall, 12,852 data points from open-source global weather data for three cities in Indonesia were utilized, incorporating input variables such as maximum temperature (°C), minimum temperature (°C), wind speed (m/s), relative humidity (%), and solar radiation (MJ/m2). Three novel and robust Deep Learning models were used: Recurrent Neural Network (DRNN), Deep Gated Recurrent Unit (DGRU), and Deep Long Short-Term Memory (DLSTM). Evaluation of the results, including statistical metrics like Root-Mean-Square Errors and Correction Coefficient (R2), revealed that the Deep Long Short-Term Memory model outperformed DRNN and Deep Gated Recurrent Unit with values of 0.1289 and 0.9995, respectively. DLSTM networks offer several advantages for rainfall prediction, particularly in sequential data like time series prediction, excelling in handling long-term dependencies important for capturing weather patterns over extended periods. Equipped with memory cell architecture and forget gates, DLSTM networks effectively retain and retrieve relevant information. Furthermore, DLSTM networks enable parallelization, enhancing computational efficiency, and offer flexibility in model design and regularization techniques for improved generalization performance. Additionally, the results indicate that maximum temperature and solar radiation parameters exhibit an indirect influence on rainfall, while minimum temperature, wind speed, and relative humidity parameters have a direct relationship with rainfall.
Author Li, Hongli
Li, Shanzhi
Ghorbani, Hamzeh
Author_xml – sequence: 1
  givenname: Hongli
  surname: Li
  fullname: Li, Hongli
– sequence: 2
  givenname: Shanzhi
  surname: Li
  fullname: Li, Shanzhi
– sequence: 3
  givenname: Hamzeh
  surname: Ghorbani
  fullname: Ghorbani, Hamzeh
BookMark eNp9kNtKAzEQhoNUsNa-gFd5ga3J5rCbS6mnguCNgnchm0xqyjZZsmvBt3d7EMQLr2YY8v0z-S7RJKYICF1TsmCsVjce4q5flKTkC8q5ULI6Q9OyVLKQUrxPfvUXaN73G0IIZaXglE4R3JnBFC6HHUQc0w5a7AA63ILJMcQ1Nl3XBmuGkGKPfcp4-ADcZXDB7mc4eZxNiN60Lf7s98QWBkg5tWk9cmPcuOAKnY8Pepif6gy9Pdy_Lp-K55fH1fL2ubBMVEMhGqVMxZmpvKJlQxpGlJfOS1E3de0VAw5VLYkUyvFaCBC0UUCNbJpKUunZDK2OuS6Zje5y2Jr8pZMJ-jBIea1NHoJtQZvKKuqsKilX3I-bqXPWscYSWQsYBc1QfcyyOfV9Bq9tGA4ehvHDraZE7-3rg329t69P9ke0_IP-nPIP9A2Dk41k
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128627
crossref_primary_10_1080_1573062X_2025_2519094
crossref_primary_10_1021_acsomega_5c02050
crossref_primary_10_1016_j_eswa_2025_128070
crossref_primary_10_1371_journal_pone_0314108
crossref_primary_10_1371_journal_pone_0325271
crossref_primary_10_1007_s44196_025_00880_x
crossref_primary_10_1007_s12145_025_01876_z
crossref_primary_10_1002_msd2_70004
crossref_primary_10_1016_j_eswa_2025_128156
Cites_doi 10.1016/j.eswa.2023.122935
10.48550/arXiv.1708.06834
10.1109/msp.2019.2931595
10.1016/j.knosys.2019.05.028
10.2166/hydro.2024.014
10.31018/jans.v11i1.1951
10.1109/tetci.2023.3259434
10.1016/j.scitotenv.2022.158760
10.1109/tnsre.2018.2872919
10.1162/089976600300015015
10.1038/s41598-018-24271-9
10.1186/s40537-021-00444-8
10.48550/arXiv.1704.06857
10.5220/0006922101420153
10.1007/978-94-015-1252-7_2
10.14569/ijacsa.2020.0110174
10.1016/j.jhydrol.2017.03.003
10.1175/1520-0442(2002)015<3645:lpoimr>2.0.co;2
10.1162/neco.1997.9.8.1735
10.1002/2016rg000544
10.1016/j.knosys.2022.109125
10.3390/w15040826
10.3390/a11110172
10.1007/s10546-020-00586-x
10.1109/MWSCAS.2017.8053243
10.1109/72.279181
10.11591/ijeecs.v35.i2.pp1325-1332
10.1016/j.neunet.2020.11.003
10.1016/j.grets.2024.100104
10.1016/j.cosrev.2009.03.005
10.1007/s00024-022-03189-4
10.1016/j.atmosres.2020.104845
10.1175/jcli-d-23-0446.1
10.3390/w12030912
10.1016/j.neucom.2018.09.082
10.1002/widm.1253
10.1080/1463922x.2022.2135786
10.2991/icaita-16.2016.13
10.3390/geosciences11030128
10.1109/jiot.2023.3254051
10.2118/180277-MS
10.1613/jair.1.11196
10.1016/j.atmosres.2014.10.016
10.1016/j.engappai.2019.07.011
10.1038/s41598-022-17429-z
10.3390/su151813724
10.1016/j.aej.2023.09.060
10.1016/j.patrec.2014.01.008
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3389/fenvs.2024.1445967
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2296-665X
ExternalDocumentID oai_doaj_org_article_a7c91dc921494f5b91ddcd3bc0685e01
10_3389_fenvs_2024_1445967
GroupedDBID 5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFS
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
ZBA
ID FETCH-LOGICAL-c357t-5b99a743a7f912b0b309f6df658b88f93e4e7860659d4855e51b9e1a6bb7616f3
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302093400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-665X
IngestDate Tue Oct 14 18:57:11 EDT 2025
Sat Nov 29 03:29:16 EST 2025
Tue Nov 18 22:01:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-5b99a743a7f912b0b309f6df658b88f93e4e7860659d4855e51b9e1a6bb7616f3
OpenAccessLink https://doaj.org/article/a7c91dc921494f5b91ddcd3bc0685e01
ParticipantIDs doaj_primary_oai_doaj_org_article_a7c91dc921494f5b91ddcd3bc0685e01
crossref_citationtrail_10_3389_fenvs_2024_1445967
crossref_primary_10_3389_fenvs_2024_1445967
PublicationCentury 2000
PublicationDate 2024-08-16
PublicationDateYYYYMMDD 2024-08-16
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-16
  day: 16
PublicationDecade 2020
PublicationTitle Frontiers in environmental science
PublicationYear 2024
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Sagheer (B40) 2019; 323
Gers (B22) 2000; 12
Song (B44) 2020; 12
Kumar (B29) 2023; 15
Beniston (B8) 2003; 59
Wang (B47) 2018; 26
Neftci (B36) 2019; 36
Lukoševičius (B34) 2009; 3
Norel (B38) 2021; 11
Zhang (B49) 2018; 8
Che (B11) 2018; 8
Al-Mudhafar (B2) 2016
Fei (B20) 2018; 11
Fabbri (B17) 2018
Hupkes (B27) 2018; 61
Chang (B10) 2017; 548
Campos (B9) 2017
Fang (B19) 2019; 85
Hermans (B25) 2013; 26
Tricha (B46) 2024; 35
Spiegel (B45) 2011
Bengio (B6) 2003; 16
Zhang (B50) 2021; 134
Fahad (B18) 2023; 854
Längkvist (B30) 2014; 42
Nicholson (B37) 2017; 55
Dey (B15) 2017
Azam (B4) 2022; 12
Alzubaidi (B3) 2021; 8
Chen (B12) 2016
Dwivedi (B16) 2019; 11
Bengio (B7) 1994; 5
Deo (B14) 2015; 153
Hochreiter (B26) 1997; 9
Baljon (B5) 2023; 15
Zhang (B48) 2024; 243
Goutham (B23) 2021; 179
Saleh (B41) 2024; 2
Li (B33) 2019; 181
Sheng (B43); 10
Markuna (B35) 2023; 180
Akhtar (B1) 2023; 24
Latif (B31) 2023; 82
Sheng (B42); 7
Knight (B28) 2024; 37
Latif (B32) 2024; 26
Pham (B39) 2020; 237
Zulqarnain (B51) 2020; 11
Garcia-Garcia (B21) 2017
DelSole (B13) 2002; 15
He (B24) 2022; 251
References_xml – volume: 243
  start-page: 122935
  year: 2024
  ident: B48
  article-title: Multi-lead-time short-term runoff forecasting based on ensemble attention temporal convolutional network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122935
– start-page: 170806834
  year: 2017
  ident: B9
  article-title: Skip rnn: learning to skip state updates in recurrent neural networks
  publication-title: arXiv Prepr. arXiv
  doi: 10.48550/arXiv.1708.06834
– volume: 36
  start-page: 51
  year: 2019
  ident: B36
  article-title: Surrogate gradient learning in spiking neural networks: bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/msp.2019.2931595
– volume: 181
  start-page: 104785
  year: 2019
  ident: B33
  article-title: EA-LSTM: evolutionary attention-based LSTM for time series prediction
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2019.05.028
– volume: 26
  start-page: 904
  year: 2024
  ident: B32
  article-title: Developing an innovative machine learning model for rainfall prediction in a semi-arid region
  publication-title: J. Hydroinformatics
  doi: 10.2166/hydro.2024.014
– start-page: 34
  volume-title: Pattern recognition and classification for multivariate time series
  year: 2011
  ident: B45
– volume: 11
  start-page: 35
  year: 2019
  ident: B16
  article-title: Forecasting monthly rainfall using autoregressive integrated moving average model (ARIMA) and artificial neural network (ANN) model: a case study of Junagadh, Gujarat, India
  publication-title: J. Appl. Nat. Sci.
  doi: 10.31018/jans.v11i1.1951
– volume: 26
  year: 2013
  ident: B25
  article-title: Training and analysing deep recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 1083
  ident: B42
  article-title: A survey on data-driven runoff forecasting models based on neural networks
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/tetci.2023.3259434
– volume: 854
  start-page: 158760
  year: 2023
  ident: B18
  article-title: Implementing a novel deep learning technique for rainfall forecasting via climatic variables: an approach via hierarchical clustering analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.158760
– volume: 26
  start-page: 2115
  year: 2018
  ident: B47
  article-title: Large-scale circuitry interactions upon earthquake experiences revealed by recurrent neural networks
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
  doi: 10.1109/tnsre.2018.2872919
– volume: 12
  start-page: 2451
  year: 2000
  ident: B22
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 8
  start-page: 6085
  year: 2018
  ident: B11
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24271-9
– volume: 8
  start-page: 53
  year: 2021
  ident: B3
  article-title: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– start-page: 170406857
  year: 2017
  ident: B21
  article-title: A review on deep learning techniques applied to semantic segmentation
  publication-title: arXiv Prepr. arXiv
  doi: 10.48550/arXiv.1704.06857
– start-page: 142
  year: 2018
  ident: B17
  article-title: Dow jones trading with deep learning: the unreasonable effectiveness of recurrent
  publication-title: Neural Netw.
  doi: 10.5220/0006922101420153
– volume: 59
  start-page: 5
  year: 2003
  ident: B8
  article-title: Climatic change in mountain regions: a review of possible impacts
  publication-title: Clim. Change
  doi: 10.1007/978-94-015-1252-7_2
– volume: 11
  year: 2020
  ident: B51
  article-title: An improved deep learning approach based on variant two-state gated recurrent unit and word embeddings for sentiment classification
  publication-title: Int. J. Adv. Comput. Sci. Appl.
  doi: 10.14569/ijacsa.2020.0110174
– volume: 548
  start-page: 305
  year: 2017
  ident: B10
  article-title: Multi-scale quantitative precipitation forecasting using nonlinear and nonstationary teleconnection signals and artificial neural network models
  publication-title: J. Hydrology
  doi: 10.1016/j.jhydrol.2017.03.003
– volume: 15
  start-page: 3645
  year: 2002
  ident: B13
  article-title: Linear prediction of Indian monsoon rainfall
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2002)015<3645:lpoimr>2.0.co;2
– volume: 9
  start-page: 1735
  year: 1997
  ident: B26
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 55
  start-page: 590
  year: 2017
  ident: B37
  article-title: Climate and climatic variability of rainfall over eastern Africa
  publication-title: Rev. Geophys.
  doi: 10.1002/2016rg000544
– volume: 251
  start-page: 109125
  year: 2022
  ident: B24
  article-title: Modeling and predicting rainfall time series using seasonal-trend decomposition and machine learning
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2022.109125
– volume: 15
  start-page: 826
  year: 2023
  ident: B5
  article-title: Rainfall prediction rate in Saudi Arabia using improved machine learning techniques
  publication-title: Water
  doi: 10.3390/w15040826
– volume: 11
  start-page: 172
  year: 2018
  ident: B20
  article-title: Bidirectional grid long short-term memory (bigridlstm): a method to address context-sensitivity and vanishing gradient
  publication-title: Algorithms
  doi: 10.3390/a11110172
– volume: 179
  start-page: 133
  year: 2021
  ident: B23
  article-title: Using machine-learning methods to improve surface wind speed from the outputs of a numerical weather prediction model
  publication-title: Boundary-Layer Meteorol.
  doi: 10.1007/s10546-020-00586-x
– start-page: 1597
  year: 2017
  ident: B15
  article-title: Gate-variants of gated recurrent unit (GRU) neural networks
  publication-title: IEEE
  doi: 10.1109/MWSCAS.2017.8053243
– volume: 5
  start-page: 157
  year: 1994
  ident: B7
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– volume: 35
  start-page: 1325
  year: 2024
  ident: B46
  article-title: Evaluating machine learning models for precipitation prediction in Casablanca City
  publication-title: Indonesian J. Electr. Eng. Comput. Sci.
  doi: 10.11591/ijeecs.v35.i2.pp1325-1332
– volume: 134
  start-page: 1
  year: 2021
  ident: B50
  article-title: Episodic memory governs choices: an rnn-based reinforcement learning model for decision-making task
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.11.003
– volume: 2
  start-page: 100104
  year: 2024
  ident: B41
  article-title: A comprehensive review towards resilient rainfall forecasting models using artificial intelligence techniques
  publication-title: Green Technol. Sustain.
  doi: 10.1016/j.grets.2024.100104
– volume: 3
  start-page: 127
  year: 2009
  ident: B34
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 180
  start-page: 335
  year: 2023
  ident: B35
  article-title: Application of innovative machine learning techniques for long-term rainfall prediction
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-022-03189-4
– volume: 237
  start-page: 104845
  year: 2020
  ident: B39
  article-title: Development of advanced artificial intelligence models for daily rainfall prediction
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2020.104845
– volume: 37
  start-page: 2519
  year: 2024
  ident: B28
  article-title: Remote midlatitude control of rainfall onset at the southern African tropical edge
  publication-title: J. Clim.
  doi: 10.1175/jcli-d-23-0446.1
– volume: 12
  start-page: 912
  year: 2020
  ident: B44
  article-title: Uncertainty quantification in machine learning modeling for multi-step time series forecasting: example of recurrent neural networks in discharge simulations
  publication-title: Water
  doi: 10.3390/w12030912
– volume: 323
  start-page: 203
  year: 2019
  ident: B40
  article-title: Time series forecasting of petroleum production using deep LSTM recurrent networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.082
– volume: 8
  start-page: e1253
  year: 2018
  ident: B49
  article-title: Deep learning for sentiment analysis: a survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1253
– volume: 24
  start-page: 564
  year: 2023
  ident: B1
  article-title: Optimized cascaded CNN for intelligent rainfall prediction model: a research towards statistic-based machine learning
  publication-title: Theor. Issues Ergonomics Sci.
  doi: 10.1080/1463922x.2022.2135786
– start-page: 50
  year: 2016
  ident: B12
  article-title: LSTM networks for mobile human activity recognition
  publication-title: Atlantis Press
  doi: 10.2991/icaita-16.2016.13
– volume: 11
  start-page: 128
  year: 2021
  ident: B38
  article-title: Climate variability indices—a guided tour
  publication-title: Geosciences
  doi: 10.3390/geosciences11030128
– volume: 10
  start-page: 12736
  ident: B43
  article-title: A novel residual gated recurrent unit framework for runoff forecasting
  publication-title: IEEE Internet Things J.
  doi: 10.1109/jiot.2023.3254051
– volume-title: Incorporation of bootstrapping and cross-validation for efficient multivariate facies and petrophysical modeling
  year: 2016
  ident: B2
  doi: 10.2118/180277-MS
– volume: 61
  start-page: 907
  year: 2018
  ident: B27
  article-title: Visualisation and 'diagnostic classifiers' reveal how recurrent and recursive neural networks process hierarchical structure
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.1.11196
– volume: 153
  start-page: 512
  year: 2015
  ident: B14
  article-title: Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2014.10.016
– volume: 85
  start-page: 533
  year: 2019
  ident: B19
  article-title: Performance enhancing techniques for deep learning models in time series forecasting
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.07.011
– volume: 12
  start-page: 14454
  year: 2022
  ident: B4
  article-title: Modeling resilient modulus of subgrade soils using LSSVM optimized with swarm intelligence algorithms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-17429-z
– volume: 15
  start-page: 13724
  year: 2023
  ident: B29
  article-title: A comparison of machine learning models for predicting rainfall in urban metropolitan cities
  publication-title: Sustainability
  doi: 10.3390/su151813724
– volume: 82
  start-page: 16
  year: 2023
  ident: B31
  article-title: Assessing rainfall prediction models: exploring the advantages of machine learning and remote sensing approaches
  publication-title: Alexandria Eng. J.
  doi: 10.1016/j.aej.2023.09.060
– volume: 16
  year: 2003
  ident: B6
  article-title: No unbiased estimator of the variance of k-fold cross-validation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 42
  start-page: 11
  year: 2014
  ident: B30
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.01.008
SSID ssj0001325411
Score 2.3288205
Snippet Rainfall plays an important role in maintaining the water cycle by replenishing aquifers, lakes, and rivers, supporting aquatic life, and sustaining...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms deep learning mode
DLSTM
meteorological parameters
rainfall modeling
rainfall predicting
Title Data-driven novel deep learning applications for the prediction of rainfall using meteorological data
URI https://doaj.org/article/a7c91dc921494f5b91ddcd3bc0685e01
Volume 12
WOSCitedRecordID wos001302093400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-665X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325411
  issn: 2296-665X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-665X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325411
  issn: 2296-665X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2296-665X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325411
  issn: 2296-665X
  databaseCode: M7P
  dateStart: 20131025
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2296-665X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325411
  issn: 2296-665X
  databaseCode: BENPR
  dateStart: 20131025
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2296-665X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325411
  issn: 2296-665X
  databaseCode: PIMPY
  dateStart: 20131025
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2296-665X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325411
  issn: 2296-665X
  databaseCode: M2P
  dateStart: 20131025
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYWBBvCrKo_LAhqLGedjxSKEVA6oqBFK3yI7tCimkVRr6-7lL0scEC9niOJH15Wx_57O_I-Qe_J5AmVB7BriHF2no6YqbxNMic3CFjutaxPVVTCbJbCane6m-cE9YIw_cADdQIpPMZDIAKh-5WMONyeDjmc-T2DYnt3wh95ypenUlBMeHseaUDHhhcuBssUZ57iDCeGYs68Tyu5loT7C_nlnGp-SkpYT0sWnKGTmwxTnpjnYn0OBh2wVXF8Q-q0p5psRRihaLtc2psXZJ2_QPc7ofkqZASSlQPLosMSCDZXThKKaFcCrPKe56n9MvIM6LcjMKUtw0ekk-xqP3pxevzZXgZWEsKg-AkQrYgBJOskD7OvSl48YBwdBJ4mRoIysSjlFUg3owNmZaWqa41oIz7sIu6RSLwl4RqqxSXMXWoDK-ihIdhzCBcYtDUaCd6BG2wS3NWiFxzGeRp-BQINZpjXWKWKct1j3ysH1n2cho_Fp7iL9jWxMlsOsCMIy0NYz0L8O4_o-P3JBjbBguIjN-SzpV-W3vyFG2rj5XZZ8cDkeT6Vu_tr0fUUvgGw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+novel+deep+learning+applications+for+the+prediction+of+rainfall+using+meteorological+data&rft.jtitle=Frontiers+in+environmental+science&rft.au=Hongli+Li&rft.au=Shanzhi+Li&rft.au=Hamzeh+Ghorbani&rft.date=2024-08-16&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-665X&rft.volume=12&rft_id=info:doi/10.3389%2Ffenvs.2024.1445967&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7c91dc921494f5b91ddcd3bc0685e01
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-665X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-665X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-665X&client=summon