FBMC vs. PAM and DMT for High-Speed Wireline Communication
This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <inline-formula> <tex-math notation="LaTeX">224Gb/s </tex-math></inline-formula> wireline communication. It also compares the performance of FBMC to PAM and DMT in...
Uloženo v:
| Vydáno v: | IEEE open journal of circuits and systems Ročník 5; s. 243 - 253 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2644-1225, 2644-1225 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <inline-formula> <tex-math notation="LaTeX">224Gb/s </tex-math></inline-formula> wireline communication. It also compares the performance of FBMC to PAM and DMT in three steps. First, the digital power and area consumption are compared using measured results from the manufactured test chip. Second, the data rate is determined using lab-measured results. And third, the performance when subject to notched channels is analyzed using simulation results. Finally, we present a method to emulate wireline links while reducing the emulator complexity and simulation time by one to two orders of magnitude over conventional over-sampled techniques. Our analysis indicates that given a smooth channel and an SNR which enables an average spectral efficiency of <inline-formula> <tex-math notation="LaTeX">4bits/sec/Hz </tex-math></inline-formula> at a bit-error rate of 10-3, both DMT and FBMC perform similarly to a conventional PAM-4 link. However, when noise is reduced and a spectral notch is applied, thereby achieving an average spectral efficiency of <inline-formula> <tex-math notation="LaTeX">4.6bits/sec/Hz </tex-math></inline-formula>, DMT and FBMC can outperform PAM by 2.1 and 2.3 times, respectively. In addition, we estimate FBMC's encoder and decoder power consumption at <inline-formula> <tex-math notation="LaTeX">1.53pJ/b </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">1.98pJ/b </tex-math></inline-formula>, respectively, and area requirement at <inline-formula> <tex-math notation="LaTeX">0.07mm^{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.17mm^{2} </tex-math></inline-formula>, respectively, which is similar to DMT. These values are competitive with similar <inline-formula> <tex-math notation="LaTeX">22nm </tex-math></inline-formula> PAM transceivers, suggesting that DMT and FBMC are viable alternatives to PAM for next-generation high-speed wireline applications. |
|---|---|
| AbstractList | This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <inline-formula> <tex-math notation="LaTeX">224Gb/s </tex-math></inline-formula> wireline communication. It also compares the performance of FBMC to PAM and DMT in three steps. First, the digital power and area consumption are compared using measured results from the manufactured test chip. Second, the data rate is determined using lab-measured results. And third, the performance when subject to notched channels is analyzed using simulation results. Finally, we present a method to emulate wireline links while reducing the emulator complexity and simulation time by one to two orders of magnitude over conventional over-sampled techniques. Our analysis indicates that given a smooth channel and an SNR which enables an average spectral efficiency of <inline-formula> <tex-math notation="LaTeX">4bits/sec/Hz </tex-math></inline-formula> at a bit-error rate of 10-3, both DMT and FBMC perform similarly to a conventional PAM-4 link. However, when noise is reduced and a spectral notch is applied, thereby achieving an average spectral efficiency of <inline-formula> <tex-math notation="LaTeX">4.6bits/sec/Hz </tex-math></inline-formula>, DMT and FBMC can outperform PAM by 2.1 and 2.3 times, respectively. In addition, we estimate FBMC's encoder and decoder power consumption at <inline-formula> <tex-math notation="LaTeX">1.53pJ/b </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">1.98pJ/b </tex-math></inline-formula>, respectively, and area requirement at <inline-formula> <tex-math notation="LaTeX">0.07mm^{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.17mm^{2} </tex-math></inline-formula>, respectively, which is similar to DMT. These values are competitive with similar <inline-formula> <tex-math notation="LaTeX">22nm </tex-math></inline-formula> PAM transceivers, suggesting that DMT and FBMC are viable alternatives to PAM for next-generation high-speed wireline applications. This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <tex-math notation="LaTeX">$224Gb/s$ </tex-math> wireline communication. It also compares the performance of FBMC to PAM and DMT in three steps. First, the digital power and area consumption are compared using measured results from the manufactured test chip. Second, the data rate is determined using lab-measured results. And third, the performance when subject to notched channels is analyzed using simulation results. Finally, we present a method to emulate wireline links while reducing the emulator complexity and simulation time by one to two orders of magnitude over conventional over-sampled techniques. Our analysis indicates that given a smooth channel and an SNR which enables an average spectral efficiency of <tex-math notation="LaTeX">$4bits/sec/Hz$ </tex-math> at a bit-error rate of 10-3, both DMT and FBMC perform similarly to a conventional PAM-4 link. However, when noise is reduced and a spectral notch is applied, thereby achieving an average spectral efficiency of <tex-math notation="LaTeX">$4.6bits/sec/Hz$ </tex-math>, DMT and FBMC can outperform PAM by 2.1 and 2.3 times, respectively. In addition, we estimate FBMC’s encoder and decoder power consumption at <tex-math notation="LaTeX">$1.53pJ/b$ </tex-math> and <tex-math notation="LaTeX">$1.98pJ/b$ </tex-math>, respectively, and area requirement at <tex-math notation="LaTeX">$0.07mm^{2}$ </tex-math> and <tex-math notation="LaTeX">$0.17mm^{2}$ </tex-math>, respectively, which is similar to DMT. These values are competitive with similar <tex-math notation="LaTeX">$22nm$ </tex-math> PAM transceivers, suggesting that DMT and FBMC are viable alternatives to PAM for next-generation high-speed wireline applications. This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond [Formula Omitted] wireline communication. It also compares the performance of FBMC to PAM and DMT in three steps. First, the digital power and area consumption are compared using measured results from the manufactured test chip. Second, the data rate is determined using lab-measured results. And third, the performance when subject to notched channels is analyzed using simulation results. Finally, we present a method to emulate wireline links while reducing the emulator complexity and simulation time by one to two orders of magnitude over conventional over-sampled techniques. Our analysis indicates that given a smooth channel and an SNR which enables an average spectral efficiency of [Formula Omitted] at a bit-error rate of 10-3, both DMT and FBMC perform similarly to a conventional PAM-4 link. However, when noise is reduced and a spectral notch is applied, thereby achieving an average spectral efficiency of [Formula Omitted], DMT and FBMC can outperform PAM by 2.1 and 2.3 times, respectively. In addition, we estimate FBMC’s encoder and decoder power consumption at [Formula Omitted] and [Formula Omitted], respectively, and area requirement at [Formula Omitted] and [Formula Omitted], respectively, which is similar to DMT. These values are competitive with similar [Formula Omitted] PAM transceivers, suggesting that DMT and FBMC are viable alternatives to PAM for next-generation high-speed wireline applications. |
| Author | Cosson-Martin, Jeremy Shakiba, Hossein Sheikholeslami, Ali Salinas, Jhoan |
| Author_xml | – sequence: 1 givenname: Jeremy orcidid: 0000-0001-8420-1501 surname: Cosson-Martin fullname: Cosson-Martin, Jeremy email: jeremy.cosson.martin@mail.utoronto.ca organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada – sequence: 2 givenname: Jhoan orcidid: 0000-0001-9495-0135 surname: Salinas fullname: Salinas, Jhoan organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada – sequence: 3 givenname: Hossein orcidid: 0000-0002-6247-512X surname: Shakiba fullname: Shakiba, Hossein organization: HiLink SerDes Group, Huawei Technologies Canada, Markham, ON, Canada – sequence: 4 givenname: Ali orcidid: 0000-0003-0970-6897 surname: Sheikholeslami fullname: Sheikholeslami, Ali organization: Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada |
| BookMark | eNpNkEtLxDAQx4Mo-PwC4qHguWtmkjStt7W-cVFQ8RjSZqJZdps13RX89lZXxNMMw_8x_HbZZhc7YuwQ-AiAVyf3t_X4cYQc5UhI4Bz5BtvBQsocENXmv32bHfT9lA8SBQCod9jp5dmkzj76UfYwnmS2c9n55CnzMWXX4fUtf1wQuewlJJqFjrI6zuerLrR2GWK3z7a8nfV08Dv32PPlxVN9nd_dX93U47u8FUovc2yA27bU2JBywupGOKsEWICyqkohPZaFAFd4apFUVWGjnNMgveXOy4rEHrtZ57pop2aRwtymTxNtMD-HmF6NTcvQzsgIEmVTohaIrcShwUNTYKFb6aQvSxiyjtdZixTfV9QvzTSuUje8bwTXSmIhtBpUuFa1KfZ9Iv_XCtx8Izc_yM03cvOLfDAdrU2BiP4ZlKwqUYgvT_N6Hg |
| CODEN | IOJCC3 |
| Cites_doi | 10.1109/ISSCC42613.2021.9365746 10.1109/SURV.2013.121213.00263 10.1109/WPMC.2017.8301823 10.1109/jssc.2015.2504410 10.1109/TCSII.2003.813592 10.1109/JLT.2008.2010061 10.1109/MSP.2011.940267 10.1109/ISSCC42614.2022.9731794 10.1109/MWSCAS57524.2023.10405989 10.1109/ISSCC42613.2021.9365853 10.1109/ISCAS45731.2020.9180482 10.1109/TCSI.2023.3234920 10.1002/j.1538-7305.1948.tb01338.x 10.1109/ojcas.2020.3041239 10.1109/ISSCC.2014.6757506 10.1109/ISSCC.2019.8662421 10.1109/ojcas.2022.3189550 10.1109/ACCESS.2018.2818883 10.1109/ISSCC.2019.8662505 10.1109/TCOM.1967.1089674 10.1109/ISSCC42614.2022.9731650 10.1007/b117438 10.1109/ojcas.2021.3129929 10.1109/ojcas.2020.3040947 10.1109/ojcas.2022.3197333 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M DOA |
| DOI | 10.1109/OJCAS.2024.3410020 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2644-1225 |
| EndPage | 253 |
| ExternalDocumentID | oai_doaj_org_article_3e38b827322c42118f1b6267c4d4f881 10_1109_OJCAS_2024_3410020 10549936 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council (NSERC) |
| GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c357t-2b10ac872be5d3a7b3da531a11899834f28631d6fec2e5992b5dd714fa0df49e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262735800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2644-1225 |
| IngestDate | Tue Oct 14 18:46:36 EDT 2025 Mon Jun 30 17:56:15 EDT 2025 Sat Nov 29 05:59:26 EST 2025 Wed Aug 27 01:55:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-2b10ac872be5d3a7b3da531a11899834f28631d6fec2e5992b5dd714fa0df49e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9495-0135 0000-0003-0970-6897 0000-0001-8420-1501 0000-0002-6247-512X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10549936 |
| PQID | 3075426375 |
| PQPubID | 5075790 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_OJCAS_2024_3410020 doaj_primary_oai_doaj_org_article_3e38b827322c42118f1b6267c4d4f881 proquest_journals_3075426375 ieee_primary_10549936 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE open journal of circuits and systems |
| PublicationTitleAbbrev | OJCAS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 Saini (ref25) 2023 ref30 ref11 ref10 ref32 (ref2) 2022 ref17 ref16 ref19 (ref24) 2018 ref18 Taylor (ref1) 2022 ref26 ref20 (ref23) 2017 Cioffi (ref21) 1997 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 Arar (ref22) 2017 Engels (ref9) 2002 |
| References_xml | – ident: ref8 doi: 10.1109/ISSCC42613.2021.9365746 – ident: ref12 doi: 10.1109/SURV.2013.121213.00263 – volume-title: Lecture Notes for Advanced Digital Communication: Multi-Channel Modulation year: 1997 ident: ref21 – volume-title: Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025 year: 2022 ident: ref1 – ident: ref10 doi: 10.1109/WPMC.2017.8301823 – ident: ref31 doi: 10.1109/jssc.2015.2504410 – ident: ref18 doi: 10.1109/TCSII.2003.813592 – ident: ref7 doi: 10.1109/JLT.2008.2010061 – ident: ref13 doi: 10.1109/MSP.2011.940267 – ident: ref3 doi: 10.1109/ISSCC42614.2022.9731794 – volume-title: IEEE P802.3ck task force—Tools and channels year: 2018 ident: ref24 – ident: ref16 doi: 10.1109/MWSCAS57524.2023.10405989 – volume-title: Next generation CEI-224G framework year: 2022 ident: ref2 – ident: ref4 doi: 10.1109/ISSCC42613.2021.9365853 – ident: ref29 doi: 10.1109/ISCAS45731.2020.9180482 – ident: ref6 doi: 10.1109/TCSI.2023.3234920 – ident: ref32 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref19 doi: 10.1109/ojcas.2020.3041239 – ident: ref27 doi: 10.1109/ISSCC.2014.6757506 – ident: ref20 doi: 10.1109/ISSCC.2019.8662421 – ident: ref28 doi: 10.1109/ojcas.2022.3189550 – ident: ref11 doi: 10.1109/ACCESS.2018.2818883 – ident: ref5 doi: 10.1109/ISSCC.2019.8662505 – ident: ref17 doi: 10.1109/TCOM.1967.1089674 – ident: ref26 doi: 10.1109/ISSCC42614.2022.9731650 – volume-title: An introduction to the CORDIC Algorith year: 2017 ident: ref22 – volume-title: Wireless OFDM Systems, How to Make Them Work? year: 2002 ident: ref9 doi: 10.1007/b117438 – ident: ref15 doi: 10.1109/ojcas.2021.3129929 – ident: ref30 doi: 10.1109/ojcas.2020.3040947 – volume-title: Properties of Convolution in Signals and Systems year: 2023 ident: ref25 – ident: ref14 doi: 10.1109/ojcas.2022.3197333 – volume-title: CORDIC part two: Rectangular to polar conversion: Gisselquist technology year: 2017 ident: ref23 |
| SSID | ssj0002511127 |
| Score | 2.256574 |
| Snippet | This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <inline-formula> <tex-math notation="LaTeX">224Gb/s... This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond [Formula Omitted] wireline communication. It also... This paper demonstrates the first silicon-verified FBMC encoder and decoder designed to emulate beyond <tex-math notation="LaTeX">$224Gb/s$ </tex-math>... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 243 |
| SubjectTerms | Amplitude modulation Bit error rate Coders Discrete multi-tone (DMT) emulation Fast Fourier transforms Filter banks filter-bank multi-carrier (FBMC) Frequency modulation High speed Indexes Modulation OFDM Optimization orthogonal frequency division multiplexing (OFDM) Power consumption pulse amplitude modulation (PAM) Pulse width modulation SERDES Signal to noise ratio Symbols wireline |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_phYnZKDN-nW5keTeNumQ8TNwSbsFtomAS91bHN_vy9tJx0evHgtLWm_l7z3fSXvC0J3caRS5jt6iCEgUIyVYcrzKIwcJ87b4ZmsdNd_FeOxnM_VpHHUl98TVtkDV8B1qaUyk1BkCckZqBXp4gxIuMiZYU6WTdckEqohpnwO9sQ5JmLbJROp7tvLoDcFPUhYBxK3Z0k7lag07K9PWPmVlstaMzxBxzVJxL3q5U7Rni3O0FHDOvAcPQz7owHerDp40hvhtDD4cTTDwECx37kRThdQlbDf2uppJN5pA2mh9-HTbPAc1ucghDnlYh2SLI7SXAqSWW5oKjJqUlg6KYABYokyR2RCY5M4mxPLlSIZN0bEzKWRcUxZeoH2i8_CXiKcK-m4sRaeMiwGaBWziTSQZYBocMsDdL_FRC8quwtdyoRI6RJB7RHUNYIB6nvYfu70VtXlBQigrgOo_wpggFoe9MZwXrLSJEDtbRR0va5WGjIS9xbzgl_9x9jX6NB_T_VLpY3218sve4MO8s36Y7W8LafUNxJmx6U priority: 102 providerName: Directory of Open Access Journals |
| Title | FBMC vs. PAM and DMT for High-Speed Wireline Communication |
| URI | https://ieeexplore.ieee.org/document/10549936 https://www.proquest.com/docview/3075426375 https://doaj.org/article/3e38b827322c42118f1b6267c4d4f881 |
| Volume | 5 |
| WOSCitedRecordID | wos001262735800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2644-1225 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511127 issn: 2644-1225 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2644-1225 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511127 issn: 2644-1225 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED0BYoCBb0T5qDywoZTEiWOHrZRWCFFAAiQ2K7HPEktbtYWR387ZSREIMbBEURTL1nPu_N7FdwY4TeKizHxGD7ecBIpFFZXCxFHsBHe-HJ6tQnX9W3l3p15eiocmWT3kwiBi2HyGHX8b_uXbsXnzoTKycK9m0nwZlqXM62Str4CK58oJl4vEmLg4v7_pdR9JAvKsQ77aE6Mfi0-o0d8cqvLLE4flZbD5z4FtwUbDI1m3nvhtWMLRDqx_qy64CxeDy2GPvc867KE7ZOXIsqvhEyOSyvzmjuhxQgsX87tfPdNkPzJF9uB50H_qXUfNUQmRSYWcR7xK4tIoySsUNi1lldqSrKsk-UB6Ks0cV3ma2Nyh4SiKglfCWplkroytywpM92FlNB7hATBTKCcsIrWyWYJEaDLMlSVHRFxEoGjB2QJDPakrYuigJOJCB8S1R1w3iLfg0sP89aavZh0eEH66MQ6dUi-VIiLFuclIkSqXVCS0pKEROKWSFux5zL91V8PdguPFrOnG9GaanJbwVeilOPyj2RGs-SHWgZRjWJlP3_AEVs37_HU2bQdVTtfhR78dvrBPoknI5Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xScCBHVFWH7ihlMSxG4dbKVQsbUGiSNysxB5LXAqihe9n7KQIhDhwi6JYsZ4z4_cczzPAcRLnhfAVPdxyEigWVVRIE0exk9x5OzxbBnf9XjYYqKen_L4uVg-1MIgYNp9h01-Gf_n2xbz7pTKKcK9m0tYszEsheFyVa30tqXi2nPBsWhoT56d3N532A4lALpqUrT01-jH9BJf--liVX7k4TDDd1X92bQ1WaibJ2tXQr8MMjjZg-Zu_4Cacdc_7HfYxbrL7dp8VI8su-kNGNJX57R3RwytNXczvf_Vck_2oFdmCx-7lsHMV1YclRCaV2STiZRIXRmW8RGnTIitTW1B8FSQgSFGlwnHVShPbcmg4yjznpbQ2S4QrYutEjuk2zI1eRrgDzOTKSYtIraxIkCiNwJaylIqIjUiUDTiZYqhfK08MHbREnOuAuPaI6xrxBpx7mL-e9H7W4Qbhp-vw0Cm9pVREpTg3gjSpcklJUisz1AOnVNKALY_5t9dVcDdgfzpqug6-saa0Jb0PfSZ3_2h2BItXw35P964Ht3uw5LtbLavsw9zk7R0PYMF8TJ7Hb4fhC_sEybHKBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FBMC+vs.+PAM+and+DMT+for+High-Speed+Wireline+Communication&rft.jtitle=IEEE+open+journal+of+circuits+and+systems&rft.au=Cosson-Martin%2C+Jeremy&rft.au=Salinas%2C+Jhoan&rft.au=Shakiba%2C+Hossein&rft.au=Sheikholeslami%2C+Ali&rft.date=2024&rft.pub=IEEE&rft.eissn=2644-1225&rft.volume=5&rft.spage=243&rft.epage=253&rft_id=info:doi/10.1109%2FOJCAS.2024.3410020&rft.externalDocID=10549936 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1225&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1225&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1225&client=summon |