Data Quality Matters: A Case Study on Data Label Correctness for Security Bug Report Prediction

In the research of mining software repositories, we need to label a large amount of data to construct a predictive model. The correctness of the labels will affect the performance of a model substantially. However, limited studies have been performed to investigate the impact of mislabeled instances...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering Jg. 48; H. 7; S. 2541 - 2556
Hauptverfasser: Wu, Xiaoxue, Zheng, Wei, Xia, Xin, Lo, David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.07.2022
IEEE Computer Society
Schlagworte:
ISSN:0098-5589, 1939-3520
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the research of mining software repositories, we need to label a large amount of data to construct a predictive model. The correctness of the labels will affect the performance of a model substantially. However, limited studies have been performed to investigate the impact of mislabeled instances on a predictive model. To bridge the gap, in this article, we perform a case study on the security bug report (SBR) prediction. We found five publicly available datasets for SBR prediction contains many mislabeled instances, which lead to the poor performance of SBR prediction models of recent studies (e.g., the work of Peters et al. and Shu et al. ). Furthermore, it might mislead the research direction of SBR prediction. In this article, we first improve the label correctness of these five datasets by manually analyzing each bug report, and we find 749 SBRs, which are originally mislabeled as Non-SBRs (NSBRs). We then evaluate the impacts of datasets label correctness by comparing the performance of the classification models on both the noisy (i.e., before our correction) and the clean (i.e., after our correction) datasets. The results show that the cleaned datasets result in improvement in the performance of classification models. The performance of the approaches proposed by Peters et al. and Shu et al. on the clean datasets is much better than on the noisy datasets. Furthermore, with the clean datasets, the simple text classification models could significantly outperform the security keywords-matrix-based approaches applied by Peters et al. and Shu et al.
AbstractList In the research of mining software repositories, we need to label a large amount of data to construct a predictive model. The correctness of the labels will affect the performance of a model substantially. However, limited studies have been performed to investigate the impact of mislabeled instances on a predictive model. To bridge the gap, in this article, we perform a case study on the security bug report (SBR) prediction. We found five publicly available datasets for SBR prediction contains many mislabeled instances, which lead to the poor performance of SBR prediction models of recent studies (e.g., the work of Peters et al. and Shu et al. ). Furthermore, it might mislead the research direction of SBR prediction. In this article, we first improve the label correctness of these five datasets by manually analyzing each bug report, and we find 749 SBRs, which are originally mislabeled as Non-SBRs (NSBRs). We then evaluate the impacts of datasets label correctness by comparing the performance of the classification models on both the noisy (i.e., before our correction) and the clean (i.e., after our correction) datasets. The results show that the cleaned datasets result in improvement in the performance of classification models. The performance of the approaches proposed by Peters et al. and Shu et al. on the clean datasets is much better than on the noisy datasets. Furthermore, with the clean datasets, the simple text classification models could significantly outperform the security keywords-matrix-based approaches applied by Peters et al. and Shu et al.
Author Lo, David
Wu, Xiaoxue
Zheng, Wei
Xia, Xin
Author_xml – sequence: 1
  givenname: Xiaoxue
  orcidid: 0000-0002-7567-3643
  surname: Wu
  fullname: Wu, Xiaoxue
  email: wuxiaoxue00@gmail.com
  organization: School of Cyberspace Security, Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-7969-1630
  surname: Zheng
