On the Mangasarian–Fromovitz constraint qualification and Karush–Kuhn–Tucker conditions in nonsmooth semi-infinite multiobjective programming

We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optimization letters Ročník 14; číslo 8; s. 2055 - 2072
Hlavní autori: Khanh, Phan Quoc, Tung, Nguyen Minh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Predmet:
ISSN:1862-4472, 1862-4480
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order p which is just the order of the directional Hölder metric subregularity which is included also in this proposed qualification version. Using this qualification together with the Pshenichnyi–Levitin–Valadire property, we establish Karush–Kuhn–Tucker optimality conditions for Borwein-proper and firm solutions. We also compare in detail our qualification version with other usually-employed constraint qualifications. Applications to semi-infinite multiobjective fractional problems and minimax problems are provided.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-019-01529-3