A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context

•Incorporation of CP into genetic algorithm.•Consideration of rescheduling upon disruptions.•Detailed discussion on parameter adaption. With the advent of industry-4.0 era, industrial production are evolving towards high flexibility, diversity, customisation, and dynamism. We address a realistic sce...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & operations research Ročník 132; s. 105267
Hlavní autori: Zhang, Sicheng, Tang, Fangcheng, Li, Xiang, Liu, Jiaming, Zhang, Bowen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 01.08.2021
Pergamon Press Inc
Predmet:
ISSN:0305-0548, 0305-0548
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Incorporation of CP into genetic algorithm.•Consideration of rescheduling upon disruptions.•Detailed discussion on parameter adaption. With the advent of industry-4.0 era, industrial production are evolving towards high flexibility, diversity, customisation, and dynamism. We address a realistic scenario of a smart manufacturing system, which concerns the production scheduling of complex multi-level products under a dynamic flexible job shop environment with shop floor disruptions incorporated. The products are assembled from multiple basic parts, whose fabrication processes are highly flexible, involving alternative process plans, alternative machines and alternative processing sequences of operations. We aim at providing Pareto solutions, with consideration of three typical optimisation objectives, including makespan, maximum machine workload, and total tardiness. A hybrid MPGA-CP approach is designed for the problem. To the best our knowledge, this is the first attempt to embed an exact optimisation technique into a meta-heuristic algorithm in the domain of production scheduling. Compared with other alternative approaches, its efficiency and performance are proven to be outstanding in solving medium-to-large scale problems, covering the largest proportion of Pareto solutions among all tested approaches. Furthermore, we constructed a simulation model of a real-time production scheduling control system, in which our approach is embedded as the kernel algorithm, to study the impacts of some uncertainties that are concerned in practice. Based on the results of simulation experiments and sensitivity analysis, meaningful managerial insights have been provided.
AbstractList With the advent of industry-4.0 era, industrial production are evolving towards high flexibility, diversity, customisation, and dynamism. We address a realistic scenario of a smart manufacturing system, which concerns the production scheduling of complex multi-level products under a dynamic flexible job shop environment with shop floor disruptions incorporated. The products are assembled from multiple basic parts, whose fabrication processes are highly flexible, involving alternative process plans, alternative machines and alternative processing sequences of operations. We aim at providing Pareto solutions, with consideration of three typical optimisation objectives, including makespan, maximum machine workload, and total tardiness. A hybrid MPGA-CP approach is designed for the problem. To the best our knowledge, this is the first attempt to embed an exact optimisation technique into a meta-heuristic algorithm in the domain of production scheduling. Compared with other alternative approaches, its efficiency and performance are proven to be outstanding in solving medium-to-large scale problems, covering the largest proportion of Pareto solutions among all tested approaches. Furthermore, we constructed a simulation model of a real-time production scheduling control system, in which our approach is embedded as the kernel algorithm, to study the impacts of some uncertainties that are concerned in practice. Based on the results of simulation experiments and sensitivity analysis, meaningful managerial insights have been provided.
•Incorporation of CP into genetic algorithm.•Consideration of rescheduling upon disruptions.•Detailed discussion on parameter adaption. With the advent of industry-4.0 era, industrial production are evolving towards high flexibility, diversity, customisation, and dynamism. We address a realistic scenario of a smart manufacturing system, which concerns the production scheduling of complex multi-level products under a dynamic flexible job shop environment with shop floor disruptions incorporated. The products are assembled from multiple basic parts, whose fabrication processes are highly flexible, involving alternative process plans, alternative machines and alternative processing sequences of operations. We aim at providing Pareto solutions, with consideration of three typical optimisation objectives, including makespan, maximum machine workload, and total tardiness. A hybrid MPGA-CP approach is designed for the problem. To the best our knowledge, this is the first attempt to embed an exact optimisation technique into a meta-heuristic algorithm in the domain of production scheduling. Compared with other alternative approaches, its efficiency and performance are proven to be outstanding in solving medium-to-large scale problems, covering the largest proportion of Pareto solutions among all tested approaches. Furthermore, we constructed a simulation model of a real-time production scheduling control system, in which our approach is embedded as the kernel algorithm, to study the impacts of some uncertainties that are concerned in practice. Based on the results of simulation experiments and sensitivity analysis, meaningful managerial insights have been provided.
ArticleNumber 105267
Author Zhang, Sicheng
Li, Xiang
Tang, Fangcheng
Liu, Jiaming
Zhang, Bowen
Author_xml – sequence: 1
  givenname: Sicheng
  surname: Zhang
  fullname: Zhang, Sicheng
– sequence: 2
  givenname: Fangcheng
  surname: Tang
  fullname: Tang, Fangcheng
  email: tangfc@mail.buct.edu.cn
– sequence: 3
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
– sequence: 4
  givenname: Jiaming
  surname: Liu
  fullname: Liu, Jiaming
– sequence: 5
  givenname: Bowen
  surname: Zhang
  fullname: Zhang, Bowen
BookMark eNp9kc1OxCAUhYnRRB19AHckrjsCLdNpXBnjX2LiRteEXm4dmhZGoBPnMXxjmYwL40I2Fy7nu-QcTsmh8w4JueBszhlfXPVz8GEumOD5LMWiPiAnrGSyYLJaHv7aH5PTGHuWVy34Cfm6oattG6yh4zQkW_i2R0h2g1Sv18FrWNHOBxpQD0WyI9JuwE_bDkjzrZmy1DsaYYVmGqx7p9qZLP7VmJzBQM3W6dECRbexwbsRXaLW0SdnppjCllZzRsG7hJ_pjBx1eoh4_lNn5O3-7vX2sXh-eXi6vXkuoJR1Kkpo0DTlUjC2wI4L0BUroawNcOg4tnVTC2kaDlpz0XQtBxAtIlYSO0TdljNyuZ-bjXxMGJPq_RRcflIJWUkhJePLrKr3Kgg-xoCdApv0znUK2g6KM7XLX_Uq5692-at9_pnkf8h1sKMO23-Z6z2D2fjGYlARLDpAY0P-FmW8_Yf-Bly-o8o
CitedBy_id crossref_primary_10_1016_j_jmsy_2023_07_011
crossref_primary_10_3390_math10142395
crossref_primary_10_1371_journal_pone_0290789
crossref_primary_10_1016_j_eswa_2022_119375
crossref_primary_10_1016_j_asoc_2025_113355
crossref_primary_10_1109_TETCI_2022_3174915
crossref_primary_10_1016_j_cor_2022_106134
crossref_primary_10_3390_app11219821
crossref_primary_10_1016_j_cor_2023_106433
crossref_primary_10_1080_09537287_2023_2248947
crossref_primary_10_3390_e24010051
crossref_primary_10_1016_j_swevo_2024_101750
crossref_primary_10_1016_j_cie_2023_109550
crossref_primary_10_2478_amns_2024_0525
crossref_primary_10_1109_ACCESS_2022_3191426
crossref_primary_10_1109_LRA_2022_3184795
crossref_primary_10_3390_math13162605
crossref_primary_10_1108_IJSBI_05_2023_0027
crossref_primary_10_1016_j_cie_2022_108786
crossref_primary_10_1016_j_engappai_2023_106750
crossref_primary_10_1007_s10845_024_02484_2
crossref_primary_10_1016_j_jmsy_2022_08_008
crossref_primary_10_1016_j_tsep_2024_102753
crossref_primary_10_1109_ACCESS_2023_3311362
crossref_primary_10_1016_j_cor_2023_106266
crossref_primary_10_3390_su151813785
crossref_primary_10_1038_s41598_023_28630_z
crossref_primary_10_1080_0305215X_2024_2335284
crossref_primary_10_3390_math12203176
crossref_primary_10_1109_ACCESS_2023_3261883
Cites_doi 10.1016/j.cie.2009.09.003
10.1016/j.cie.2016.03.011
10.1016/j.cor.2011.04.006
10.1016/j.cie.2008.11.017
10.1016/j.ijpe.2017.12.003
10.1109/TEM.2017.2785774
10.1007/s10845-017-1350-2
10.1016/j.ijpe.2018.10.010
10.1007/s00170-011-3409-0
10.1016/j.cor.2014.02.005
10.1016/j.cor.2011.10.007
10.1016/j.cor.2017.07.012
10.1016/j.cie.2017.01.006
10.1016/j.cor.2020.105031
10.1016/j.cor.2012.02.024
10.1080/00207543.2012.720393
10.1016/j.cor.2020.104951
10.1080/00207543.2016.1267414
10.1080/00207543.2015.1086037
10.1016/j.cie.2020.106863
10.1016/j.rcim.2007.01.001
10.1016/j.ejor.2018.04.033
10.1007/s10845-014-1023-3
10.1111/itor.12199
10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
10.1186/2251-712X-8-26
10.1016/j.cor.2016.04.006
10.1016/j.ejor.2019.11.016
10.1016/S0305-0548(02)00063-1
10.1016/j.ejor.2016.07.030
10.1002/nav.21901
10.1080/00207543.2018.1504248
10.1016/j.sbspro.2015.03.234
10.1080/00207543.2013.848487
10.1016/j.cor.2009.06.008
10.1016/j.cie.2009.04.002
10.1080/00207540903524490
10.1016/j.ejor.2015.01.032
10.1016/j.cor.2020.105053
10.1016/j.cie.2020.106605
10.1016/j.eswa.2016.08.019
10.1016/j.ijpe.2017.01.014
10.1080/0951192X.2013.834468
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Pergamon Press Inc. Aug 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Aug 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cor.2021.105267
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 0305-0548
ExternalDocumentID 10_1016_j_cor_2021_105267
S0305054821000599
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
AEBSH
AEFWE
AEHXG
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-3c9ed9382006ef12ca403c37dc1cf1eb79725d91caa129fb1cc2beee45efeeab3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694869900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Wed Aug 13 07:45:29 EDT 2025
Sat Nov 29 03:23:43 EST 2025
Tue Nov 18 21:16:41 EST 2025
Sat Jan 18 16:10:18 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Integrated processing planning and assembly scheduling
Genetic algorithm
Constraint programming
Dynamic production scheduling
Multi-objective optimisation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c357t-3c9ed9382006ef12ca403c37dc1cf1eb79725d91caa129fb1cc2beee45efeeab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2545255018
PQPubID 45870
ParticipantIDs proquest_journals_2545255018
crossref_citationtrail_10_1016_j_cor_2021_105267
crossref_primary_10_1016_j_cor_2021_105267
elsevier_sciencedirect_doi_10_1016_j_cor_2021_105267
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & operations research
PublicationYear 2021
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Li, Li, Sambandam, Sethi, Zhang (b0110) 2018; 206
Chan, Wong, Chan (b0015) 2009; 57
Xiong, Fan, Jiang, Li (b0185) 2017; 257
Zhang, Ding, Zou, Qin, Fu (b0215) 2019; 30
Komaki, Teymourian, Kayvanfar, Booyavi (b0075) 2017; 105
Zhang, Wong (b0205) 2018; 29
Defersha, Rooyani (b0030) 2020; 147
Maleki-Darounkolaei, Modiri, Tavakkoli-Moghaddam, Seyyedi (b0130) 2012; 8
Nourali, Imanipour, Shahriari (b0145) 2012; 6
Wong, Zhang, Wang, Zhang (b0175) 2012; 50
Caldeira, Gnanavelbabu, Vaidyanathan (b0005) 2020; 149
Xiong, Xing, Wang, Lei, Han (b0180) 2014; 47
Zhang, Wang (b0190) 2018; 65
Zhang, Li, Zhang, Wang (b0220) 2020; 283
Ku, Beck (b0080) 2016; 73
Framinan, Perez-Gonzalez (b0045) 2017; 88
Kim, Park, Ko (b0065) 2003; 30
Na, Park (b0135) 2014; 52
Li, Gao, Shao, Zhang, Wang (b0100) 2010; 37
Chan, Wong, Chan (b0010) 2008; 24
Li, Liu, Sethi, Xu (b0105) 2017; 186
Zhang, Wong (b0200) 2017; 55
Rossit, Tohmé, Frutos (b0165) 2019; 57
Feng, Li, Sethi (b0040) 2018; 196
Lu, Huang, Yang (b0120) 2011; 49
Leung, Wong, Mak, Fung (b0095) 2010; 59
Qiao, Lv (b0160) 2012; 58
Zhang, Manier, Manier (b0210) 2012; 39
Ding, Gu (b0035) 2020; 121
Chaudhry, Khan (b0020) 2016; 23
Ghaleb, Zolfagharinia, Taghipour (b0055) 2020; 123
Petrović, Vuković, Mitić, Miljković (b0155) 2016; 64
Kubiak, Feng, Li, Sethi, Sriskandarajah (b0085) 2020; 67
Paul, Sridharan, Radha Ramanan (b0150) 2015; 189
Wong, Chan, Chan (b0170) 2009; 57
Zhang, Wong (b0195) 2015; 244
Lv, Qiao (b0125) 2014; 27
Czyzzak, Jaszkiewicz (b0025) 1998; 7
Kundakcı, Kulak (b0090) 2016; 96
Nourali, Imanipour (b0140) 2014; 14
Framinan, Perez-Gonzalez, Fernandez-Viagas (b0050) 2019; 273
Lin, Li, Wei, Wu (b0115) 2020; 124
Zhong, Xu, Chen, Huang (b0225) 2017; 55
Gromicho, van Hoorn, Saldanha-da-Gama, Timmer (b0060) 2012; 39
Kis, Kovács (b0070) 2012; 39
Kundakcı (10.1016/j.cor.2021.105267_b0090) 2016; 96
Zhang (10.1016/j.cor.2021.105267_b0195) 2015; 244
Chan (10.1016/j.cor.2021.105267_b0010) 2008; 24
Zhong (10.1016/j.cor.2021.105267_b0225) 2017; 55
Caldeira (10.1016/j.cor.2021.105267_b0005) 2020; 149
Gromicho (10.1016/j.cor.2021.105267_b0060) 2012; 39
Framinan (10.1016/j.cor.2021.105267_b0050) 2019; 273
Xiong (10.1016/j.cor.2021.105267_b0180) 2014; 47
Komaki (10.1016/j.cor.2021.105267_b0075) 2017; 105
Zhang (10.1016/j.cor.2021.105267_b0220) 2020; 283
Feng (10.1016/j.cor.2021.105267_b0040) 2018; 196
Kis (10.1016/j.cor.2021.105267_b0070) 2012; 39
Nourali (10.1016/j.cor.2021.105267_b0145) 2012; 6
Wong (10.1016/j.cor.2021.105267_b0170) 2009; 57
Zhang (10.1016/j.cor.2021.105267_b0215) 2019; 30
Xiong (10.1016/j.cor.2021.105267_b0185) 2017; 257
Chan (10.1016/j.cor.2021.105267_b0015) 2009; 57
Defersha (10.1016/j.cor.2021.105267_b0030) 2020; 147
Lin (10.1016/j.cor.2021.105267_b0115) 2020; 124
Petrović (10.1016/j.cor.2021.105267_b0155) 2016; 64
Zhang (10.1016/j.cor.2021.105267_b0205) 2018; 29
Leung (10.1016/j.cor.2021.105267_b0095) 2010; 59
Zhang (10.1016/j.cor.2021.105267_b0190) 2018; 65
Maleki-Darounkolaei (10.1016/j.cor.2021.105267_b0130) 2012; 8
Ghaleb (10.1016/j.cor.2021.105267_b0055) 2020; 123
Li (10.1016/j.cor.2021.105267_b0110) 2018; 206
Rossit (10.1016/j.cor.2021.105267_b0165) 2019; 57
Framinan (10.1016/j.cor.2021.105267_b0045) 2017; 88
Ku (10.1016/j.cor.2021.105267_b0080) 2016; 73
Lu (10.1016/j.cor.2021.105267_b0120) 2011; 49
Nourali (10.1016/j.cor.2021.105267_b0140) 2014; 14
Czyzzak (10.1016/j.cor.2021.105267_b0025) 1998; 7
Li (10.1016/j.cor.2021.105267_b0100) 2010; 37
Paul (10.1016/j.cor.2021.105267_b0150) 2015; 189
Ding (10.1016/j.cor.2021.105267_b0035) 2020; 121
Kubiak (10.1016/j.cor.2021.105267_b0085) 2020; 67
Qiao (10.1016/j.cor.2021.105267_b0160) 2012; 58
Zhang (10.1016/j.cor.2021.105267_b0200) 2017; 55
Zhang (10.1016/j.cor.2021.105267_b0210) 2012; 39
Lv (10.1016/j.cor.2021.105267_b0125) 2014; 27
Chaudhry (10.1016/j.cor.2021.105267_b0020) 2016; 23
Li (10.1016/j.cor.2021.105267_b0105) 2017; 186
Na (10.1016/j.cor.2021.105267_b0135) 2014; 52
Wong (10.1016/j.cor.2021.105267_b0175) 2012; 50
Kim (10.1016/j.cor.2021.105267_b0065) 2003; 30
References_xml – volume: 64
  start-page: 569
  year: 2016
  end-page: 588
  ident: b0155
  article-title: Integration of process planning and scheduling using chaotic particle swarm optimization algorithm
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 1713
  year: 2012
  end-page: 1723
  ident: b0210
  article-title: A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times
  publication-title: Computers & Operations Research
– volume: 39
  start-page: 320
  year: 2012
  end-page: 327
  ident: b0070
  article-title: A cutting plane approach for integrated planning and scheduling
  publication-title: Computers & Operations Research
– volume: 196
  start-page: 269
  year: 2018
  end-page: 283
  ident: b0040
  article-title: A three-layer chromosome genetic algorithm for multi-cell scheduling with flexible routes and machine sharing
  publication-title: International Journal of Production Economics
– volume: 55
  start-page: 3173
  year: 2017
  end-page: 3196
  ident: b0200
  article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach
  publication-title: International Journal of Production Research
– volume: 147
  year: 2020
  ident: b0030
  article-title: An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time
  publication-title: Computers & Industrial Engineering
– volume: 121
  year: 2020
  ident: b0035
  article-title: Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem
  publication-title: Computers & Operations Research
– volume: 6
  start-page: 2117
  year: 2012
  end-page: 2132
  ident: b0145
  article-title: A mathematical model for integrated process planning and scheduling in flexible assembly job shop environment with sequence dependent setup times
  publication-title: International Journal of Mathematical Analysis
– volume: 57
  start-page: 3802
  year: 2019
  end-page: 3813
  ident: b0165
  article-title: Industry 4.0: Smart Scheduling
  publication-title: International Journal of Production Research
– volume: 30
  start-page: 1809
  year: 2019
  end-page: 1830
  ident: b0215
  article-title: Review of job shop scheduling research and its new perspectives under Industry 4.0
  publication-title: Journal of Intelligent Manufacturing
– volume: 58
  start-page: 727
  year: 2012
  end-page: 740
  ident: b0160
  article-title: An improved genetic algorithm for integrated process planning and scheduling
  publication-title: The International Journal of Advanced Manufacturing Technology
– volume: 244
  start-page: 434
  year: 2015
  end-page: 444
  ident: b0195
  article-title: An object-coding genetic algorithm for integrated process planning and scheduling
  publication-title: European Journal of Operational Research
– volume: 7
  start-page: 34
  year: 1998
  end-page: 47
  ident: b0025
  article-title: Pareto simulated annealing—a metaheuristic technique for multiple objective combinatorial optimization
  publication-title: Journal of Multi-Criteria Decision Analysis
– volume: 57
  start-page: 983
  year: 2009
  end-page: 995
  ident: b0170
  article-title: A resource-constrained assembly job shop scheduling problem with lot streaming technique
  publication-title: Computers & Industrial Engineering
– volume: 283
  start-page: 441
  year: 2020
  end-page: 460
  ident: b0220
  article-title: Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system
  publication-title: European Journal of Operational Research
– volume: 14
  year: 2014
  ident: b0140
  article-title: A particle swarm optimization-based algorithm for flexible assembly job shop scheduling problem with sequence dependent setup times
  publication-title: Scientia Iranica
– volume: 30
  start-page: 1151
  year: 2003
  end-page: 1171
  ident: b0065
  article-title: A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling
  publication-title: Computers & Operations Research
– volume: 39
  start-page: 2968
  year: 2012
  end-page: 2977
  ident: b0060
  article-title: Solving the job-shop scheduling problem optimally by dynamic programming
  publication-title: Computers & Operations Research
– volume: 105
  start-page: 158
  year: 2017
  end-page: 173
  ident: b0075
  article-title: Improved discrete cuckoo optimization algorithm for the three-stage assembly flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 29
  start-page: 585
  year: 2018
  end-page: 601
  ident: b0205
  article-title: Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning
  publication-title: Journal of Intelligent Manufacturing
– volume: 189
  start-page: 376
  year: 2015
  end-page: 384
  ident: b0150
  article-title: An investigation of order review/release policies and dispatching rules for assembly job shops with multi objective criteria
  publication-title: Procedia – Social and Behavioral Sciences
– volume: 73
  start-page: 165
  year: 2016
  end-page: 173
  ident: b0080
  article-title: Mixed Integer Programming models for job shop scheduling: A computational analysis
  publication-title: Computers & Operations Research
– volume: 52
  start-page: 3877
  year: 2014
  end-page: 3887
  ident: b0135
  article-title: Multi-level job scheduling in a flexible job shop environment
  publication-title: International Journal of Production Research
– volume: 206
  start-page: 250
  year: 2018
  end-page: 260
  ident: b0110
  article-title: Flow shop scheduling with jobs arriving at different times
  publication-title: International Journal of Production Economics
– volume: 23
  start-page: 551
  year: 2016
  end-page: 591
  ident: b0020
  article-title: A research survey: Review of flexible job shop scheduling techniques
  publication-title: International Transactions in Operational Research
– volume: 123
  year: 2020
  ident: b0055
  article-title: Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties in job arrivals and machine breakdowns
  publication-title: Computers & Operations Research
– volume: 49
  start-page: 647
  year: 2011
  end-page: 669
  ident: b0120
  article-title: Integrating order review/release and dispatching rules for assembly job shop scheduling using a simulation approach
  publication-title: International Journal of Production Research
– volume: 47
  start-page: 92
  year: 2014
  end-page: 105
  ident: b0180
  article-title: Minimizing the total completion time in a distributed two stage assembly system with setup times
  publication-title: Computers & Operations Research
– volume: 8
  year: 2012
  ident: b0130
  article-title: A three-stage assembly flow shop scheduling problem with blocking and sequence-dependent set up times
  publication-title: Journal of Industrial Engineering International
– volume: 186
  start-page: 1
  year: 2017
  end-page: 7
  ident: b0105
  article-title: Parallel-machine scheduling with machine-dependent maintenance periodic recycles
  publication-title: International Journal of Production Economics
– volume: 65
  start-page: 487
  year: 2018
  end-page: 504
  ident: b0190
  article-title: Flexible assembly job-shop scheduling with sequence-dependent setup times and part sharing in a dynamic environment: constraint programming model, mixed-integer programming model, and dispatching rules
  publication-title: IEEE Transactions on Engineering Management
– volume: 149
  year: 2020
  ident: b0005
  article-title: An effective backtracking search algorithm for multi-objective flexible job shop scheduling considering new job arrivals and energy consumption
  publication-title: Computers & Industrial Engineering
– volume: 57
  start-page: 641
  year: 2009
  end-page: 651
  ident: b0015
  article-title: An evolutionary algorithm for assembly job shop with part sharing
  publication-title: Computers & Industrial Engineering
– volume: 273
  start-page: 401
  year: 2019
  end-page: 417
  ident: b0050
  article-title: Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures
  publication-title: European Journal of Operational Research
– volume: 59
  start-page: 166
  year: 2010
  end-page: 180
  ident: b0095
  article-title: Integrated process planning and scheduling by an agent-based ant colony optimization
  publication-title: Computers & Industrial Engineering
– volume: 37
  start-page: 656
  year: 2010
  end-page: 667
  ident: b0100
  article-title: Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling
  publication-title: Computers & Operations Research
– volume: 55
  start-page: 2610
  year: 2017
  end-page: 2621
  ident: b0225
  article-title: Big data analytics for physical internet-based intelligent manufacturing shop floors
  publication-title: International Journal of Production Research
– volume: 257
  start-page: 13
  year: 2017
  end-page: 24
  ident: b0185
  article-title: A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints
  publication-title: European Journal of Operational Research
– volume: 88
  start-page: 237
  year: 2017
  end-page: 246
  ident: b0045
  article-title: The 2-stage assembly flowshop scheduling problem with total completion time: Efficient constructive heuristic and metaheuristic
  publication-title: Computers & Operations Research
– volume: 24
  start-page: 321
  year: 2008
  end-page: 331
  ident: b0010
  article-title: Lot streaming for product assembly in job shop environment
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 67
  start-page: 272
  year: 2020
  end-page: 288
  ident: b0085
  article-title: Efficient algorithms for flexible job shop scheduling with parallel machines
  publication-title: Naval Research Logistics (NRL)
– volume: 27
  start-page: 638
  year: 2014
  end-page: 655
  ident: b0125
  article-title: Process planning and scheduling integration with optimal rescheduling strategies
  publication-title: International Journal of Computer Integrated Manufacturing
– volume: 96
  start-page: 31
  year: 2016
  end-page: 51
  ident: b0090
  article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem
  publication-title: Computers & Industrial Engineering
– volume: 124
  year: 2020
  ident: b0115
  article-title: Integration of process planning and scheduling for distributed flexible job shops
  publication-title: Computers & Operations Research
– volume: 50
  start-page: 6188
  year: 2012
  end-page: 6201
  ident: b0175
  article-title: Integrated process planning and scheduling – multi-agent system with two-stage ant colony optimisation algorithm
  publication-title: International Journal of Production Research
– volume: 59
  start-page: 166
  year: 2010
  ident: 10.1016/j.cor.2021.105267_b0095
  article-title: Integrated process planning and scheduling by an agent-based ant colony optimization
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2009.09.003
– volume: 96
  start-page: 31
  year: 2016
  ident: 10.1016/j.cor.2021.105267_b0090
  article-title: Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.03.011
– volume: 39
  start-page: 320
  year: 2012
  ident: 10.1016/j.cor.2021.105267_b0070
  article-title: A cutting plane approach for integrated planning and scheduling
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.04.006
– volume: 57
  start-page: 641
  year: 2009
  ident: 10.1016/j.cor.2021.105267_b0015
  article-title: An evolutionary algorithm for assembly job shop with part sharing
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2008.11.017
– volume: 196
  start-page: 269
  year: 2018
  ident: 10.1016/j.cor.2021.105267_b0040
  article-title: A three-layer chromosome genetic algorithm for multi-cell scheduling with flexible routes and machine sharing
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2017.12.003
– volume: 65
  start-page: 487
  year: 2018
  ident: 10.1016/j.cor.2021.105267_b0190
  article-title: Flexible assembly job-shop scheduling with sequence-dependent setup times and part sharing in a dynamic environment: constraint programming model, mixed-integer programming model, and dispatching rules
  publication-title: IEEE Transactions on Engineering Management
  doi: 10.1109/TEM.2017.2785774
– volume: 30
  start-page: 1809
  year: 2019
  ident: 10.1016/j.cor.2021.105267_b0215
  article-title: Review of job shop scheduling research and its new perspectives under Industry 4.0
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-017-1350-2
– volume: 206
  start-page: 250
  year: 2018
  ident: 10.1016/j.cor.2021.105267_b0110
  article-title: Flow shop scheduling with jobs arriving at different times
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2018.10.010
– volume: 58
  start-page: 727
  year: 2012
  ident: 10.1016/j.cor.2021.105267_b0160
  article-title: An improved genetic algorithm for integrated process planning and scheduling
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-011-3409-0
– volume: 47
  start-page: 92
  year: 2014
  ident: 10.1016/j.cor.2021.105267_b0180
  article-title: Minimizing the total completion time in a distributed two stage assembly system with setup times
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2014.02.005
– volume: 39
  start-page: 1713
  year: 2012
  ident: 10.1016/j.cor.2021.105267_b0210
  article-title: A genetic algorithm with tabu search procedure for flexible job shop scheduling with transportation constraints and bounded processing times
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.10.007
– volume: 88
  start-page: 237
  year: 2017
  ident: 10.1016/j.cor.2021.105267_b0045
  article-title: The 2-stage assembly flowshop scheduling problem with total completion time: Efficient constructive heuristic and metaheuristic
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2017.07.012
– volume: 105
  start-page: 158
  year: 2017
  ident: 10.1016/j.cor.2021.105267_b0075
  article-title: Improved discrete cuckoo optimization algorithm for the three-stage assembly flowshop scheduling problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2017.01.006
– volume: 6
  start-page: 2117
  year: 2012
  ident: 10.1016/j.cor.2021.105267_b0145
  article-title: A mathematical model for integrated process planning and scheduling in flexible assembly job shop environment with sequence dependent setup times
  publication-title: International Journal of Mathematical Analysis
– volume: 123
  year: 2020
  ident: 10.1016/j.cor.2021.105267_b0055
  article-title: Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties in job arrivals and machine breakdowns
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2020.105031
– volume: 39
  start-page: 2968
  year: 2012
  ident: 10.1016/j.cor.2021.105267_b0060
  article-title: Solving the job-shop scheduling problem optimally by dynamic programming
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2012.02.024
– volume: 50
  start-page: 6188
  year: 2012
  ident: 10.1016/j.cor.2021.105267_b0175
  article-title: Integrated process planning and scheduling – multi-agent system with two-stage ant colony optimisation algorithm
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2012.720393
– volume: 121
  year: 2020
  ident: 10.1016/j.cor.2021.105267_b0035
  article-title: Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2020.104951
– volume: 14
  year: 2014
  ident: 10.1016/j.cor.2021.105267_b0140
  article-title: A particle swarm optimization-based algorithm for flexible assembly job shop scheduling problem with sequence dependent setup times
  publication-title: Scientia Iranica
– volume: 55
  start-page: 3173
  year: 2017
  ident: 10.1016/j.cor.2021.105267_b0200
  article-title: Flexible job-shop scheduling/rescheduling in dynamic environment: A hybrid MAS/ACO approach
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2016.1267414
– volume: 55
  start-page: 2610
  year: 2017
  ident: 10.1016/j.cor.2021.105267_b0225
  article-title: Big data analytics for physical internet-based intelligent manufacturing shop floors
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2015.1086037
– volume: 149
  year: 2020
  ident: 10.1016/j.cor.2021.105267_b0005
  article-title: An effective backtracking search algorithm for multi-objective flexible job shop scheduling considering new job arrivals and energy consumption
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106863
– volume: 24
  start-page: 321
  year: 2008
  ident: 10.1016/j.cor.2021.105267_b0010
  article-title: Lot streaming for product assembly in job shop environment
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2007.01.001
– volume: 273
  start-page: 401
  year: 2019
  ident: 10.1016/j.cor.2021.105267_b0050
  article-title: Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.04.033
– volume: 29
  start-page: 585
  year: 2018
  ident: 10.1016/j.cor.2021.105267_b0205
  article-title: Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-014-1023-3
– volume: 23
  start-page: 551
  year: 2016
  ident: 10.1016/j.cor.2021.105267_b0020
  article-title: A research survey: Review of flexible job shop scheduling techniques
  publication-title: International Transactions in Operational Research
  doi: 10.1111/itor.12199
– volume: 7
  start-page: 34
  year: 1998
  ident: 10.1016/j.cor.2021.105267_b0025
  article-title: Pareto simulated annealing—a metaheuristic technique for multiple objective combinatorial optimization
  publication-title: Journal of Multi-Criteria Decision Analysis
  doi: 10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
– volume: 8
  year: 2012
  ident: 10.1016/j.cor.2021.105267_b0130
  article-title: A three-stage assembly flow shop scheduling problem with blocking and sequence-dependent set up times
  publication-title: Journal of Industrial Engineering International
  doi: 10.1186/2251-712X-8-26
– volume: 73
  start-page: 165
  year: 2016
  ident: 10.1016/j.cor.2021.105267_b0080
  article-title: Mixed Integer Programming models for job shop scheduling: A computational analysis
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.04.006
– volume: 283
  start-page: 441
  year: 2020
  ident: 10.1016/j.cor.2021.105267_b0220
  article-title: Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.11.016
– volume: 30
  start-page: 1151
  year: 2003
  ident: 10.1016/j.cor.2021.105267_b0065
  article-title: A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(02)00063-1
– volume: 257
  start-page: 13
  year: 2017
  ident: 10.1016/j.cor.2021.105267_b0185
  article-title: A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.07.030
– volume: 67
  start-page: 272
  year: 2020
  ident: 10.1016/j.cor.2021.105267_b0085
  article-title: Efficient algorithms for flexible job shop scheduling with parallel machines
  publication-title: Naval Research Logistics (NRL)
  doi: 10.1002/nav.21901
– volume: 57
  start-page: 3802
  year: 2019
  ident: 10.1016/j.cor.2021.105267_b0165
  article-title: Industry 4.0: Smart Scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1504248
– volume: 189
  start-page: 376
  year: 2015
  ident: 10.1016/j.cor.2021.105267_b0150
  article-title: An investigation of order review/release policies and dispatching rules for assembly job shops with multi objective criteria
  publication-title: Procedia – Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2015.03.234
– volume: 52
  start-page: 3877
  year: 2014
  ident: 10.1016/j.cor.2021.105267_b0135
  article-title: Multi-level job scheduling in a flexible job shop environment
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.848487
– volume: 37
  start-page: 656
  year: 2010
  ident: 10.1016/j.cor.2021.105267_b0100
  article-title: Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2009.06.008
– volume: 57
  start-page: 983
  year: 2009
  ident: 10.1016/j.cor.2021.105267_b0170
  article-title: A resource-constrained assembly job shop scheduling problem with lot streaming technique
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2009.04.002
– volume: 49
  start-page: 647
  year: 2011
  ident: 10.1016/j.cor.2021.105267_b0120
  article-title: Integrating order review/release and dispatching rules for assembly job shop scheduling using a simulation approach
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540903524490
– volume: 244
  start-page: 434
  year: 2015
  ident: 10.1016/j.cor.2021.105267_b0195
  article-title: An object-coding genetic algorithm for integrated process planning and scheduling
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.01.032
– volume: 124
  year: 2020
  ident: 10.1016/j.cor.2021.105267_b0115
  article-title: Integration of process planning and scheduling for distributed flexible job shops
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2020.105053
– volume: 147
  year: 2020
  ident: 10.1016/j.cor.2021.105267_b0030
  article-title: An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106605
– volume: 64
  start-page: 569
  year: 2016
  ident: 10.1016/j.cor.2021.105267_b0155
  article-title: Integration of process planning and scheduling using chaotic particle swarm optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.019
– volume: 186
  start-page: 1
  year: 2017
  ident: 10.1016/j.cor.2021.105267_b0105
  article-title: Parallel-machine scheduling with machine-dependent maintenance periodic recycles
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2017.01.014
– volume: 27
  start-page: 638
  year: 2014
  ident: 10.1016/j.cor.2021.105267_b0125
  article-title: Process planning and scheduling integration with optimal rescheduling strategies
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2013.834468
SSID ssj0000721
Score 2.5126595
Snippet •Incorporation of CP into genetic algorithm.•Consideration of rescheduling upon disruptions.•Detailed discussion on parameter adaption. With the advent of...
With the advent of industry-4.0 era, industrial production are evolving towards high flexibility, diversity, customisation, and dynamism. We address a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105267
SubjectTerms Algorithms
Constraint programming
Dynamic production scheduling
Genetic algorithm
Heuristic methods
Industry 4.0
Integrated processing planning and assembly scheduling
Job shop scheduling
Job shops
Multi-objective optimisation
Multiple objective analysis
Operations research
Optimization
Production scheduling
Real time
Scheduling
Sensitivity analysis
Title A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context
URI https://dx.doi.org/10.1016/j.cor.2021.105267
https://www.proquest.com/docview/2545255018
Volume 132
WOSCitedRecordID wos000694869900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 0305-0548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000721
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFiE48BGKKBQ0B05ErmI7znqPEWoFqKo4FJSbZe-uRaPIiZK0an8Gf4VfyMx-2Y1oRQ9cnGhir1aal53Z8by3jH1QokwrjMuRUPk4GsnxMKrqWkR5ppXEiKqEEZ7_ccJPT_PpVHzr9X57LszlnDdNfnUllv_V1WhDZxN19h7uDoOiAb-j0_GKbsfrPzl-Mvh5TTQs2ysYLaqZXdOCfLjpLMRccR7RwfKDmiQxiT-1tOKvhAfc8mIImnsCI27JWwOxzlYDZU-y7xLlqHTiTgK5HowOh6YNHtf-bv7rD5FYG8gtlnrlWvGc6FAoTreFbOpVdeHVVBis-Rg_b_xwYtoSpoj2junCgJS4687q6htJHLrrAq-L2gszq8cZ1mxXFLWrbkyiNfyvAcHWJmboTxJ_TeLD9t6b4ttbQTG0KvouuFmBQxQ0RGGHeMB2E54JDAa7ky9H069t_OeG7Rfm7d-lm67CrXnclg1t5QUm2Tl7zp66XQpMLLpesJ5u-uyRJ0n02TPvR3Cxoc-edJQtX7JfE7AohC0UgkchIAohoBA8CqFFIbSgA0QhdFEIBoXgUAgdFMJ5Ax6FgCgEh8I99v346OzT58id_hHJNOObKJVCK5HmVPPSdZzIcjRMZcqVjGUd64oLnmRKxLIsMWetq1jKpNJajzJda11W6Su20ywa_ZrBWMtUal6NiQWueFnWqYq1zrnKMHxxuc-G3guFdNL4dELLvLjV-_vsY3hkaXVh7rp55F1buMTWJqwFwvSuxw48DAq3wKyLJKNOBJLhfHOfKbxlj9s_1wHb2awu9Dv2UF5uzter9w7CfwCKedTS
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+multi-objective+approach+for+real-time+flexible+production+scheduling+and+rescheduling+under+dynamic+environment+in+Industry+4.0+context&rft.jtitle=Computers+%26+operations+research&rft.au=Zhang%2C+Sicheng&rft.au=Tang%2C+Fangcheng&rft.au=Li%2C+Xiang&rft.au=Liu%2C+Jiaming&rft.date=2021-08-01&rft.issn=0305-0548&rft.volume=132&rft.spage=105267&rft_id=info:doi/10.1016%2Fj.cor.2021.105267&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2021_105267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon