On the Mangasarian–Fromovitz constraint qualification and Karush–Kuhn–Tucker conditions in nonsmooth semi-infinite multiobjective programming

We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 14; číslo 8; s. 2055 - 2072
Hlavní autoři: Khanh, Phan Quoc, Tung, Nguyen Minh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order p which is just the order of the directional Hölder metric subregularity which is included also in this proposed qualification version. Using this qualification together with the Pshenichnyi–Levitin–Valadire property, we establish Karush–Kuhn–Tucker optimality conditions for Borwein-proper and firm solutions. We also compare in detail our qualification version with other usually-employed constraint qualifications. Applications to semi-infinite multiobjective fractional problems and minimax problems are provided.
AbstractList We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the Manganarian–Fromovitz constraint qualification is proposed, in terms of the Michel–Penot directional derivative and the Studniarski derivative of order p which is just the order of the directional Hölder metric subregularity which is included also in this proposed qualification version. Using this qualification together with the Pshenichnyi–Levitin–Valadire property, we establish Karush–Kuhn–Tucker optimality conditions for Borwein-proper and firm solutions. We also compare in detail our qualification version with other usually-employed constraint qualifications. Applications to semi-infinite multiobjective fractional problems and minimax problems are provided.
Author Khanh, Phan Quoc
Tung, Nguyen Minh
Author_xml – sequence: 1
  givenname: Phan Quoc
  surname: Khanh
  fullname: Khanh, Phan Quoc
  organization: Department of Mathematics, International University, Vietnam National University
– sequence: 2
  givenname: Nguyen Minh
  surname: Tung
  fullname: Tung, Nguyen Minh
  email: nmtung@hcmus.edu.vn
  organization: Vietnam National University, Department of Mathematics and Computing, University of Science
BookMark eNp9kEtOwzAURS1UJEphA4y8gYA_-XmIKgqoRZ2UceQ4TuLS2MV2KsGIPXSHrASnRQwYdGA9D855evdegpE2WgJwg9EtRii7cxgnDEUIs_ASwiJ6BsY4T0kUxzka_f0zcgEunVsjlGLM2Bjslxr6VsIXrhvuuFVcf3_tZ9Z0Zqf8JxRGO2-50h6-93yjaiW4V0ZDris457Z3beDnfTtoq168STs4lRogB5WG4VLXGeNb6GSnIqVrpZWXsOs3gSnXUni1k3BrTWN51yndXIHzmm-cvP6dE_A6e1hNn6LF8vF5er-IBE0yH1FW5ymuslKIWvIqrbIMMV4RJKtYZiLGdUIpETLAZTWMkpU0EYRmCeGE1XQC8uNeYY1zVtaFUP6Qbki8KTAqhnKLY7lFKLc4lFvQoJJ_6taqjtuP0xI9Si7AupG2WJve6hDxlPUDIwiXlA
CitedBy_id crossref_primary_10_1007_s41980_021_00590_y
crossref_primary_10_1007_s40305_023_00489_x
crossref_primary_10_1007_s11117_023_00971_z
crossref_primary_10_1007_s11117_023_00998_2
crossref_primary_10_1080_02331934_2023_2170701
crossref_primary_10_1007_s40324_021_00276_9
crossref_primary_10_1007_s11117_025_01116_0
crossref_primary_10_1080_02331934_2021_2002328
crossref_primary_10_1007_s11117_023_01001_8
crossref_primary_10_1007_s40314_023_02383_x
crossref_primary_10_12677_AAM_2023_129389
crossref_primary_10_1007_s13160_024_00679_x
crossref_primary_10_1007_s11117_024_01046_3
crossref_primary_10_1007_s11117_024_01052_5
Cites_doi 10.1137/0324061
10.1137/130910002
10.1137/120891216
10.1007/BF01581262
10.1007/s10957-013-0425-2
10.1287/moor.18.4.982
10.1007/BF00939895
10.1007/s10107-013-0672-x
10.1023/A:1021775112119
10.1016/0022-247X(67)90163-1
10.1007/978-3-642-02431-3
10.1007/s10492-006-0002-1
10.1007/s10898-010-9561-5
10.1016/j.orl.2016.02.003
10.1142/5021
10.1007/s10957-013-0314-8
10.1023/A:1021700702376
10.1007/s11228-008-0085-9
10.1137/S1052623499355247
10.1007/s11590-013-0683-9
10.1023/B:JOTA.0000037607.48762.45
10.1137/S1052623403424193
10.1007/s11750-008-0058-z
10.1515/9781400873173
10.1007/978-0-387-87821-8
10.1137/0315004
10.1007/s10107-016-1081-8
10.1007/BF02591906
10.1007/s10107-013-0670-z
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
DBID AAYXX
CITATION
DOI 10.1007/s11590-019-01529-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 2072
ExternalDocumentID 10_1007_s11590_019_01529_3
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c357t-39f861d7bccfead6d7709ad20ed4e7c41f5332ce357bdce35b9b35c23752a29f3
IEDL.DBID RSV
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-4472
IngestDate Tue Nov 18 22:24:42 EST 2025
Sat Nov 29 02:44:11 EST 2025
Fri Feb 21 02:36:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Optimality condition
Directional Hölder metric subregularity
Constraint qualification
Firm solution
Semi-infinite multiobjective programming
Proper solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-39f861d7bccfead6d7709ad20ed4e7c41f5332ce357bdce35b9b35c23752a29f3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1007_s11590_019_01529_3
crossref_primary_10_1007_s11590_019_01529_3
springer_journals_10_1007_s11590_019_01529_3
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Chuong, Kim (CR9) 2014; 160
Chuong (CR35) 2016; 44
Ye (CR12) 2004; 15
Gfrerer (CR25) 2013; 23
Jiménez, Novo (CR30) 2002; 9
Goberna, Kanzi (CR34) 2017; 164
López, Vercher (CR1) 1983; 27
Chuong, Yao (CR10) 2014; 162
Zalinescu (CR33) 2002
Mangasarian, Fromovitz (CR11) 1967; 17
Rockafellar (CR16) 1970
Mangasarian, Fromovitz (CR29) 1967; 17
Stein (CR4) 2004; 121
Dontchev, Rockafellar (CR22) 2009
Borwein (CR26) 1977; 15
Mordukhovich, Nghia (CR5) 2013; 139
Ioffe (CR24) 2013; 139
Hiriart-Urruty, Lemarechal (CR28) 1991
Makarov, Rachkovski (CR14) 1999; 101
Kanzi (CR6) 2014; 24
Ginchev, Guerraggio, Rocca (CR27) 2006; 51
Kanzi, Nobakhtian (CR8) 2014; 8
Ehrgott (CR15) 2005
Ioffe (CR19) 1993; 58
Kanzi (CR7) 2011; 49
Khanh (CR13) 1992; 74
Mordukhovich (CR23) 2006
Rockafellar, Wets (CR21) 1998
Birge, Qi (CR18) 1993; 18
Li, Nahak, Singer (CR3) 2000; 11
Michel, Penot (CR17) 1984; 12
Amahroq, Penot, Say (CR32) 2008; 16
Studniarski (CR20) 1986; 24
Fajardo, López (CR2) 1999; 103
Giorgi, Jiménez, Novo (CR31) 2009; 17
N Kanzi (1529_CR7) 2011; 49
I Ginchev (1529_CR27) 2006; 51
TD Chuong (1529_CR35) 2016; 44
AL Dontchev (1529_CR22) 2009
MD Fajardo (1529_CR2) 1999; 103
JB Hiriart-Urruty (1529_CR28) 1991
G Giorgi (1529_CR31) 2009; 17
TD Chuong (1529_CR10) 2014; 162
T Amahroq (1529_CR32) 2008; 16
MA Goberna (1529_CR34) 2017; 164
OL Mangasarian (1529_CR29) 1967; 17
N Kanzi (1529_CR8) 2014; 8
H Gfrerer (1529_CR25) 2013; 23
M Studniarski (1529_CR20) 1986; 24
EK Makarov (1529_CR14) 1999; 101
AD Ioffe (1529_CR24) 2013; 139
N Kanzi (1529_CR6) 2014; 24
AD Ioffe (1529_CR19) 1993; 58
JJ Ye (1529_CR12) 2004; 15
OL Mangasarian (1529_CR11) 1967; 17
RT Rockafellar (1529_CR16) 1970
C Zalinescu (1529_CR33) 2002
BS Mordukhovich (1529_CR5) 2013; 139
TD Chuong (1529_CR9) 2014; 160
O Stein (1529_CR4) 2004; 121
PQ Khanh (1529_CR13) 1992; 74
M Ehrgott (1529_CR15) 2005
MA López (1529_CR1) 1983; 27
BS Mordukhovich (1529_CR23) 2006
JR Birge (1529_CR18) 1993; 18
P Michel (1529_CR17) 1984; 12
W Li (1529_CR3) 2000; 11
RT Rockafellar (1529_CR21) 1998
B Jiménez (1529_CR30) 2002; 9
JM Borwein (1529_CR26) 1977; 15
References_xml – volume: 24
  start-page: 1044
  year: 1986
  end-page: 1049
  ident: CR20
  article-title: Necessary and sufficient conditions for isolated local minima of nonsmooth functions
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0324061
– volume: 24
  start-page: 559
  year: 2014
  end-page: 572
  ident: CR6
  article-title: Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints
  publication-title: SIAM J. Optim.
  doi: 10.1137/130910002
– volume: 23
  start-page: 632
  year: 2013
  end-page: 665
  ident: CR25
  article-title: On directional metric subregularity and second-order optimality conditions for a class of nonsmooth mathematical programs
  publication-title: SIAM J. Optim.
  doi: 10.1137/120891216
– volume: 58
  start-page: 137
  year: 1993
  end-page: 145
  ident: CR19
  article-title: A Lagrange multiplier rule with small convex-valued subdifferentials for non-smooth problems of mathematical programming involving equality and non-functional constraints
  publication-title: Math. Program.
  doi: 10.1007/BF01581262
– year: 1991
  ident: CR28
  publication-title: Convex Analysis and Minimization Algorithms
– volume: 162
  start-page: 447
  year: 2014
  end-page: 462
  ident: CR10
  article-title: Isolated and proper efficiencies in semi-infinite vector optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0425-2
– volume: 18
  start-page: 982
  year: 1993
  end-page: 1005
  ident: CR18
  article-title: Semiregularity and generalized subdifferentials with applications to optimization
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.4.982
– year: 2006
  ident: CR23
  publication-title: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications
– volume: 74
  start-page: 105
  year: 1992
  end-page: 130
  ident: CR13
  article-title: Proper solutions of vector optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939895
– volume: 139
  start-page: 271
  year: 2013
  end-page: 300
  ident: CR5
  article-title: Constraint qualifications and optimality conditions for nonconvex semi-infinite and infinite programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0672-x
– volume: 101
  start-page: 141
  year: 1999
  end-page: 165
  ident: CR14
  article-title: Unified representation of proper efficiency by means of dilating cones
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021775112119
– volume: 17
  start-page: 37
  year: 1967
  end-page: 47
  ident: CR11
  article-title: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(67)90163-1
– year: 1998
  ident: CR21
  publication-title: Variational Analysis
  doi: 10.1007/978-3-642-02431-3
– volume: 51
  start-page: 5
  year: 2006
  end-page: 36
  ident: CR27
  article-title: From scalar to vector optimization
  publication-title: Appl. Math.
  doi: 10.1007/s10492-006-0002-1
– volume: 9
  start-page: 97
  year: 2002
  end-page: 116
  ident: CR30
  article-title: Alternative theorems and necessary optimality conditions for directionally differentiable multiobjective programs
  publication-title: J Convex Anal.
– volume: 49
  start-page: 713
  year: 2011
  end-page: 725
  ident: CR7
  article-title: Necessary optimality conditions for nonsmooth semi-infinite programming problems
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-010-9561-5
– volume: 44
  start-page: 260
  year: 2016
  end-page: 266
  ident: CR35
  article-title: Nondifferentiable fractional semi-infinite multiobjective optimization problems
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2016.02.003
– year: 2005
  ident: CR15
  publication-title: Multicriteria Optimization
– year: 2002
  ident: CR33
  publication-title: Convex Analysis in General Vector Spaces
  doi: 10.1142/5021
– volume: 160
  start-page: 748
  year: 2014
  end-page: 762
  ident: CR9
  article-title: Nonsmooth semi-infinite multiobjective optimization problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0314-8
– volume: 103
  start-page: 313
  year: 1999
  end-page: 335
  ident: CR2
  article-title: Locally Farkas–Minkowski systems in convex semi-infinite programming
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021700702376
– volume: 16
  start-page: 413
  year: 2008
  end-page: 427
  ident: CR32
  article-title: On the subdifferentiability of the difference of two functions and local minimization
  publication-title: Set-Valued Anal.
  doi: 10.1007/s11228-008-0085-9
– volume: 11
  start-page: 31
  year: 2000
  end-page: 52
  ident: CR3
  article-title: Constraint qualifications in semi-infinite systems of convex inequalities
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499355247
– volume: 17
  start-page: 37
  year: 1967
  end-page: 47
  ident: CR29
  article-title: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(67)90163-1
– volume: 8
  start-page: 1517
  year: 2014
  end-page: 1528
  ident: CR8
  article-title: Optimality conditions for nonsmooth semi-infinite multiobjective programming
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-013-0683-9
– volume: 121
  start-page: 647
  year: 2004
  end-page: 671
  ident: CR4
  article-title: On constraint qualifications in nonsmooth optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000037607.48762.45
– volume: 15
  start-page: 252
  year: 2004
  end-page: 274
  ident: CR12
  article-title: Nondifferentiable multiplier rules for optimization and bilevel optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403424193
– volume: 17
  start-page: 288
  year: 2009
  end-page: 304
  ident: CR31
  article-title: Strong Kuhn–Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems
  publication-title: TOP
  doi: 10.1007/s11750-008-0058-z
– year: 1970
  ident: CR16
  publication-title: Convex Analysis
  doi: 10.1515/9781400873173
– year: 2009
  ident: CR22
  publication-title: Implicit Functions and Solution Mappings. View from Variational Analysis
  doi: 10.1007/978-0-387-87821-8
– volume: 15
  start-page: 57
  year: 1977
  end-page: 63
  ident: CR26
  article-title: Proper efficient points for maximizations with respect to cones
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0315004
– volume: 164
  start-page: 167
  year: 2017
  end-page: 191
  ident: CR34
  article-title: Optimality conditions in convex multiobjective SIP
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-016-1081-8
– volume: 27
  start-page: 307
  year: 1983
  end-page: 319
  ident: CR1
  article-title: Optimality conditions for nondifferentiable convex semi-infinite programming
  publication-title: Math. Program.
  doi: 10.1007/BF02591906
– volume: 12
  start-page: 269
  year: 1984
  end-page: 272
  ident: CR17
  article-title: Calcul sous-differentiel pour des fonctions lipschitziennes et non lipschitziennes
  publication-title: C. R. Acad. Sci. Paris Ser. I Math.
– volume: 139
  start-page: 223
  year: 2013
  end-page: 242
  ident: CR24
  article-title: Nonlinear regularity models
  publication-title: Math. Program. Ser. B.
  doi: 10.1007/s10107-013-0670-z
– volume-title: Convex Analysis
  year: 1970
  ident: 1529_CR16
  doi: 10.1515/9781400873173
– volume: 103
  start-page: 313
  year: 1999
  ident: 1529_CR2
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021700702376
– volume-title: Convex Analysis in General Vector Spaces
  year: 2002
  ident: 1529_CR33
  doi: 10.1142/5021
– volume: 24
  start-page: 559
  year: 2014
  ident: 1529_CR6
  publication-title: SIAM J. Optim.
  doi: 10.1137/130910002
– volume: 17
  start-page: 37
  year: 1967
  ident: 1529_CR29
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(67)90163-1
– volume: 24
  start-page: 1044
  year: 1986
  ident: 1529_CR20
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0324061
– volume: 139
  start-page: 223
  year: 2013
  ident: 1529_CR24
  publication-title: Math. Program. Ser. B.
  doi: 10.1007/s10107-013-0670-z
– volume: 162
  start-page: 447
  year: 2014
  ident: 1529_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0425-2
– volume: 11
  start-page: 31
  year: 2000
  ident: 1529_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499355247
– volume: 8
  start-page: 1517
  year: 2014
  ident: 1529_CR8
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-013-0683-9
– volume: 58
  start-page: 137
  year: 1993
  ident: 1529_CR19
  publication-title: Math. Program.
  doi: 10.1007/BF01581262
– volume: 74
  start-page: 105
  year: 1992
  ident: 1529_CR13
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939895
– volume: 51
  start-page: 5
  year: 2006
  ident: 1529_CR27
  publication-title: Appl. Math.
  doi: 10.1007/s10492-006-0002-1
– volume: 9
  start-page: 97
  year: 2002
  ident: 1529_CR30
  publication-title: J Convex Anal.
– volume: 18
  start-page: 982
  year: 1993
  ident: 1529_CR18
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.4.982
– volume: 23
  start-page: 632
  year: 2013
  ident: 1529_CR25
  publication-title: SIAM J. Optim.
  doi: 10.1137/120891216
– volume-title: Implicit Functions and Solution Mappings. View from Variational Analysis
  year: 2009
  ident: 1529_CR22
  doi: 10.1007/978-0-387-87821-8
– volume: 17
  start-page: 37
  year: 1967
  ident: 1529_CR11
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(67)90163-1
– volume: 12
  start-page: 269
  year: 1984
  ident: 1529_CR17
  publication-title: C. R. Acad. Sci. Paris Ser. I Math.
– volume: 139
  start-page: 271
  year: 2013
  ident: 1529_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0672-x
– volume-title: Multicriteria Optimization
  year: 2005
  ident: 1529_CR15
– volume: 49
  start-page: 713
  year: 2011
  ident: 1529_CR7
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-010-9561-5
– volume-title: Variational Analysis
  year: 1998
  ident: 1529_CR21
  doi: 10.1007/978-3-642-02431-3
– volume: 27
  start-page: 307
  year: 1983
  ident: 1529_CR1
  publication-title: Math. Program.
  doi: 10.1007/BF02591906
– volume: 17
  start-page: 288
  year: 2009
  ident: 1529_CR31
  publication-title: TOP
  doi: 10.1007/s11750-008-0058-z
– volume-title: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications
  year: 2006
  ident: 1529_CR23
– volume: 101
  start-page: 141
  year: 1999
  ident: 1529_CR14
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021775112119
– volume: 164
  start-page: 167
  year: 2017
  ident: 1529_CR34
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s10107-016-1081-8
– volume: 15
  start-page: 57
  year: 1977
  ident: 1529_CR26
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0315004
– volume: 15
  start-page: 252
  year: 2004
  ident: 1529_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623403424193
– volume: 160
  start-page: 748
  year: 2014
  ident: 1529_CR9
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0314-8
– volume: 121
  start-page: 647
  year: 2004
  ident: 1529_CR4
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000037607.48762.45
– volume: 44
  start-page: 260
  year: 2016
  ident: 1529_CR35
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2016.02.003
– volume-title: Convex Analysis and Minimization Algorithms
  year: 1991
  ident: 1529_CR28
– volume: 16
  start-page: 413
  year: 2008
  ident: 1529_CR32
  publication-title: Set-Valued Anal.
  doi: 10.1007/s11228-008-0085-9
SSID ssj0061199
Score 2.3101401
Snippet We discuss constraint qualifications in Karush–Kuhn–Tucker multiplier rules in nonsmooth semi-infinite multiobjective programming. A version of the...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 2055
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title On the Mangasarian–Fromovitz constraint qualification and Karush–Kuhn–Tucker conditions in nonsmooth semi-infinite multiobjective programming
URI https://link.springer.com/article/10.1007/s11590-019-01529-3
Volume 14
WOSCitedRecordID wos000574085600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb_FNDt60sE3apjmKuAjiKr7wVtIkdStuV7ZdD578D_sP_SXO9KEuiKCnEpiUMJlmZppvviFkX7uh5sjyabTlkKBw5cTCKOQi9LQNrDC8ajYhut3w_l5e1kVheYN2b64ky5P6q9gNPC-CqBDf4zPp8GkyA-4uxIYNV9d3zfkbuFXXSDfEeiBPsLpU5ud3TLqjybvQ0sV0Fv-3uCWyUIeU9KiygWUyZbMVMv-NaBBG55_srPkqGV9kFIb0XGUPKodkWWXvb-MOAvNe0uKVaowZsXVEQcuay6T-r0dVZuiZGo7yHsifjXo4rQJm4BxTob9omtEMnv0BGAHNbT91wIpTjG1pCV8cxI_VKUtrcFgf1rhGbjsnN8enTt2cwdHcF4XDZRIGrhGx1glYY2CEaEtlWNsazwrtuQkEkgwMwBcx2oEfy5j7mnHhM8VkwtdJCxZjNwjVngo0pOg-st1L31OxEEGiZUk2x5m7SdxmjyJdM5ejFp6iL85lVH8E6o9K9Ud8kxx8znmueDt-lT5stjWqv-H8F_Gtv4lvkzmGWXpZwbhDWsVwZHfJrH4p0ny4VxrvBz4d7zU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-QD34Ft_m4E0LNmmb7VHEZWUfiq6yt5ImqVbcKtuuB0_-B_-hv8SZPlYFWdBTCUxKmEwzM8033xByoOya4sjyqZXhkKBwaYVCS-QidJTxjNC8aDYhOp1ar-dflkVhaYV2r64k85P6q9gNPC-CqBDf4zLf4pNk2gGPhYz5V9e31fnr2UXXSLuG9UCOYGWpzO_v-OmOft6F5i6mvvi_xS2RhTKkpCeFDSyTCZOskPlvRIMwao_YWdNV8n6RUBjStkzuZArJskw-3t7rCMx7ibNXqjBmxNYRGc1rLqPyvx6ViaZNORim9yDfHN7jtAKYgXN0gf6icUITePafwAhoavqxBVYcY2xLc_jiU_hQnLK0BIf1YY1r5KZ-1j1tWGVzBktxV2QW96OaZ2sRKhWBNXpaiGNfanZstGOEcuwIAkkGBuCKEO3ADf2Qu4px4TLJ_IivkylYjNkgVDnSU5Ciu8h277uODIXwIuXnZHOc2ZvErvYoUCVzOWrhMfjiXEb1B6D-IFd_wDfJ4WjOc8HbMVb6qNrWoPyG0zHiW38T3yezjW67FbTOO81tMscwY8-rGXfIVDYYml0yo16yOB3s5Yb8CXzx8hk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgIAQHdkRZfeAGURs7iZsjAipQaanEot4ix3ZoEE2rJu2BE__QP-RL8CTpgoQqIU6RpZnIGk_smfjNG4TOhFkRFFg-pVBUJyiUGz6THLgILaEcxSTNmk2wRqPSarnNmSr-FO0-vpLMahqApSlKSj0ZlKaFb_oUBkAVYH1s4hp0ES1ZAKSHfP3xZbwXO2bWQdKsQG2QxUheNvP7O34eTT_vRdPjprrx_4luovU81MSXmW9soQUVbaO1GQJCPapPWFvjHTR6iLAe4jqPXnmsk2gefX2OqgDYG4bJBxYQS0JLiQSntZhB_r8P80jiGu8P4raWrw3aoJYBNkBHZqgwHEY40s9OVzsHjlUnNLR3hxDz4hTW2PXfst0X56Cxjp7jLnqu3jxd3Rp50wZDUJslBnWDimNK5gsRaC91JGNll0tSVtJSTFhmoANMoh3DZj74h-27PrUFocwmnLgB3UMFPRm1j7CwuCN06m4DC75rW9xnzAmEm5LQUWIWkTleL0_kjOZghXdvysUM5ve0-b3U_B4tovOJTi_j85grfTFeYi__tuM54gd_Ez9FK83rqnd_16gdolUCiXxa5HiECkl_oI7RshgmYdw_SX36GxzN-v0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Mangasarian%E2%80%93Fromovitz+constraint+qualification+and+Karush%E2%80%93Kuhn%E2%80%93Tucker+conditions+in+nonsmooth+semi-infinite+multiobjective+programming&rft.jtitle=Optimization+letters&rft.au=Khanh%2C+Phan+Quoc&rft.au=Tung%2C+Nguyen+Minh&rft.date=2020-11-01&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=14&rft.issue=8&rft.spage=2055&rft.epage=2072&rft_id=info:doi/10.1007%2Fs11590-019-01529-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11590_019_01529_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon