Use of Plasma Information in Machine-Learning-Based Fault Detection and Classification for Advanced Equipment Control

For advanced equipment control, two schemata of real-time fault detection were performed using machine learning algorithms in silicon etching in SF 6 /O 2 /Ar plasma. Fault detection and classification is investigated with the plasma state information with optical emission spectroscopy (OES) data to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on semiconductor manufacturing Ročník 34; číslo 3; s. 408 - 419
Hlavní autori: Kim, Dong Hwan, Hong, Sang Jeen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0894-6507, 1558-2345
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For advanced equipment control, two schemata of real-time fault detection were performed using machine learning algorithms in silicon etching in SF 6 /O 2 /Ar plasma. Fault detection and classification is investigated with the plasma state information with optical emission spectroscopy (OES) data to find the root cause of the anomaly in the process parameters. Fault detection and control is also demonstrated to predict the shift of the process parameter along the amount of process gas flow rate injected into the chamber, considering a fault. Especially, plasma information (PI), such as electron temperature and electron density, was derived from OES data into equation-based corona model. These were utilized to evaluate which process parameter is the most significantly affecting on the performance of the established model through Shapley value in fault detection and control. By the combination of isolation forest algorithm for finding the plasma abnormalities in real time and Adaboost algorithm for classifying root causes of faults, the suggested algorithm could accurately detect the root cause. DeepSHAP algorithm helped not only the prediction of gas flow rate, but PI was identified as critical parameter, interpreting the model through Shapley value. We propose a new multi-function integrated algorithm by the ensemble algorithms.
AbstractList For advanced equipment control, two schemata of real-time fault detection were performed using machine learning algorithms in silicon etching in SF6/O2/Ar plasma. Fault detection and classification is investigated with the plasma state information with optical emission spectroscopy (OES) data to find the root cause of the anomaly in the process parameters. Fault detection and control is also demonstrated to predict the shift of the process parameter along the amount of process gas flow rate injected into the chamber, considering a fault. Especially, plasma information (PI), such as electron temperature and electron density, was derived from OES data into equation-based corona model. These were utilized to evaluate which process parameter is the most significantly affecting on the performance of the established model through Shapley value in fault detection and control. By the combination of isolation forest algorithm for finding the plasma abnormalities in real time and Adaboost algorithm for classifying root causes of faults, the suggested algorithm could accurately detect the root cause. DeepSHAP algorithm helped not only the prediction of gas flow rate, but PI was identified as critical parameter, interpreting the model through Shapley value. We propose a new multi-function integrated algorithm by the ensemble algorithms.
For advanced equipment control, two schemata of real-time fault detection were performed using machine learning algorithms in silicon etching in SF 6 /O 2 /Ar plasma. Fault detection and classification is investigated with the plasma state information with optical emission spectroscopy (OES) data to find the root cause of the anomaly in the process parameters. Fault detection and control is also demonstrated to predict the shift of the process parameter along the amount of process gas flow rate injected into the chamber, considering a fault. Especially, plasma information (PI), such as electron temperature and electron density, was derived from OES data into equation-based corona model. These were utilized to evaluate which process parameter is the most significantly affecting on the performance of the established model through Shapley value in fault detection and control. By the combination of isolation forest algorithm for finding the plasma abnormalities in real time and Adaboost algorithm for classifying root causes of faults, the suggested algorithm could accurately detect the root cause. DeepSHAP algorithm helped not only the prediction of gas flow rate, but PI was identified as critical parameter, interpreting the model through Shapley value. We propose a new multi-function integrated algorithm by the ensemble algorithms.
Author Hong, Sang Jeen
Kim, Dong Hwan
Author_xml – sequence: 1
  givenname: Dong Hwan
  orcidid: 0000-0002-3023-6327
  surname: Kim
  fullname: Kim, Dong Hwan
  email: vbbo7880@naver.com
  organization: Department of Electronics Engineering, Myongji University, Yongin, South Korea
– sequence: 2
  givenname: Sang Jeen
  orcidid: 0000-0002-6576-690X
  surname: Hong
  fullname: Hong, Sang Jeen
  email: samhong@mju.ac.kr
  organization: Department of Electronics Engineering, Myongji University, Yongin, South Korea
BookMark eNp9kE1PGzEQhi0EEiFwR-JiqecN_tr1-pimBJCCigScV17vmDra2MH2Vuq_xxDUQw-9zFye5x3Ne4aOffCA0CUlC0qJun5-elgwwuiCE6kYpUdoRuu6rRgX9TGakVaJqqmJPEVnKW0JoUIoOUPTSwIcLH4cddppfO9tiDudXfDYefygzS_nodqAjt751-q7TjDgtZ7GjH9ABvNJaj_gVQlIzjpzkEsMXg6_tTeFv3mb3H4HPuNV8DmG8RydWD0muPjac_Syvnle3VWbn7f3q-WmMryWuRKmsZayQZG-MX0_GMbLJJKD4loyo1UvCtBY4NCKhoJmrBXM9tC2xAySz9G3Q-4-hrcJUu62YYq-nOxYXUslFReqUM2BMjGkFMF2xuXPN3LUbuwo6T4q7krF3UfF3VfFRST_iPvodjr--Z9ydVAcAPzFlWBSKcHfAYW0ioY
CODEN ITSMED
CitedBy_id crossref_primary_10_1109_TSM_2022_3161512
crossref_primary_10_35848_1347_4065_adc938
crossref_primary_10_1016_j_fusengdes_2024_114675
crossref_primary_10_1088_1361_6595_ad80c6
crossref_primary_10_1109_ACCESS_2024_3432174
crossref_primary_10_3390_coatings13030559
crossref_primary_10_3390_s23041889
crossref_primary_10_5757_ASCT_2024_33_6_181
crossref_primary_10_1088_1361_6463_ad2339
crossref_primary_10_1109_TSM_2023_3314431
crossref_primary_10_3390_app14010355
crossref_primary_10_1088_1361_6463_ad6ba1
crossref_primary_10_3390_electronics11020253
crossref_primary_10_1016_j_ymssp_2024_111948
crossref_primary_10_1116_6_0003434
crossref_primary_10_1088_1361_6501_acf77a
crossref_primary_10_1109_TSM_2023_3248273
crossref_primary_10_1063_5_0160228
crossref_primary_10_1109_TPS_2023_3268170
crossref_primary_10_1109_TSM_2022_3170270
crossref_primary_10_1109_TSM_2023_3238555
Cites_doi 10.1080/18756891.2014.947114
10.1088/0022-3727/43/40/403001
10.1109/ASMC49169.2020.9185331
10.1016/j.vacuum.2007.07.016
10.1088/0022-3727/37/12/R01
10.1016/j.lwt.2014.02.031
10.1016/j.patcog.2012.07.027
10.1103/PhysRevE.55.3450
10.1016/j.saa.2020.118629
10.1109/TSM.2011.2175394
10.1029/2010GL044544
10.1109/ICDM.2008.17
10.1088/0963-0252/24/6/064003
10.1080/10170669.2012.702135
10.1109/TSM.2019.2931328
10.3938/jkps.65.168
10.1109/TSM.2004.831952
10.1109/TBCAS.2015.2500101
10.1109/TSM.2018.2824314
10.1103/PhysRevE.60.6016
10.1109/TIM.2011.2122430
10.1088/0022-3727/42/2/025203
10.1109/TSM.2009.2028215
10.1145/3331184.3331312
10.1016/j.engappai.2017.09.021
10.4310/SII.2009.v2.n3.a8
10.1109/TSM.2016.2602226
10.1016/j.compchemeng.2017.02.009
10.1063/1.4802252
10.1201/9781420040661-7
10.1109/ASMC.2017.7969205
10.1109/TSM.2019.2938546
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TSM.2021.3079211
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1558-2345
EndPage 419
ExternalDocumentID 10_1109_TSM_2021_3079211
9427994
Genre orig-research
GrantInformation_xml – fundername: Korea Semiconductor Research Consortium (KSRC) Support Program for the development of the future semiconductor device
– fundername: Korean Government (MOTIE)
  grantid: P0008458
– fundername: Ministry of Trade, Industry and Energy (MOTIE)
  grantid: K_G012000649902
  funderid: 10.13039/501100003052
– fundername: Korea Institute of Advanced Technology (KIAT) Grant
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c357t-4c6ff12d90b6cbbdc23bbd073e93a72ca9b4ff16fe3e8461ea22842fbe880cd73
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681129000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-6507
IngestDate Sun Jun 29 12:31:57 EDT 2025
Sat Nov 29 05:13:42 EST 2025
Tue Nov 18 22:27:42 EST 2025
Wed Aug 27 02:39:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-4c6ff12d90b6cbbdc23bbd073e93a72ca9b4ff16fe3e8461ea22842fbe880cd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3023-6327
0000-0002-6576-690X
PQID 2557979349
PQPubID 85442
PageCount 12
ParticipantIDs proquest_journals_2557979349
crossref_primary_10_1109_TSM_2021_3079211
ieee_primary_9427994
crossref_citationtrail_10_1109_TSM_2021_3079211
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on semiconductor manufacturing
PublicationTitleAbbrev TSM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
lundberg (ref37) 2017
ref15
ref14
ref31
ref33
ref11
ref32
ref1
ref39
rostami (ref10) 2016
ref17
chen (ref38) 2019
ref16
ref19
ref18
freund (ref30) 1996
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
goodfellow (ref35) 2016
matsunawa (ref29) 2015; 9427
ref28
ref27
ref8
ref7
ref9
ref3
kim (ref4) 2017; 9
ref6
ref5
ref40
shrikumar (ref36) 2016
kerdprasop (ref2) 2011; 5
References_xml – start-page: 8
  year: 2016
  ident: ref10
  article-title: Equipment anomaly detection and automatic fault fingerprint extraction in semiconductor manufacturing
  publication-title: Proc Int Symp Semicond Manuf Intell
– ident: ref24
  doi: 10.1080/18756891.2014.947114
– year: 2016
  ident: ref35
  publication-title: Deep Learning
– ident: ref22
  doi: 10.1088/0022-3727/43/40/403001
– ident: ref11
  doi: 10.1109/ASMC49169.2020.9185331
– ident: ref12
  doi: 10.1016/j.vacuum.2007.07.016
– ident: ref20
  doi: 10.1088/0022-3727/37/12/R01
– start-page: 148
  year: 1996
  ident: ref30
  article-title: Experiments with a new boosting algorithm
  publication-title: Proc 13th Int Conf Mach Learn
– year: 2016
  ident: ref36
  publication-title: Not just a black box Learning important features through propagating activation differences
– ident: ref28
  doi: 10.1016/j.lwt.2014.02.031
– volume: 9
  start-page: 20
  year: 2017
  ident: ref4
  article-title: Real-time fault detection in semiconductor manufacturing process: Research with jade solution company
  publication-title: International Journal of Internet Broadcasting and Communication
– ident: ref27
  doi: 10.1016/j.patcog.2012.07.027
– ident: ref16
  doi: 10.1103/PhysRevE.55.3450
– ident: ref13
  doi: 10.1016/j.saa.2020.118629
– ident: ref34
  doi: 10.1109/TSM.2011.2175394
– ident: ref17
  doi: 10.1029/2010GL044544
– ident: ref40
  doi: 10.1109/ICDM.2008.17
– start-page: 261
  year: 2019
  ident: ref38
  article-title: Explaining models by propagating Shapley values of local components
  publication-title: Explainable AI in Healthcare and Medicine
– ident: ref14
  doi: 10.1088/0963-0252/24/6/064003
– ident: ref8
  doi: 10.1080/10170669.2012.702135
– ident: ref9
  doi: 10.1109/TSM.2019.2931328
– ident: ref23
  doi: 10.3938/jkps.65.168
– ident: ref33
  doi: 10.1109/TSM.2004.831952
– ident: ref31
  doi: 10.1109/TBCAS.2015.2500101
– ident: ref15
  doi: 10.1109/TSM.2018.2824314
– volume: 9427
  year: 2015
  ident: ref29
  article-title: A new lithography Hotspot detection framework based on AdaBoost classifier and simplified feature extraction
  publication-title: Proc Design Process Technol Co-Optim Manuf
– ident: ref19
  doi: 10.1103/PhysRevE.60.6016
– volume: 5
  start-page: 336
  year: 2011
  ident: ref2
  article-title: A data mining approach to automate fault detection model development in the semiconductor manufacturing process
  publication-title: Int J Mech
– start-page: 4765
  year: 2017
  ident: ref37
  article-title: A unified approach to interpreting model predictions
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1109/TIM.2011.2122430
– ident: ref21
  doi: 10.1088/0022-3727/42/2/025203
– ident: ref7
  doi: 10.1109/TSM.2009.2028215
– ident: ref26
  doi: 10.1145/3331184.3331312
– ident: ref41
  doi: 10.1016/j.engappai.2017.09.021
– ident: ref32
  doi: 10.4310/SII.2009.v2.n3.a8
– ident: ref3
  doi: 10.1109/TSM.2016.2602226
– ident: ref6
  doi: 10.1016/j.compchemeng.2017.02.009
– ident: ref18
  doi: 10.1063/1.4802252
– ident: ref1
  doi: 10.1201/9781420040661-7
– ident: ref39
  doi: 10.1109/ASMC.2017.7969205
– ident: ref5
  doi: 10.1109/TSM.2019.2938546
SSID ssj0014497
Score 2.3982084
Snippet For advanced equipment control, two schemata of real-time fault detection were performed using machine learning algorithms in silicon etching in SF 6 /O 2 /Ar...
