On the Mangasarian–Fromovitz constraint qualification and Karush–Kuhn–Tucker conditions in nonsmooth semi-infinite multiobjective programming
We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order...
Gespeichert in:
| Veröffentlicht in: | Optimization letters Jg. 14; H. 8; S. 2055 - 2072 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
|
| Schlagworte: | |
| ISSN: | 1862-4472, 1862-4480 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order
p
which is just the order of the directional Hölder metric subregularity which is included also in this proposed qualification version. Using this qualification together with the Pshenichnyi–Levitin–Valadire property, we establish Karush–Kuhn–Tucker optimality conditions for Borwein-proper and firm solutions. We also compare in detail our qualification version with other usually-employed constraint qualifications. Applications to semi-infinite multiobjective fractional problems and minimax problems are provided. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-019-01529-3 |