  fullname: Zheng, Wei
  email: wzheng@nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Xin
  orcidid: 0000-0002-6302-3256
  surname: Xia
  fullname: Xia, Xin
  email: xin.xia@monash.edu
  organization: Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia
– sequence: 4
  givenname: David
  orcidid: 0000-0002-4367-7201
  surname: Lo
  fullname: Lo, David
  email: davidlo@smu.edu.sg
  organization: School of Information Systems, Singapore Management University, Singapore
BookMark eNp9kDtPwzAUhS1UJEphR2KxxJxyHcexzQalPKQiHoXZcpwbFFTiYjtD_z0trRgYmO5yvnN0v0My6HyHhJwwGDMG-vx1Ph3nkLMxh5LLXO6RIdNcZ1zkMCBDAK0yIZQ-IIcxfgCAkFIMibm2ydLn3i7atKIPNiUM8YJe0omNSOepr1fUd_QnNbMVLujEh4AudRgjbXygc3R92MBX_Tt9waUPiT4FrFuXWt8dkf3GLiIe7-6IvN1MXyd32ezx9n5yOcscFzJlORfolOSqEK6sQGlRV1AJy1FDUbCmKpTjqFhdKFbmGhq0Wle6Zo3ltZKSj8jZtncZ_FePMZkP34duPWnyUmkFsixgnYJtygUfY8DGLEP7acPKMDAbjWat0Ww0mp3GNVL-QVyb7Oa1FGy7-A883YItIv7uaC4Z15x_A7BkgCU
CODEN IESEDJ
CitedBy_id crossref_primary_10_3390_risks12110172
crossref_primary_10_3390_app12178906
crossref_primary_10_1155_2023_7941878
crossref_primary_10_3390_electronics11193164
crossref_primary_10_1155_2022_2133712
crossref_primary_10_1155_2022_7419736
crossref_primary_10_3390_su142114385
crossref_primary_10_1155_2022_9620555
crossref_primary_10_1007_s11063_023_11173_9
crossref_primary_10_1093_jcde_qwac119
crossref_primary_10_3390_jrfm17120577
crossref_primary_10_1016_j_infsof_2023_107354
crossref_primary_10_1007_s10207_023_00793_w
crossref_primary_10_1016_j_jss_2023_111838
crossref_primary_10_1016_j_infsof_2023_107350
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_1109_TEM_2022_3207326
crossref_primary_10_1007_s13726_024_01434_2
crossref_primary_10_1093_jcde_qwac111
crossref_primary_10_1080_17455030_2022_2164377
crossref_primary_10_1109_TR_2021_3118026
crossref_primary_10_1016_j_eswa_2024_125107
crossref_primary_10_3389_fcomp_2024_1428013
crossref_primary_10_1007_s11276_022_03177_5
crossref_primary_10_3390_electronics11172773
crossref_primary_10_3390_buildings14041120
crossref_primary_10_1002_widm_1520
crossref_primary_10_1007_s10515_024_00435_y
crossref_primary_10_1145_3715778
crossref_primary_10_1155_2022_1008617
crossref_primary_10_1017_jmo_2022_74
crossref_primary_10_1016_j_ygeno_2025_111036
crossref_primary_10_1017_jmo_2022_77
crossref_primary_10_1109_TR_2024_3455390
crossref_primary_10_3390_math12162469
crossref_primary_10_1016_j_neucom_2022_12_048
crossref_primary_10_1155_2022_8217774
crossref_primary_10_1016_j_knosys_2023_111258
crossref_primary_10_1007_s11334_024_00584_z
crossref_primary_10_1109_ACCESS_2022_3221454
crossref_primary_10_1038_s41598_024_82592_4
crossref_primary_10_1007_s10664_023_10418_4
crossref_primary_10_1093_jcde_qwac085
crossref_primary_10_1016_j_infsof_2025_107778
crossref_primary_10_1109_ACCESS_2025_3564818
crossref_primary_10_1007_s11432_022_3803_9
crossref_primary_10_4018_JGIM_302642
crossref_primary_10_1007_s11356_022_24471_x
crossref_primary_10_1145_3750040
crossref_primary_10_3390_e24121783
crossref_primary_10_1155_2022_8481452
crossref_primary_10_1002_smr_70044
crossref_primary_10_1007_s12517_021_09005_y
crossref_primary_10_1016_j_scico_2024_103078
crossref_primary_10_1109_TSE_2024_3364675
Cites_doi 10.1037/h0031619
10.1109/TSE.2017.2787653
10.1109/ICSE.2015.64
10.1109/MSR.2010.5463340
10.1145/3106237.3106256
10.1145/3338906.3338947
10.1023/A:I0I0933404324
10.1145/3106237.3106285
10.1145/185403.185412
10.1109/MSP.2004.84
10.1145/1321631.1321691
10.1007/s11390-017-1713-3
10.1145/3297858.3304013
10.1002/eap.2043
10.1109/COMPSAC.2014.17
10.1109/MSR.2015.78
10.1145/1370788.1370807
10.1007/978-3-319-72308-2_9
10.1145/3219819.3219873
10.1109/ICPC.2019.00021
10.1109/ISSRE.2016.29
10.1109/ESEM.2017.24
10.1109/ICSE.2015.91
10.1109/TSE.2019.2929761
10.1145/2724721
10.1109/TSE.2018.2877678
10.1109/TSE.2018.2864217
10.1007/s10515-014-0162-2
10.1109/ASE.2006.23
10.1109/ICECCS.2014.25
10.1109/SERE.2013.31
10.1145/1082983.1083147
10.1109/TEVC.2010.2059031
10.1145/3238147.3238204
10.1145/3324916
10.1109/ICSME.2016.62
10.1007/s10664-015-9409-1
10.1109/ASE.2019.00026
10.1145/3238147.3238190
10.1109/ICSM.2015.7332459
10.1007/978-3-030-05318-5_1
10.1109/ICSE.2013.6606585
10.1016/j.infsof.2018.11.005