For advanced equipment control, two schemata of real-time fault detection were performed using machine learning algorithms in silicon etching in SF6/O2/Ar...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 408
SubjectTerms Abnormalities
advanced equipment control
Algorithms
Argon plasma
Classification
Classification algorithms
Control equipment
data mining
Electron density
Electron energy
Emission analysis
Etching
Fault detection
FDC
Flow velocity
Gas flow
Machine learning
Machine learning algorithms
Mathematical models
Optical emission spectroscopy
Parameter identification
Plasma
plasma information (PI)
Plasmas
Prediction algorithms
Process control
Process parameters
Real time
Real-time systems
Root cause analysis
Title Use of Plasma Information in Machine-Learning-Based Fault Detection and Classification for Advanced Equipment Control
URI https://ieeexplore.ieee.org/document/9427994
https://www.proquest.com/docview/2557979349
Volume 34
WOSCitedRecordID wos000681129000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2345
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014497
  issn: 0894-6507
  databaseCode: RIE
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgW1xf5OBFMO42TZvN0dfiRRFU8FbaZCoL2lW39fc7SbOLogheSg-TUPiSmUnzzTcAh4mwtl84VqNUyCWlALxAVXLjxKZQxSU5Zt9sQt3c9B8f9e0MHE9rYRDRk8_wxL36u3w7Mo37VdbVUiit5SzMKpW2tVrTGwMpdavqqSWnrENNriR7unt_d00HQRGd0HrWIoq-hSDfU-WHI_bRZbDyv-9aheWQRbLTFvY1mMFqHRYmRcbjdVj6ojO4Ac3DGNmoZLeUKr_kLJQgOUjYsGLXnk-JPEitPvEzimyWDfLmuWYXWHuyVsXyyjLfQtORi9rBNA07DSQCdvnWDD35iJ239PdNeBhc3p9f8dBvgZs4UTWXJi3LSFjdK1JTFNaImJ7kA1DHuRIm14Ukg7TEGCltiTAXFNxEWSA5AWNVvAVz1ajCbWBJmos-Ya2tKmWinQZ8WkhrMCXjXCYd6E4gyEwQI3c9MZ4zfyjp6YxAyxxoWQCtA0fTEa-tEMcfthsOpKldwKcDexOUs7BTxxkdqZQmJyX1zu-jdmHRzd2S_vZgrn5vcB_mzUc9HL8f-EX4CQLS22A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB3xUYlyKBRadVs-fOgFCbMbx4nXRwqsQLArpC4StyixJ2glmm3ZpL-fseNdgUBIXKIcxkmkZ8-M4zdvAH4mwtp-4ViNUiGXlALwAlXJjRObQhWX5Jh9swk1GvVvb_X1EhwuamEQ0ZPP8Mjd-rN8OzWN-1XW1VIoreUyrLrOWUlbrbU4M5BSt7qeWnLKO9T8ULKnu-PfQ9oKiuiIZrQWUfQsCPmuKi9csY8vg433fdkmfAp5JDtugf8MS1htwdq8zHi2BetPlAa3obmZIZuW7JqS5T85C0VIDhQ2qdjQMyqRB7HVO_6LYptlg7y5r9kp1p6uVbG8ssw30XT0onYwPYYdBxoBO_vXTDz9iJ20BPgvcDM4G5-c89BxgZs4UTWXJi3LSFjdK1JTFNaImK7kBVDHuRIm14Ukg7TEGClxiTAXFN5EWSC5AWNV_BVWqmmF34AlaS76hLa2qpSJdirwaSGtwZSMc5l0oDuHIDNBjtx1xbjP_LakpzMCLXOgZQG0DhwsRvxtpTjesN12IC3sAj4d2JmjnIW1OstoU6U0uSmpv78-ah_WzsfDq-zqYnT5Az6697QUwB1YqR8a3IUP5n89mT3s-Qn5CJtn3qs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+Plasma+Information+in+Machine-Learning-Based+Fault+Detection+and+Classification+for+Advanced+Equipment+Control&rft.jtitle=IEEE+transactions+on+semiconductor+manufacturing&rft.au=Kim%2C+Dong+Hwan&rft.au=Hong%2C+Sang+Jeen&rft.date=2021-08-01&rft.issn=0894-6507&rft.eissn=1558-2345&rft.volume=34&rft.issue=3&rft.spage=408&rft.epage=419&rft_id=info:doi/10.1109%2FTSM.2021.3079211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSM_2021_3079211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-6507&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-6507&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-6507&client=summon