On the Mangasarian–Fromovitz constraint qualification and Karush–Kuhn–Tucker conditions in nonsmooth semi-infinite multiobjective programming
We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order...
Uloženo v:
| Vydáno v: | Optimization letters Ročník 14; číslo 8; s. 2055 - 2072 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
|
| Témata: | |
| ISSN: | 1862-4472, 1862-4480 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order
p
which is just the order of the directional Hölder metric subregularity which is included also in this proposed qualification version. Using this qualification together with the Pshenichnyi–Levitin–Valadire property, we establish Karush–Kuhn–Tucker optimality conditions for Borwein-proper and firm solutions. We also compare in detail our qualification version with other usually-employed constraint qualifications. Applications to semi-infinite multiobjective fractional problems and minimax problems are provided. |
|---|---|
| ISSN: | 1862-4472 1862-4480 |
| DOI: | 10.1007/s11590-019-01529-3 |