10.1109/TSE.2013.11
10.1109/MICRO.2010.51
10.1109/TSE.2018.2887384
10.1145/3503509
10.1109/TSE.2019.2924006
10.1145/2992786
10.1145/1985793.1985859
10.1109/ICSME.2014.77
10.1145/2884781.2884877
10.1109/HSI.2012.22
10.1109/TSE.2017.2754374
10.1109/TSE.2018.2876537
10.1145/3338906.3338941
10.1145/1985441.1985457
10.1109/ICSE.2015.93
10.1109/ICROIT.2014.6798341
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2022
Copyright_xml – notice: Copyright IEEE Computer Society 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2021.3063727
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 2556
ExternalDocumentID 10_1109_TSE_2021_3063727
9371393
Genre orig-research
GrantInformation_xml – fundername: Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education
  grantid: GDSC202006
– fundername: Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University
  grantid: CX202067
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EDO
EJD
HZ~
I-F
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
Q2X
RIA
RIE
RNS
RXW
S10
TAE
TN5
TWZ
UHB
UPT
WH7
YZZ
AAYXX
CITATION
JQ2
K9.
ID FETCH-LOGICAL-c357t-235ec873845c6b0895db0b5a3e90441fb48c3e81d4816290fea99b9d1fa3d8773
IEDL.DBID RIE
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000825973800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-5589
IngestDate Fri Oct 03 04:01:14 EDT 2025
Sat Nov 29 03:10:26 EST 2025
Tue Nov 18 22:18:27 EST 2025
Wed Aug 27 02:25:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-235ec873845c6b0895db0b5a3e90441fb48c3e81d4816290fea99b9d1fa3d8773
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0001-7969-1630
0000-0002-7567-3643
0000-0002-6302-3256
0000-0002-4367-7201
PQID 2689807640
PQPubID 21418
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TSE_2021_3063727
ieee_primary_9371393
proquest_journals_2689807640
crossref_primary_10_1109_TSE_2021_3063727
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2022
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref13
ref15
ref59
ref14
ref58
ref52
ref11
ref55
ref10
ref54
ref16
Jack (ref56) 2007
ref19
(ref46) 2018
Thomas (ref17)
ref47
ref41
ref44
Mandt (ref57) 2011
ref43
(ref50) 2020
Shu (ref12) 2019
ref49
ref8
(ref45) 2020
ref7
(ref22) 2019
(ref1) 2020
ref9
ref4
ref3
ref6
ref5
ref40
ref35
(ref48) 2020
ref34
(ref51) 2020
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
Liu (ref42)
ref2
ref39
Spencer (ref53) 2009
ref38
(ref37) 2004
ref71
(ref18) 2011
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
Arnold (ref29)
ref63
ref66
ref21
ref65
(ref60) 2020
ref28
ref27
ref62
ref61
References_xml – start-page: 421
  volume-title: Proc. 3rd Int. Conf. Softw. Testing Verification Validation
  ident: ref17
  article-title: Searching for a needle in a haystack: Predicting security vulnerabilities for windows vista
– ident: ref55
  doi: 10.1037/h0031619
– ident: ref11
  doi: 10.1109/TSE.2017.2787653
– ident: ref20
  doi: 10.1109/ICSE.2015.64
– year: 2020
  ident: ref45
  article-title: CVE
– ident: ref13
  doi: 10.1109/MSR.2010.5463340
– year: 2019
  ident: ref22
  article-title: 2019 TOP 25 CWEs
– ident: ref23
  doi: 10.1145/3106237.3106256
– ident: ref25
  doi: 10.1145/3338906.3338947
– ident: ref63
  doi: 10.1023/A:I0I0933404324
– ident: ref26
  doi: 10.1145/3106237.3106285
– ident: ref49
  doi: 10.1145/185403.185412
– ident: ref47
  doi: 10.1109/MSP.2004.84
– ident: ref43
  doi: 10.1145/1321631.1321691
– ident: ref27
  doi: 10.1007/s11390-017-1713-3
– volume-title: Card Sorting: Designing Usable Categories
  year: 2009
  ident: ref53
– ident: ref41
  doi: 10.1145/3297858.3304013
– ident: ref39
  doi: 10.1002/eap.2043
– ident: ref34
  doi: 10.1109/COMPSAC.2014.17
– year: 2020
  ident: ref51
  article-title: CWE 1228
– year: 2007
  ident: ref56
  article-title: Vector rewrite attack: Exploitable null pointer vulnerabilities on arm and Xscale architectures
  publication-title: White Paper, Juniper Networks
– ident: ref19
  doi: 10.1109/MSR.2015.78
– ident: ref36
  doi: 10.1145/1370788.1370807
– year: 2018
  ident: ref46
  article-title: JIRA
– ident: ref58
  doi: 10.1007/978-3-319-72308-2_9
– ident: ref65
  doi: 10.1145/3219819.3219873
– volume-title: Proc. 12th Workshop Hot Top. Operating Syst.
