Learn to optimize—a brief overview
Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a problem instance, a trial-and-error configuration process is required, which is very costly and even prohibitive for problems that are alrea...
Uložené v:
| Vydané v: | National science review Ročník 11; číslo 8; s. nwae132 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
China
Oxford University Press
01.08.2024
|
| Predmet: | |
| ISSN: | 2095-5138, 2053-714X, 2053-714X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a problem instance, a trial-and-error configuration process is required, which is very costly and even prohibitive for problems that are already computationally intensive, e.g. optimization problems associated with machine learning tasks. In the past decades, many studies have been conducted to accelerate the tedious configuration process by learning from a set of training instances. This article refers to these studies as learn to optimize and reviews the progress achieved.
The article presents an overview on “Learn to Optimiz”, a paradigm that leverage on a set of training instances to accelerate the tedious configuration process of optimization algorithms. |
|---|---|
| AbstractList | Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a problem instance, a trial-and-error configuration process is required, which is very costly and even prohibitive for problems that are already computationally intensive, e.g. optimization problems associated with machine learning tasks. In the past decades, many studies have been conducted to accelerate the tedious configuration process by learning from a set of training instances. This article refers to these studies as
and reviews the progress achieved. Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a problem instance, a trial-and-error configuration process is required, which is very costly and even prohibitive for problems that are already computationally intensive, e.g. optimization problems associated with machine learning tasks. In the past decades, many studies have been conducted to accelerate the tedious configuration process by learning from a set of training instances. This article refers to these studies as learn to optimize and reviews the progress achieved.Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a problem instance, a trial-and-error configuration process is required, which is very costly and even prohibitive for problems that are already computationally intensive, e.g. optimization problems associated with machine learning tasks. In the past decades, many studies have been conducted to accelerate the tedious configuration process by learning from a set of training instances. This article refers to these studies as learn to optimize and reviews the progress achieved. Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a problem instance, a trial-and-error configuration process is required, which is very costly and even prohibitive for problems that are already computationally intensive, e.g. optimization problems associated with machine learning tasks. In the past decades, many studies have been conducted to accelerate the tedious configuration process by learning from a set of training instances. This article refers to these studies as learn to optimize and reviews the progress achieved. Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a problem instance, a trial-and-error configuration process is required, which is very costly and even prohibitive for problems that are already computationally intensive, e.g. optimization problems associated with machine learning tasks. In the past decades, many studies have been conducted to accelerate the tedious configuration process by learning from a set of training instances. This article refers to these studies as learn to optimize and reviews the progress achieved. The article presents an overview on “Learn to Optimiz”, a paradigm that leverage on a set of training instances to accelerate the tedious configuration process of optimization algorithms. |
| Author | Tang, Ke Yao, Xin |
| Author_xml | – sequence: 1 givenname: Ke surname: Tang fullname: Tang, Ke email: tangk3@sustech.edu.cn – sequence: 2 givenname: Xin surname: Yao fullname: Yao, Xin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39007005$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90M9Kw0AQBvBFKrbWnrxLDiKCxM5ms5vkKMV_UPCi4G3Z3U5gIcnG3bRFTz6ET-iTmNL2IuJp5vD7BuY7JoPGNUjIKYVrCgWbNsFPm7VCypIDMkqAszij6etgsxc85pTlQzIJwWrod5FlKT0iQ1YAZAB8RM7nqHwTdS5ybWdr-4Hfn18q0t5iGbkV-pXF9Qk5LFUVcLKbY_Jyd_s8e4jnT_ePs5t5bBjPujjlFHORCmMWKEDohJaF0KgwKTHjChaGsZzqBIxhgiWam9RACWkCme6hZmNyub3beve2xNDJ2gaDVaUadMsgGeQgGBdZ0dOzHV3qGhey9bZW_l3uP-sB3QLjXQgeS2lspzrrms4rW0kKclOg7AuUuwL7zNWvzP7s3_piq92y_Rf-AM6Ff_U |
| CitedBy_id | crossref_primary_10_1016_j_aei_2025_103428 crossref_primary_10_1016_j_swevo_2024_101838 crossref_primary_10_1016_j_knosys_2025_114355 crossref_primary_10_1093_nsr_nwae288 crossref_primary_10_1109_TCYB_2025_3535777 crossref_primary_10_1038_s41467_025_62997_z crossref_primary_10_3390_sym16081030 crossref_primary_10_1016_j_neucom_2025_130633 crossref_primary_10_1109_TAI_2025_3545792 |
| Cites_doi | 10.1007/978-981-19-5650-8 10.1145/1456650.1456656 10.1016/j.ins.2014.03.105 10.1109/TEVC.2021.3108185 10.1609/aiide.v13i1.12927 10.1109/TEVC.2022.3232776 10.1007/978-1-4419-1665-5 10.1162/106365601750190398 10.1609/aaai.v24i1.7565 10.1016/j.ejor.2020.07.063 10.1016/j.neucom.2016.04.027 10.1016/j.eswa.2020.113613 10.1109/ICTAI.2014.18 10.1109/TITS.2020.3018903 10.1016/j.orp.2016.09.002 10.1609/aimag.v35i3.2460 10.1360/SST-2021-0372 10.1162/evco_a_00215 10.1126/science.275.5296.51 10.1162/evco_a_00242 10.1109/TSSC.1968.300136 10.1016/j.swevo.2021.100927 10.1007/978-3-642-35289-8_25 10.48550/arXiv.2103.12828 10.1007/s10732-010-9126-2 10.24963/ijcai.2017/281 10.1609/aaai.v37i7.26064 10.1016/j.cor.2015.04.022 10.1007/978-981-13-5956-9 10.1007/978-3-642-25566-3_40 10.1080/00207543.2011.653010 10.1007/s00500-022-07118-4 10.1016/j.artint.2013.10.003 10.1145/3205455.3205585 10.48550/arXiv.1606.04474 10.1016/j.artint.2015.11.002 10.1023/B:MACH.0000015879.28004.9b 10.1007/978-3-662-04726-2 10.1109/IJCNN52387.2021.9533538 10.1109/CVPR52688.2022.00545 10.1007/978-3-642-04244-7_14 10.1609/aaai.v29i1.9640 10.1016/S0305-0548(96)00062-7 10.1007/978-3-642-13520-0_23 10.1038/scientificamerican0792-66 10.1145/3321707.3321845 10.1016/S0925-2312(00)00324-6 10.1109/TEVC.2021.3059661 10.1038/nature24270 10.1016/j.artint.2016.05.004 10.1145/3583133.3590697 10.1609/aaai.v34i03.5618 10.1613/jair.2861 10.1145/3067695.3082513 10.1145/3470918 10.1016/S0065-2458(08)60520-3 10.1137/15M1050276 10.1109/TCYB.2020.2984546 10.48550/arXiv.2109.09831 10.1145/1538902.1538906 10.1613/jair.1.13676 10.1109/MCI.2023.3277768 10.1145/3406325.3451036 10.1023/A:1026569813391 10.1609/aaai.v33i01.33011560 10.1016/0893-6080(88)90003-2 10.1016/j.orl.2022.01.018 10.1109/TEVC.2023.3278132 10.1109/TPAMI.2021.3079209 10.1287/opre.1050.0243 10.1609/aaai.v30i1.10170 10.1017/CBO9780511804441 10.1109/4235.585893 10.1038/s41586-021-03544-w 10.1109/SSCI51031.2022.10022078 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2024 The Author(s) 2024 Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. |
| Copyright_xml | – notice: The Author(s) 2024 Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2024 – notice: The Author(s) 2024 Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. |
| DBID | TOX AAYXX CITATION NPM 7X8 |
| DOI | 10.1093/nsr/nwae132 |
| DatabaseName | Oxford University Press Open Access CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2053-714X |
| ExternalDocumentID | 39007005 10_1093_nsr_nwae132 10.1093/nsr/nwae132 |
| Genre | Journal Article Review |
| GroupedDBID | -SA -SC -S~ 0R~ 4.4 5VR AAFWJ AAOGV AAPXW AAVAP ABDBF ABEJV ABGNP ABPTD ABQLI ABXVV ACGFS ACUHS ADMLS AENEX AFPKN AFUIB ALMA_UNASSIGNED_HOLDINGS AMNDL AVWKF BAYMD CAJEA CAJEC CCEZO CCVFK CEKLB EBS EJD ESX FA0 GROUPED_DOAJ H13 KSI O9- OK1 Q-- RPM RXO TOX U1G U5K U5M AAYXX CITATION AAXDM AFULF NPM ROX 7X8 |
| ID | FETCH-LOGICAL-c357t-451e8646ccde606b21f96beae2fe75a0dc3381b20cc3632b5c4c0f04207b96bb3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221382600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2095-5138 2053-714X |
| IngestDate | Fri Jul 11 08:30:09 EDT 2025 Wed Feb 19 02:04:05 EST 2025 Tue Nov 18 20:54:57 EST 2025 Sat Nov 29 02:00:30 EST 2025 Mon Jun 30 08:34:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | data-driven algorithm design machine learning optimization automated algorithm configuration |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024 Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-451e8646ccde606b21f96beae2fe75a0dc3381b20cc3632b5c4c0f04207b96bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1093/nsr/nwae132 |
| PMID | 39007005 |
| PQID | 3080635679 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3080635679 pubmed_primary_39007005 crossref_citationtrail_10_1093_nsr_nwae132 crossref_primary_10_1093_nsr_nwae132 oup_primary_10_1093_nsr_nwae132 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | China |
| PublicationPlace_xml | – name: China |
| PublicationTitle | National science review |
| PublicationTitleAlternate | Natl Sci Rev |
| PublicationYear | 2024 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Arinze (2024071214370155300_bib33) 1997; 24 Zhao (2024071214370155300_bib35) 2021 Balcan (2024071214370155300_bib82) 2021 KhudaBukhsh (2024071214370155300_bib12) 2016; 232 Feng (2024071214370155300_bib25) 2023 Beham (2024071214370155300_bib38) 2017 Liu (2024071214370155300_bib67) 2023; 18 Gratch (2024071214370155300_bib50) 1992 Birattari (2024071214370155300_bib54) 2002 Langdon (2024071214370155300_bib18) 2002 Weisz (2024071214370155300_bib59) 2018 Kleinberg (2024071214370155300_bib80) 2019 Hutter (2024071214370155300_bib61) 2010 Wolpert (2024071214370155300_bib26) 1997; 1 Pihera (2024071214370155300_bib46) 2014 Hruby (2024071214370155300_bib87) 2022 Smith-Miles (2024071214370155300_bib84) 2015; 63 Santu (2024071214370155300_bib10) 2022; 54 Hospedales (2024071214370155300_bib21) 2022; 44 Schede (2024071214370155300_bib16) 2022; 75 Meunier (2024071214370155300_bib44) 2022; 26 Loreggia (2024071214370155300_bib47) 2016 Huberman (2024071214370155300_bib71) 1997; 275 Hansen (2024071214370155300_bib24) 2001; 9 Jiang (2024071214370155300_bib70) 2023 Tang (2024071214370155300_bib75) 2014; 279 Hutter (2024071214370155300_bib8) 2009; 36 Kostovska (2024071214370155300_bib45) 2023 Silver (2024071214370155300_bib63) 2017; 550 Beham (2024071214370155300_bib39) 2018 Liu (2024071214370155300_bib77) 2023; 53 Chen X and Tian (2024071214370155300_bib66) 2019 Zhan (2024071214370155300_bib69) 2023; 27 Chen (2024071214370155300_bib14) 2022; 23 Kerschke (2024071214370155300_bib34) 2018; 26 Holland (2024071214370155300_bib20) 1992; 267 Pfahringer (2024071214370155300_bib31) 2000 Bello (2024071214370155300_bib64) 2017 Bengio (2024071214370155300_bib13) 2021; 290 López-Ibáñez (2024071214370155300_bib55) 2016; 3 Liu (2024071214370155300_bib76) 2023 Balcan (2024071214370155300_bib83) 2017 Seipp (2024071214370155300_bib78) 2015 Mirhoseini (2024071214370155300_bib88) 2021; 594 Gendreau (2024071214370155300_bib3) 2010 Kingma (2024071214370155300_bib17) Accorsi (2024071214370155300_bib68) 2022; 50 Vinyals (2024071214370155300_bib65) 2015 Boyd (2024071214370155300_bib1) 2004 Lindauer (2024071214370155300_bib9) 2022; 23 Shu (2024071214370155300_bib22) 2019 Kerschke (2024071214370155300_bib15) 2019; 27 Hutter (2024071214370155300_bib29) 2014; 206 Rice (2024071214370155300_bib11) 1976; 15 Kotthoff (2024071214370155300_bib28) 2014; 35 Leyton-Brown (2024071214370155300_bib27) 2009; 56 Hutter (2024071214370155300_bib56) 2011 Elsken (2024071214370155300_bib23) 2019; 20 Adenso-Díaz (2024071214370155300_bib53) 2006; 54 Andrychowicz (2024071214370155300_bib6) 2016 Lindauer (2024071214370155300_bib79) 2017; 244 Coy (2024071214370155300_bib52) 2001; 7 Shukla (2024071214370155300_bib37) 2013; 51 Gupta (2024071214370155300_bib81) 2017; 46 Sigurdson (2024071214370155300_bib49) 2021 Zhou (2024071214370155300_bib4) 2019 Garrido (2024071214370155300_bib36) 2010; 16 Ansótegui (2024071214370155300_bib51) 2009 Kanda (2024071214370155300_bib41) 2016; 205 Bottou (2024071214370155300_bib2) 2012 Feng (2024071214370155300_bib89) 2022; 23 Smith-Miles (2024071214370155300_bib30) 2009; 41 Neira (2024071214370155300_bib42) 2020; 158 Liu (2024071214370155300_bib57) 2020 Kadioglu (2024071214370155300_bib73) 2010 Tang (2024071214370155300_bib86) 2021; 25 Jacobs (2024071214370155300_bib5) 1988; 1 Kleinberg (2024071214370155300_bib58) 2017 Liu (2024071214370155300_bib74) 2019 Soares (2024071214370155300_bib32) 2004; 54 Hart (2024071214370155300_bib19) 1968; 4 Weisz (2024071214370155300_bib60) 2019 Johnson (2024071214370155300_bib7) 2000; 35 Misir (2024071214370155300_bib40) 2022 Liu (2024071214370155300_bib62) 2021; 66 Xu (2024071214370155300_bib72) 2010 Guerriero (2024071214370155300_bib43) 2023; 27 Alissa (2024071214370155300_bib48) 2019 Liu (2024071214370155300_bib85) 2022; 52 |
| References_xml | – volume-title: Evolutionary Multi-Task Optimization: Foundations and Methodologies year: 2023 ident: 2024071214370155300_bib25 doi: 10.1007/978-981-19-5650-8 – volume: 41 start-page: 6 year: 2009 ident: 2024071214370155300_bib30 article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection publication-title: ACM Comput Surv doi: 10.1145/1456650.1456656 – volume: 279 start-page: 94 year: 2014 ident: 2024071214370155300_bib75 article-title: Population-based algorithm portfolios with automated constituent algorithms selection publication-title: Inf Sci doi: 10.1016/j.ins.2014.03.105 – volume: 26 start-page: 490 year: 2022 ident: 2024071214370155300_bib44 article-title: Black-box optimization revisited: improving algorithm selection wizards through massive benchmarking publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3108185 – start-page: 108 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment year: 2021 ident: 2024071214370155300_bib49 article-title: Deep learning for real-time heuristic search algorithm selection doi: 10.1609/aiide.v13i1.12927 – volume: 27 start-page: 1794 year: 2023 ident: 2024071214370155300_bib69 article-title: Learning-aided evolution for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2022.3232776 – volume-title: Handbook of Metaheuristics year: 2010 ident: 2024071214370155300_bib3 doi: 10.1007/978-1-4419-1665-5 – volume: 9 start-page: 159 year: 2001 ident: 2024071214370155300_bib24 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol Comput doi: 10.1162/106365601750190398 – start-page: 210 volume-title: Proceedings of the 24th AAAI Conference on Artificial Intelligence year: 2010 ident: 2024071214370155300_bib72 article-title: Hydra: automatically configuring algorithms for portfolio-based selection doi: 10.1609/aaai.v24i1.7565 – volume: 290 start-page: 405 year: 2021 ident: 2024071214370155300_bib13 article-title: Machine learning for combinatorial optimization: a methodological tour d’horizon publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.07.063 – volume: 205 start-page: 393 year: 2016 ident: 2024071214370155300_bib41 article-title: Meta-learning to select the best meta-heuristic for the traveling salesman problem: a comparison of meta-features publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.04.027 – volume: 158 start-page: 113613 year: 2020 ident: 2024071214370155300_bib42 article-title: Anytime automatic algorithm selection for knapsack publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113613 – start-page: 47 volume-title: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence year: 2014 ident: 2024071214370155300_bib46 article-title: Application of machine learning to algorithm selection for TSP doi: 10.1109/ICTAI.2014.18 – volume: 23 start-page: 952 year: 2022 ident: 2024071214370155300_bib89 article-title: Towards faster vehicle routing by transferring knowledge from customer representation publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2020.3018903 – volume: 3 start-page: 43 year: 2016 ident: 2024071214370155300_bib55 article-title: The irace package: iterated racing for automatic algorithm configuration publication-title: Oper Res Perspect doi: 10.1016/j.orp.2016.09.002 – volume: 35 start-page: 48 year: 2014 ident: 2024071214370155300_bib28 article-title: Algorithm selection for combinatorial search problems: a survey publication-title: AI Mag doi: 10.1609/aimag.v35i3.2460 – volume: 53 start-page: 280 year: 2023 ident: 2024071214370155300_bib77 article-title: Approximately optimal construction of parallel algorithm portfolios by evolutionary intelligence (in Chinese) publication-title: Sci Sin Technol doi: 10.1360/SST-2021-0372 – volume: 26 start-page: 597 year: 2018 ident: 2024071214370155300_bib34 article-title: Leveraging TSP solver complementarity through machine learning publication-title: Evol Comput doi: 10.1162/evco_a_00215 – volume: 275 start-page: 51 year: 1997 ident: 2024071214370155300_bib71 article-title: An economics approach to hard computational problems publication-title: Science doi: 10.1126/science.275.5296.51 – volume: 27 start-page: 3 year: 2019 ident: 2024071214370155300_bib15 article-title: Automated algorithm selection: survey and perspectives publication-title: Evol Comput doi: 10.1162/evco_a_00242 – volume: 4 start-page: 100 year: 1968 ident: 2024071214370155300_bib19 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans Syst Sci Cybern doi: 10.1109/TSSC.1968.300136 – volume: 66 start-page: 100927 year: 2021 ident: 2024071214370155300_bib62 article-title: Memetic search for vehicle routing with simultaneous pickup-delivery and time windows publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2021.100927 – start-page: 421 volume-title: Neural Networks: Tricks of the Trade year: 2012 ident: 2024071214370155300_bib2 article-title: Stochastic gradient descent tricks doi: 10.1007/978-3-642-35289-8_25 – volume: 23 start-page: 189 year: 2022 ident: 2024071214370155300_bib14 article-title: Learning to optimize: a primer and a benchmark publication-title: J Mach Learn Res doi: 10.48550/arXiv.2103.12828 – start-page: 743 volume-title: Proceedings of the 17th International Conference on Machine Learning year: 2000 ident: 2024071214370155300_bib31 article-title: Meta-learning by landmarking various learning algorithms – volume: 16 start-page: 795 year: 2010 ident: 2024071214370155300_bib36 article-title: DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic publication-title: J Heuristics doi: 10.1007/s10732-010-9126-2 – start-page: 2023 volume-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence year: 2017 ident: 2024071214370155300_bib58 article-title: Efficiency through procrastination: approximately optimal algorithm configuration with runtime guarantees doi: 10.24963/ijcai.2017/281 – start-page: 8852 volume-title: Proceedings of the 37th AAAI Conference on Artificial Intelligence year: 2023 ident: 2024071214370155300_bib76 article-title: Reliable robustness evaluation via automatically constructed attack ensembles doi: 10.1609/aaai.v37i7.26064 – volume: 63 start-page: 102 year: 2015 ident: 2024071214370155300_bib84 article-title: Generating new test instances by evolving in instance space publication-title: Comput Oper Res doi: 10.1016/j.cor.2015.04.022 – volume-title: Evolutionary Learning: Advances in Theories and Algorithms year: 2019 ident: 2024071214370155300_bib4 doi: 10.1007/978-981-13-5956-9 – start-page: 507 volume-title: Learning and Intelligent Optimization year: 2011 ident: 2024071214370155300_bib56 article-title: Sequential model-based optimization for general algorithm configuration doi: 10.1007/978-3-642-25566-3_40 – volume: 51 start-page: 118 year: 2013 ident: 2024071214370155300_bib37 article-title: Genetic-algorithms-based algorithm portfolio for inventory routing problem with stochastic demand publication-title: Int J Prod Res doi: 10.1080/00207543.2011.653010 – volume: 27 start-page: 12997 year: 2023 ident: 2024071214370155300_bib43 article-title: A hierarchical hyper-heuristic for the bin packing problem publication-title: Soft Comput doi: 10.1007/s00500-022-07118-4 – volume: 206 start-page: 79 year: 2014 ident: 2024071214370155300_bib29 article-title: Algorithm runtime prediction: methods & evaluation publication-title: Artif Intell doi: 10.1016/j.artint.2013.10.003 – start-page: 253 volume-title: Proceedings of the Genetic and Evolutionary Computation Conference year: 2018 ident: 2024071214370155300_bib39 article-title: Algorithm selection on generalized quadratic assignment problem landscapes doi: 10.1145/3205455.3205585 – start-page: 751 volume-title: Frontiers in Artificial Intelligence and Applications year: 2010 ident: 2024071214370155300_bib73 article-title: ISAC – instance-specific algorithm configuration – start-page: 3988 volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems year: 2016 ident: 2024071214370155300_bib6 article-title: Learning to learn by gradient descent by gradient descent doi: 10.48550/arXiv.1606.04474 – volume: 232 start-page: 20 year: 2016 ident: 2024071214370155300_bib12 article-title: SATenstein: automatically building local search SAT solvers from components publication-title: Artif Intell doi: 10.1016/j.artint.2015.11.002 – volume: 54 start-page: 195 year: 2004 ident: 2024071214370155300_bib32 article-title: A meta-learning method to select the kernel width in support vector regression publication-title: Mach Learn doi: 10.1023/B:MACH.0000015879.28004.9b – volume-title: Foundations of Genetic Programming year: 2002 ident: 2024071214370155300_bib18 doi: 10.1007/978-3-662-04726-2 – start-page: 18 volume-title: 2021 International Joint Conference on Neural Networks (IJCNN) year: 2021 ident: 2024071214370155300_bib35 article-title: Towards feature-free TSP solver selection: a deep learning approach doi: 10.1109/IJCNN52387.2021.9533538 – start-page: 5522 volume-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) year: 2022 ident: 2024071214370155300_bib87 article-title: Learning to solve hard minimal problems doi: 10.1109/CVPR52688.2022.00545 – start-page: 142 volume-title: Principles and Practice of Constraint Programming year: 2009 ident: 2024071214370155300_bib51 article-title: A gender-based genetic algorithm for the automatic configuration of algorithms doi: 10.1007/978-3-642-04244-7_14 – start-page: 24 volume-title: 5th International Conference on Learning Representations year: 2017 ident: 2024071214370155300_bib64 article-title: Neural combinatorial optimization with reinforcement learning – start-page: 3364 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2015 ident: 2024071214370155300_bib78 article-title: Automatic configuration of sequential planning portfolios doi: 10.1609/aaai.v29i1.9640 – volume: 24 start-page: 423 year: 1997 ident: 2024071214370155300_bib33 article-title: Combining and selecting forecasting models using rule based induction publication-title: Comput Oper Res doi: 10.1016/S0305-0548(96)00062-7 – start-page: 186 volume-title: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems year: 2010 ident: 2024071214370155300_bib61 article-title: Automated configuration of mixed integer programming solvers doi: 10.1007/978-3-642-13520-0_23 – volume: 267 start-page: 66 year: 1992 ident: 2024071214370155300_bib20 article-title: Genetic algorithms publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – start-page: 198 volume-title: Proceedings of the Genetic and Evolutionary Computation Conference year: 2019 ident: 2024071214370155300_bib48 article-title: Algorithm selection using deep learning without feature extraction doi: 10.1145/3321707.3321845 – volume: 35 start-page: 205 year: 2000 ident: 2024071214370155300_bib7 article-title: Reinforcement learning: an introduction publication-title: Neurocomputing doi: 10.1016/S0925-2312(00)00324-6 – volume: 25 start-page: 595 year: 2021 ident: 2024071214370155300_bib86 article-title: Few-shots parallel algorithm portfolio construction via co-evolution publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3059661 – volume: 550 start-page: 354 year: 2017 ident: 2024071214370155300_bib63 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 244 start-page: 272 year: 2017 ident: 2024071214370155300_bib79 article-title: Automatic construction of parallel portfolios via algorithm configuration publication-title: Artif Intell doi: 10.1016/j.artint.2016.05.004 – start-page: 495 volume-title: Proceedings of the Companion Conference on Genetic and Evolutionary Computation year: 2023 ident: 2024071214370155300_bib45 article-title: Comparing algorithm selection approaches on black-box optimization problems doi: 10.1145/3583133.3590697 – start-page: 2384 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2020 ident: 2024071214370155300_bib57 article-title: On performance estimation in automatic algorithm configuration doi: 10.1609/aaai.v34i03.5618 – volume: 36 start-page: 267 year: 2009 ident: 2024071214370155300_bib8 article-title: Paramils: an automatic algorithm configuration framework publication-title: J Artif Intell Res doi: 10.1613/jair.2861 – start-page: 1471 volume-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion year: 2017 ident: 2024071214370155300_bib38 article-title: Instance-based algorithm selection on quadratic assignment problem landscapes doi: 10.1145/3067695.3082513 – volume: 54 start-page: 175 year: 2022 ident: 2024071214370155300_bib10 article-title: Automl to date and beyond: challenges and opportunities publication-title: ACM Comput Surv doi: 10.1145/3470918 – start-page: 5257 volume-title: Proceedings of the 35th International Conference on Machine Learning year: 2018 ident: 2024071214370155300_bib59 article-title: LeapsAndBounds: a method for approximately optimal algorithm configuration – start-page: 1919 volume-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems year: 2019 ident: 2024071214370155300_bib22 article-title: Meta-weight-net: learning an explicit mapping for sample weighting – volume: 15 start-page: 65 year: 1976 ident: 2024071214370155300_bib11 article-title: The algorithm selection problem publication-title: Adv Comput doi: 10.1016/S0065-2458(08)60520-3 – start-page: 213 volume-title: Proceedings of the 2017 Conference on Learning Theory year: 2017 ident: 2024071214370155300_bib83 article-title: Learning-theoretic foundations of algorithm configuration for combinatorial partitioning problems – volume: 46 start-page: 992 year: 2017 ident: 2024071214370155300_bib81 article-title: A PAC approach to application-specific algorithm selection publication-title: SIAM J Comput doi: 10.1137/15M1050276 – volume: 20 start-page: 55 year: 2019 ident: 2024071214370155300_bib23 article-title: Neural architecture search: a survey publication-title: J Mach Learn Res – start-page: 11 volume-title: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation year: 2002 ident: 2024071214370155300_bib54 article-title: A racing algorithm for configuring metaheuristics – start-page: 6707 volume-title: Proceedings of the 36th International Conference on Machine Learning year: 2019 ident: 2024071214370155300_bib60 article-title: CapsAndRuns: an improved method for approximately optimal algorithm configuration – volume: 52 start-page: 784 year: 2022 ident: 2024071214370155300_bib85 article-title: Generative adversarial construction of parallel portfolios publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.2984546 – volume: 23 start-page: 54 year: 2022 ident: 2024071214370155300_bib9 article-title: SMAC3: a versatile Bayesian optimization package for hyperparameter optimization publication-title: J Mach Learn Res doi: 10.48550/arXiv.2109.09831 – volume: 56 start-page: 22 year: 2009 ident: 2024071214370155300_bib27 article-title: Empirical hardness models: methodology and a case study on combinatorial auctions publication-title: J ACM doi: 10.1145/1538902.1538906 – volume: 75 start-page: 425 year: 2022 ident: 2024071214370155300_bib16 article-title: A survey of methods for automated algorithm configuration publication-title: J Artif Intell Res doi: 10.1613/jair.1.13676 – volume: 18 start-page: 14 year: 2023 ident: 2024071214370155300_bib67 article-title: How good is neural combinatorial optimization? A systematic evaluation on the traveling salesman problem publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2023.3277768 – start-page: 919 volume-title: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing year: 2021 ident: 2024071214370155300_bib82 article-title: How much data is sufficient to learn high-performing algorithms? Generalization guarantees for data-driven algorithm design doi: 10.1145/3406325.3451036 – volume: 7 start-page: 77 year: 2001 ident: 2024071214370155300_bib52 article-title: Using experimental design to find effective parameter settings for heuristics publication-title: J Heuristics doi: 10.1023/A:1026569813391 – start-page: 1560 volume-title: Proceedings of the 33rd AAAI Conference on Artificial Intelligence year: 2019 ident: 2024071214370155300_bib74 article-title: Automatic construction of parallel portfolios via explicit instance grouping doi: 10.1609/aaai.v33i01.33011560 – volume: 1 start-page: 295 year: 1988 ident: 2024071214370155300_bib5 article-title: Increased rates of convergence through learning rate adaptation publication-title: Neural Netw doi: 10.1016/0893-6080(88)90003-2 – start-page: 6281 volume-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems year: 2019 ident: 2024071214370155300_bib66 article-title: Learning to perform local rewriting for combinatorial optimization – volume: 50 start-page: 229 year: 2022 ident: 2024071214370155300_bib68 article-title: Guidelines for the computational testing of machine learning approaches to vehicle routing problems publication-title: Oper Res Lett doi: 10.1016/j.orl.2022.01.018 – year: 2023 ident: 2024071214370155300_bib70 article-title: Knowledge learning for evolutionary computation publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2023.3278132 – volume: 44 start-page: 5149 year: 2022 ident: 2024071214370155300_bib21 article-title: Meta-learning in neural networks: a survey publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2021.3079209 – start-page: 235 volume-title: Proceedings of the 10th National Conference on Aritificial Intelligence year: 1992 ident: 2024071214370155300_bib50 article-title: COMPOSER: a probabilistic solution to the utility problem in speed-up learning – volume: 54 start-page: 99 year: 2006 ident: 2024071214370155300_bib53 article-title: Fine-tuning of algorithms using fractional experimental designs and local search publication-title: Oper Res doi: 10.1287/opre.1050.0243 – start-page: 1280 volume-title: Proceedings of the 30th AAAI Conference on Artificial Intelligence year: 2016 ident: 2024071214370155300_bib47 article-title: Deep learning for algorithm portfolios doi: 10.1609/aaai.v30i1.10170 – volume-title: Convex Optimization year: 2004 ident: 2024071214370155300_bib1 doi: 10.1017/CBO9780511804441 – volume: 1 start-page: 67 year: 1997 ident: 2024071214370155300_bib26 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume-title: Proceedings of the 28th International Conference on Neural Information Processing Systems year: 2015 ident: 2024071214370155300_bib65 article-title: Pointer networks – volume: 594 start-page: 207 year: 2021 ident: 2024071214370155300_bib88 article-title: A graph placement methodology for fast chip design publication-title: Nature doi: 10.1038/s41586-021-03544-w – start-page: 22 volume-title: 2022 IEEE Symposium Series on Computational Intelligence (SSCI) year: 2022 ident: 2024071214370155300_bib40 article-title: Cross-domain algorithm selection: algorithm selection across selection hyper-heuristics doi: 10.1109/SSCI51031.2022.10022078 – volume-title: 3rd International Conference on Learning Representations ident: 2024071214370155300_bib17 article-title: Adam: a method for stochastic optimization – start-page: 8883 volume-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems year: 2019 ident: 2024071214370155300_bib80 article-title: Procrastinating with confidence: near-optimal, anytime, adaptive algorithm configuration |
| SSID | ssib051367741 ssib050735980 ssj0001257732 |
| Score | 2.3971367 |
| SecondaryResourceType | review_article |
| Snippet | Most optimization problems of practical significance are typically solved by highly configurable parameterized algorithms. To achieve the best performance on a... |
| SourceID | proquest pubmed crossref oup |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | nwae132 |
| Title | Learn to optimize—a brief overview |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39007005 https://www.proquest.com/docview/3080635679 |
| Volume | 11 |
| WOSCitedRecordID | wos001221382600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2053-714X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257732 issn: 2095-5138 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2053-714X dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050735980 issn: 2095-5138 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2053-714X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257732 issn: 2095-5138 databaseCode: TOX dateStart: 20140301 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFA06uHDjA1_jY6wwKyFMmzRNshSZwY2jixG6K02awoC2Mu0ouBA_wi_0S7zpQxgd1E03vYTm5iQ5tzc5F6G-5sTExo9xIIWPgf8zLIj2MAsAzFQZq6lVFZvg47EIQ3nbHJAtlqTwJR1kxWyQPccG4iZYaj0mLJwnN2ELG2A0VobuC3bMqpC1BWXqXy2M86pUGQFCgeG9aG7qfWt-YW9auO_2g3ZW289o878fvoU2GoLpXNSI2EYrJttB_UpG1SlzJ4cl4mH6Yj7e3mNHQZycOvYQp00Q7KK70XByeYWb-ghYU8ZL7DPPiMAPtE4MxCGKeKkMFLiepIaz2E00xJ-eIq7WNKBEMe1rN4VZ6nIFhoruoU6WZ-YAOTCOKTPUSO7FfkqUSoEG8oRJkviSStpF561nIt2Ih9saFvdRncSmEXQ2ajrbBQi0xo-1ZsZys1Nw8e8WZ637I0C9TWXEmcnnRUSB6FplPS67aL8el6-GqLQaRi47_LP9I7ROgKPU5_mOUaeczc0JWtNP5bSY9dAqD0WvCtLhef067FWw-wQGts5f |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learn+to+optimize-a+brief+overview&rft.jtitle=National+science+review&rft.au=Tang%2C+Ke&rft.au=Yao%2C+Xin&rft.date=2024-08-01&rft.issn=2053-714X&rft.eissn=2053-714X&rft.volume=11&rft.issue=8&rft.spage=nwae132&rft_id=info:doi/10.1093%2Fnsr%2Fnwae132&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-5138&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-5138&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-5138&client=summon |