  ident: ref29
  article-title: Security impact ratings considered harmful
– ident: ref73
  doi: 10.1109/ICPC.2019.00021
– ident: ref76
  doi: 10.1109/ISSRE.2016.29
– ident: ref44
  doi: 10.1109/ESEM.2017.24
– year: 2019
  ident: ref12
  article-title: Better security bug report classification via hyperparameter optimization
– year: 2020
  ident: ref50
  article-title: Software CWEs
– ident: ref7
  doi: 10.1109/ICSE.2015.91
– ident: ref31
  doi: 10.1109/TSE.2019.2929761
– ident: ref9
  doi: 10.1145/2724721
– ident: ref54
  doi: 10.1109/TSE.2018.2877678
– ident: ref74
  doi: 10.1109/TSE.2018.2864217
– year: 2020
  ident: ref60
  article-title: Scikit learn
– ident: ref67
  doi: 10.1007/s10515-014-0162-2
– ident: ref30
  doi: 10.1109/ASE.2006.23
– year: 2011
  ident: ref57
  article-title: Kernel attacks through user-mode callbacks
  publication-title: BlackHat USA
– ident: ref32
  doi: 10.1109/ICECCS.2014.25
– ident: ref16
  doi: 10.1109/SERE.2013.31
– year: 2011
  ident: ref18
  article-title: Mining software repository challenge
– ident: ref35
  doi: 10.1145/1082983.1083147
– ident: ref59
  doi: 10.1109/TEVC.2010.2059031
– ident: ref75
  doi: 10.1145/3238147.3238204
– year: 2020
  ident: ref48
  article-title: CWE
– ident: ref61
  doi: 10.1145/3324916
– ident: ref72
  doi: 10.1109/ICSME.2016.62
– ident: ref3
  doi: 10.1007/s10664-015-9409-1
– ident: ref10
  doi: 10.1109/ASE.2019.00026
– ident: ref24
  doi: 10.1145/3238147.3238190
– ident: ref70
  doi: 10.1109/ICSM.2015.7332459
– ident: ref38
  doi: 10.1007/978-3-030-05318-5_1
– ident: ref33
  doi: 10.1109/ICSE.2013.6606585
– ident: ref62
  doi: 10.1016/j.infsof.2018.11.005
– year: 2020
  ident: ref1
  article-title: Mining software repository
– ident: ref2
  doi: 10.1109/TSE.2013.11
– ident: ref21
  doi: 10.1109/MICRO.2010.51
– ident: ref40
  doi: 10.1109/TSE.2018.2887384
– ident: ref64
  doi: 10.1145/3503509
– ident: ref52
  doi: 10.1109/TSE.2019.2924006
– ident: ref8
  doi: 10.1145/2992786
– ident: ref5
  doi: 10.1145/1985793.1985859
– ident: ref69
  doi: 10.1109/ICSME.2014.77
– ident: ref71
  doi: 10.1145/2884781.2884877
– ident: ref28
  doi: 10.1109/HSI.2012.22
– start-page: 1547
  volume-title: Proc. 42nd Int. Conf. Softw. Eng.
  ident: ref42
  article-title: A large-scale empirical study on vulnerability distribution within projects and the lessons learned
– ident: ref68
  doi: 10.1109/TSE.2017.2754374
– ident: ref66
  doi: 10.1109/TSE.2018.2876537
– ident: ref6
  doi: 10.1145/3338906.3338941
– ident: ref15
  doi: 10.1145/1985441.1985457
– volume-title: Hackers and Painters: Big Ideas From the Computer Age
  year: 2004
  ident: ref37
– ident: ref4
  doi: 10.1109/ICSE.2015.93
– ident: ref14
  doi: 10.1109/ICROIT.2014.6798341
SSID ssj0005775
ssib053395008
Score 2.654709
Snippet In the research of mining software repositories, we need to label a large amount of data to construct a predictive model. The correctness of the labels will...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2541
SubjectTerms Case studies
Chromium
Classification
Computer bugs
Cybersecurity
Data models
data quality
Datasets
Debugging
label correctness
Noise measurement
Prediction models
Predictive models
Security
Security bug report prediction
Tuning
Title Data Quality Matters: A Case Study on Data Label Correctness for Security Bug Report Prediction
URI https://ieeexplore.ieee.org/document/9371393
https://www.proquest.com/docview/2689807640
Volume 48
WOSCitedRecordID wos000825973800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-3520
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005775
  issn: 0098-5589
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4cGLv6Y4nZKDF8G6tGmaxJtOhwcdgyl4C0mTiTA22TrB_94kbaegCN56SCD0a_K-1_fyfQCnjFFqE51FJmXGJSiKR5oI7bJW49lybKjFwWyCDQb8-VkMG3C-ugtjrQ3NZ_bCP4ZavpnlS_-rrOu124gga7DGWFbe1fpq52CM1vqYlHJRlySx6D6Obl0imMQXjh4T5v1jvoWg4Kny4yAO0aW_9b91bcNmxSLRVQn7DjTsdBe2aocGVG3YFsgbVShU6mR8oIdSS_MSXaGeC17I9xB-oNkUhVH3StsJ6nm3jrzwByByfBaNKn87dL18QSVbR8O5r-54RPfgqX_72LuLKkuFKCeUFVFCqM05IzyleaYxF9RorKkiVmBHjMY65TmxjsOmPM4SgcdWCaGFiceKGM4Y2YfmdDa1B4CwOxhpgjNfXkljo7jmIlXC69VxF_hVG7r1W5Z5pTfubS8mMuQdWEiHi_S4yAqXNpytZryVWht_jG15HFbjKgja0KmBlNVmXMgk44JjlqX48PdZR7CR-FsNoQu3A81ivrTHsJ6_F6-L-Un4zj4BWEXNkw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFH6kaaG7rD_H0nWdDrsM6ka2JEvarUtbOpqEQFLoTUiWUgYlKalTyH9fSbazQstgNx8kEP4sve_5PX0fwHfOGXOZyRNLufUJihaJIdL4rNUGtpxa5nA0m-DDobi7k6MWnK7vwjjnYvOZOwuPsZZv58Uy_CrrBu02IskGbDJKM1zd1vrb0ME5axQyGROyKUpi2Z2ML30qmKVnniATHhxkXgWh6Kry5iiO8eVq5_9Wtgsfax6Jzivg96DlZvuw03g0oHrLHoC60KVGlVLGCg0qNc2f6Bz1fPhCoYtwheYzFEf1tXEPqBf8OooyHIHIM1o0rh3u0K_lPar4OhotQn0nYHoIt1eXk951UpsqJAVhvEwywlwhOBGUFbnBQjJrsGGaOIk9NZoaKgriPIulIs0ziadOS2mkTaeaWME5-QTt2XzmPgPC_mhkGc5DgYWmVgsjJNUyKNYJH_p1B7rNW1ZFrTgejC8eVMw8sFQeFxVwUTUuHfixnvFYqW38Y-xBwGE9roagA8cNkKrejk8qy4UUmOcUH70_6xtsX08GfdX_Pbz5Ah-ycMch9uQeQ7tcLN1X2Cqeyz9Pi5P4zb0ANQjQ2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Quality+Matters%3A+A+Case+Study+on+Data+Label+Correctness+for+Security+Bug+Report+Prediction&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Wu%2C+Xiaoxue&rft.au=Zheng%2C+Wei&rft.au=Xia%2C+Xin&rft.au=Lo%2C+David&rft.date=2022-07-01&rft.pub=IEEE+Computer+Society&rft.issn=0098-5589&rft.eissn=1939-3520&rft.volume=48&rft.issue=7&rft.spage=2541&rft_id=info:doi/10.1109%2FTSE.2021.3063727&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon