Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks
In modern industries, machine health monitoring systems (MHMS) have been applied wildly with the goal of realizing predictive maintenance including failures tracking, downtime reduction, and assets preservation. In the era of big machinery data, data-driven MHMS have achieved remarkable results in t...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on industrial electronics (1982) Jg. 65; H. 2; S. 1539 - 1548 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0278-0046, 1557-9948 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In modern industries, machine health monitoring systems (MHMS) have been applied wildly with the goal of realizing predictive maintenance including failures tracking, downtime reduction, and assets preservation. In the era of big machinery data, data-driven MHMS have achieved remarkable results in the detection of faults after the occurrence of certain failures (diagnosis) and prediction of the future working conditions and the remaining useful life (prognosis). The numerical representation for raw sensory data is the key stone for various successful MHMS. Conventional methods are the labor-extensive as they usually depend on handcrafted features, which require expert knowledge. Inspired by the success of deep learning methods that redefine representation learning from raw data, we propose local feature-based gated recurrent unit (LFGRU) networks. It is a hybrid approach that combines handcrafted feature design with automatic feature learning for machine health monitoring. First, features from windows of input time series are extracted. Then, an enhanced bidirectional GRU network is designed and applied on the generated sequence of local features to learn the representation. A supervised learning layer is finally trained to predict machine condition. Experiments on three machine health monitoring tasks: tool wear prediction, gearbox fault diagnosis, and incipient bearing fault detection verify the effectiveness and generalization of the proposed LFGRU. |
|---|---|
| AbstractList | In modern industries, machine health monitoring systems (MHMS) have been applied wildly with the goal of realizing predictive maintenance including failures tracking, downtime reduction, and assets preservation. In the era of big machinery data, data-driven MHMS have achieved remarkable results in the detection of faults after the occurrence of certain failures (diagnosis) and prediction of the future working conditions and the remaining useful life (prognosis). The numerical representation for raw sensory data is the key stone for various successful MHMS. Conventional methods are the labor-extensive as they usually depend on handcrafted features, which require expert knowledge. Inspired by the success of deep learning methods that redefine representation learning from raw data, we propose local feature-based gated recurrent unit (LFGRU) networks. It is a hybrid approach that combines handcrafted feature design with automatic feature learning for machine health monitoring. First, features from windows of input time series are extracted. Then, an enhanced bidirectional GRU network is designed and applied on the generated sequence of local features to learn the representation. A supervised learning layer is finally trained to predict machine condition. Experiments on three machine health monitoring tasks: tool wear prediction, gearbox fault diagnosis, and incipient bearing fault detection verify the effectiveness and generalization of the proposed LFGRU. |
| Author | Ruqiang Yan Fei Shen Rui Zhao Dongzhe Wang Jinjiang Wang Kezhi Mao |
| Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0002-9699-9984 surname: Zhao fullname: Zhao, Rui – sequence: 2 givenname: Dongzhe surname: Wang fullname: Wang, Dongzhe – sequence: 3 givenname: Ruqiang orcidid: 0000-0003-4341-6535 surname: Yan fullname: Yan, Ruqiang – sequence: 4 givenname: Kezhi surname: Mao fullname: Mao, Kezhi – sequence: 5 givenname: Fei surname: Shen fullname: Shen, Fei – sequence: 6 givenname: Jinjiang surname: Wang fullname: Wang, Jinjiang |
| BookMark | eNp9kL1PwzAQxS1UJNrCjsQSiTnFH3GcjFD1S2pBoHa2HPdMU0pcbEeI_x5HRQwMLO-W-9179wao19gGELomeEQILu_Wi8mIYiJGVDCWseIM9QnnIi3LrOihPqaiSDHO8gs08H6PMck44X30vFJ6VzeQzEEdwi5Z2aYO1tXNa7LxnS6tVodkCiq0DtIH5WGbzFSI-gK6dQ6akGwikzxC-LTuzV-ic6MOHq5-5hBtppP1eJ4un2aL8f0y1YyLkNKYkoh8mxuqtQYiKgO6yEQlKqqVwVTnpKKlqUzOjIhZMQZOi3yrtaCGUTZEt6e7R2c_WvBB7m3rmmgpKRHdd6zgcQuftrSz3jsw8ujqd-W-JMGyK07G4mRXnPwpLiL5H0TXQYXaNsGp-vAfeHMCawD49RFlKXLM2Tf39Hw9 |
| CODEN | ITIED6 |
| CitedBy_id | crossref_primary_10_1016_j_ins_2020_05_090 crossref_primary_10_1587_transinf_2018EDL8027 crossref_primary_10_1155_2021_9927151 crossref_primary_10_1007_s12206_024_1016_x crossref_primary_10_1109_JSYST_2022_3153503 crossref_primary_10_1016_j_measurement_2024_115433 crossref_primary_10_1109_JSEN_2019_2912934 crossref_primary_10_1109_JSEN_2022_3173156 crossref_primary_10_1016_j_neucom_2022_04_111 crossref_primary_10_1109_TIM_2021_3103572 crossref_primary_10_1109_TNNLS_2021_3072885 crossref_primary_10_1007_s00500_023_08496_z crossref_primary_10_1016_j_eswa_2023_120745 crossref_primary_10_1088_1361_6501_ab8df9 crossref_primary_10_1016_j_procs_2023_10_122 crossref_primary_10_1007_s00366_021_01362_2 crossref_primary_10_1109_ACCESS_2024_3426909 crossref_primary_10_1109_TII_2018_2881543 crossref_primary_10_1016_j_jmsy_2022_07_004 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_3390_s23229259 crossref_primary_10_1016_j_scs_2021_103009 crossref_primary_10_1016_j_asoc_2022_108507 crossref_primary_10_1109_ACCESS_2019_2914181 crossref_primary_10_1109_JSEN_2019_2926095 crossref_primary_10_1016_j_ymssp_2019_106344 crossref_primary_10_1007_s00170_021_08275_w crossref_primary_10_1016_j_measen_2021_100220 crossref_primary_10_1007_s10845_024_02536_7 crossref_primary_10_1016_j_neucom_2021_04_066 crossref_primary_10_1109_JSEN_2022_3219253 crossref_primary_10_1186_s10033_023_00966_7 crossref_primary_10_1109_TIM_2021_3104414 crossref_primary_10_1007_s00170_019_04090_6 crossref_primary_10_3390_a16020061 crossref_primary_10_1007_s10489_024_06002_y crossref_primary_10_1155_2024_3376733 crossref_primary_10_1007_s00170_023_12259_3 crossref_primary_10_1109_JSEN_2023_3248323 crossref_primary_10_1109_TIE_2021_3053882 crossref_primary_10_3390_app9040768 crossref_primary_10_1016_j_measurement_2022_111893 crossref_primary_10_1109_TIM_2025_3563003 crossref_primary_10_1016_j_aei_2024_103038 crossref_primary_10_3390_su15118731 crossref_primary_10_1016_j_knosys_2019_105022 crossref_primary_10_1007_s00170_022_08861_6 crossref_primary_10_1109_TNSM_2025_3570450 crossref_primary_10_1016_j_compind_2022_103638 crossref_primary_10_3390_math10173188 crossref_primary_10_1109_JSEN_2024_3398364 crossref_primary_10_1007_s41810_025_00333_0 crossref_primary_10_1016_j_dajour_2023_100331 crossref_primary_10_1109_ACCESS_2021_3058993 crossref_primary_10_1016_j_procir_2021_11_260 crossref_primary_10_1007_s00170_020_06173_1 crossref_primary_10_3390_electronics9101711 crossref_primary_10_3390_s22020671 crossref_primary_10_3390_app12094221 crossref_primary_10_1016_j_isatra_2022_03_013 crossref_primary_10_1016_j_ress_2023_109753 crossref_primary_10_1002_eng2_12598 crossref_primary_10_3390_s21165654 crossref_primary_10_1109_TSMC_2022_3151185 crossref_primary_10_1109_JSEN_2023_3307729 crossref_primary_10_1155_2020_8863388 crossref_primary_10_1109_TEM_2021_3076603 crossref_primary_10_3390_a16010009 crossref_primary_10_1016_j_asoc_2022_109889 crossref_primary_10_1109_JSEN_2020_3017686 crossref_primary_10_1007_s11063_019_10094_w crossref_primary_10_3390_a16060304 crossref_primary_10_1155_vib_8680245 crossref_primary_10_1109_TR_2022_3215757 crossref_primary_10_3390_app122110723 crossref_primary_10_1016_j_energy_2023_128569 crossref_primary_10_3390_s22228678 crossref_primary_10_1016_j_bspc_2024_106923 crossref_primary_10_1007_s42417_023_01014_3 crossref_primary_10_1109_TIM_2021_3051717 crossref_primary_10_1088_1742_6596_2369_1_012098 crossref_primary_10_1109_TII_2023_3268407 crossref_primary_10_1007_s00170_023_12322_z crossref_primary_10_1088_1361_6501_ac793f crossref_primary_10_1016_j_jmsy_2021_12_002 crossref_primary_10_1016_j_firesaf_2021_103310 crossref_primary_10_1007_s13369_020_05109_x crossref_primary_10_1109_ACCESS_2020_3013165 crossref_primary_10_1038_s41598_022_18235_3 crossref_primary_10_1109_ACCESS_2019_2910860 crossref_primary_10_3390_s23136163 crossref_primary_10_1016_j_rineng_2024_102935 crossref_primary_10_1108_IMDS_02_2025_0133 crossref_primary_10_1080_10589759_2025_2472292 crossref_primary_10_1109_ACCESS_2021_3112666 crossref_primary_10_1109_TII_2019_2955540 crossref_primary_10_1109_TR_2023_3322860 crossref_primary_10_1109_TTE_2024_3497319 crossref_primary_10_1016_j_engappai_2022_105193 crossref_primary_10_1016_j_jii_2023_100444 crossref_primary_10_1007_s42417_022_00768_6 crossref_primary_10_1109_TII_2020_3029551 crossref_primary_10_1016_j_procir_2024_08_376 crossref_primary_10_1002_eng2_12305 crossref_primary_10_1080_10589759_2025_2465409 crossref_primary_10_1109_TIM_2022_3181933 crossref_primary_10_1016_j_jclepro_2022_133968 crossref_primary_10_1109_ACCESS_2019_2950061 crossref_primary_10_1155_2021_3083190 crossref_primary_10_3390_machines12100681 crossref_primary_10_3390_s18113866 crossref_primary_10_1016_j_ijmecsci_2025_110526 crossref_primary_10_1109_TNNLS_2021_3083401 crossref_primary_10_1016_j_mechmachtheory_2018_11_005 crossref_primary_10_1016_j_aei_2025_103360 crossref_primary_10_1016_j_isatra_2025_01_044 crossref_primary_10_1016_j_procir_2025_02_161 crossref_primary_10_1016_j_jmsy_2020_04_009 crossref_primary_10_1016_j_jmsy_2023_09_011 crossref_primary_10_1016_j_isatra_2022_10_008 crossref_primary_10_1109_TIE_2020_2972443 crossref_primary_10_3390_electronics11152364 crossref_primary_10_1016_j_cja_2018_12_006 crossref_primary_10_1007_s00521_018_3728_2 crossref_primary_10_1109_TMECH_2021_3058061 crossref_primary_10_1016_j_ifacol_2022_11_145 crossref_primary_10_1080_08982112_2020_1754427 crossref_primary_10_1007_s00170_023_11832_0 crossref_primary_10_1016_j_cie_2023_109840 crossref_primary_10_1007_s11063_024_11690_1 crossref_primary_10_1109_TIE_2018_2844805 crossref_primary_10_1016_j_measurement_2020_108064 crossref_primary_10_1007_s11269_024_04016_2 crossref_primary_10_1016_j_measurement_2020_108186 crossref_primary_10_1007_s42417_023_01144_8 crossref_primary_10_3390_s20205734 crossref_primary_10_1016_j_cie_2023_109605 crossref_primary_10_1080_08982112_2023_2257762 crossref_primary_10_1109_ACCESS_2019_2914236 crossref_primary_10_1088_1361_6501_ad8472 crossref_primary_10_1109_TIM_2021_3135328 crossref_primary_10_1016_j_measurement_2019_06_038 crossref_primary_10_1038_s41746_021_00455_y crossref_primary_10_1016_j_jmapro_2022_10_072 crossref_primary_10_1016_j_rcim_2022_102368 crossref_primary_10_3390_s20102972 crossref_primary_10_1109_JSEN_2023_3300123 crossref_primary_10_1109_TII_2019_2910416 crossref_primary_10_1016_j_knosys_2021_107914 crossref_primary_10_1038_s41598_023_33666_2 crossref_primary_10_1016_j_ymssp_2024_112188 crossref_primary_10_1007_s00158_022_03437_0 crossref_primary_10_3390_pr8091066 crossref_primary_10_1109_ACCESS_2020_2981289 crossref_primary_10_1016_j_oceaneng_2023_113693 crossref_primary_10_3390_e25081194 crossref_primary_10_1109_TIM_2021_3073436 crossref_primary_10_1111_coin_70071 crossref_primary_10_1016_j_conengprac_2024_105938 crossref_primary_10_1016_j_jcsr_2025_109791 crossref_primary_10_1007_s11440_022_01495_8 crossref_primary_10_1109_TNSE_2025_3558193 crossref_primary_10_1109_TIE_2019_2898619 crossref_primary_10_1177_09544062231157189 crossref_primary_10_1016_j_jmsy_2021_03_012 crossref_primary_10_1016_j_ress_2022_109074 crossref_primary_10_1109_TIM_2021_3087834 crossref_primary_10_1007_s13201_024_02298_w crossref_primary_10_1007_s40430_023_04461_x crossref_primary_10_1088_1742_6596_1633_1_012159 crossref_primary_10_1049_iet_gtd_2019_0832 crossref_primary_10_3390_app132312865 crossref_primary_10_3390_en16083429 crossref_primary_10_1088_1361_6501_ab1da0 crossref_primary_10_1016_j_ces_2024_121164 crossref_primary_10_1109_TIM_2023_3244822 crossref_primary_10_3390_s25154617 crossref_primary_10_3389_fenrg_2021_696785 crossref_primary_10_1109_TR_2019_2948705 crossref_primary_10_1109_TIE_2022_3227274 crossref_primary_10_1016_j_measurement_2020_108277 crossref_primary_10_1038_s41598_025_92900_1 crossref_primary_10_1007_s12206_019_0504_x crossref_primary_10_1016_j_jmsy_2022_10_014 crossref_primary_10_3390_math10101733 crossref_primary_10_1016_j_ins_2022_05_042 crossref_primary_10_1109_TIM_2021_3084310 crossref_primary_10_1007_s00170_021_08520_2 crossref_primary_10_1109_ACCESS_2020_2997969 crossref_primary_10_3390_s22155681 crossref_primary_10_1016_j_measurement_2021_109201 crossref_primary_10_1016_j_oceaneng_2025_121766 crossref_primary_10_1088_1361_6501_ada6e9 crossref_primary_10_1109_TII_2021_3102017 crossref_primary_10_1016_j_jsv_2018_06_015 crossref_primary_10_1016_j_measurement_2025_116881 crossref_primary_10_1007_s10845_021_01777_0 crossref_primary_10_1007_s12206_021_1109_8 crossref_primary_10_1109_TNNLS_2022_3219896 crossref_primary_10_1109_TIA_2021_3065194 crossref_primary_10_1186_s10033_024_01173_8 crossref_primary_10_1109_ACCESS_2023_3268534 crossref_primary_10_3390_en17163897 crossref_primary_10_3390_s25164883 crossref_primary_10_1109_JLT_2024_3403694 crossref_primary_10_1109_TCCN_2023_3254524 crossref_primary_10_1002_rcs_2247 crossref_primary_10_1016_j_neucom_2023_126322 crossref_primary_10_1016_j_measurement_2022_110748 crossref_primary_10_1016_j_ref_2025_100682 crossref_primary_10_3390_e26030215 crossref_primary_10_1016_j_mtcomm_2021_102032 crossref_primary_10_3390_en17153723 crossref_primary_10_1016_j_jmapro_2024_07_002 crossref_primary_10_1016_j_solener_2021_09_043 crossref_primary_10_1016_j_ymssp_2018_05_050 crossref_primary_10_1080_21693277_2025_2469037 crossref_primary_10_1088_1755_1315_626_1_012017 crossref_primary_10_1016_j_engappai_2023_105885 crossref_primary_10_1109_JSYST_2020_2986162 crossref_primary_10_1007_s10489_020_01871_5 crossref_primary_10_1007_s42417_025_01973_9 crossref_primary_10_1109_JBHI_2021_3082548 crossref_primary_10_1002_qre_3308 crossref_primary_10_1007_s00202_022_01533_4 crossref_primary_10_1155_2022_8956850 crossref_primary_10_1016_j_asoc_2019_105564 crossref_primary_10_1109_TMECH_2019_2928967 crossref_primary_10_1109_TIM_2025_3600717 crossref_primary_10_1109_TIM_2021_3117082 crossref_primary_10_1007_s00521_024_10727_9 crossref_primary_10_1049_iet_rsn_2019_0240 crossref_primary_10_1007_s10845_023_02176_3 crossref_primary_10_1016_j_apm_2023_05_042 crossref_primary_10_1016_j_energy_2024_131720 crossref_primary_10_1109_JSEN_2020_3015884 crossref_primary_10_1021_acsami_4c22067 crossref_primary_10_1016_j_aei_2025_103198 crossref_primary_10_1109_TIM_2021_3125973 crossref_primary_10_1016_j_measurement_2021_109254 crossref_primary_10_1109_LCOMM_2020_2995842 crossref_primary_10_1109_TMECH_2021_3076775 crossref_primary_10_1109_TSG_2019_2896493 crossref_primary_10_3390_ai2040030 crossref_primary_10_1109_ACCESS_2020_2992083 crossref_primary_10_3390_s22062407 crossref_primary_10_1080_10543406_2025_2469884 crossref_primary_10_1007_s10291_025_01936_3 crossref_primary_10_1016_j_inffus_2023_01_002 crossref_primary_10_1109_TWC_2024_3495812 crossref_primary_10_1109_ACCESS_2019_2927488 crossref_primary_10_1109_ACCESS_2021_3087022 crossref_primary_10_1109_TAES_2018_2876586 crossref_primary_10_1016_j_jmsy_2021_10_013 crossref_primary_10_1177_09544062241284465 crossref_primary_10_3390_en12040726 crossref_primary_10_1088_2631_8695_add6f3 crossref_primary_10_1016_j_cie_2022_108300 crossref_primary_10_1016_j_jmsy_2022_05_016 crossref_primary_10_1109_TVT_2024_3391614 crossref_primary_10_3390_e21111061 crossref_primary_10_1016_j_renene_2019_07_033 crossref_primary_10_1109_JSEN_2020_2979797 crossref_primary_10_1088_1361_6501_ad2bcb crossref_primary_10_3390_w13010086 crossref_primary_10_1088_1361_6501_ad8e78 crossref_primary_10_1049_gtd2_12056 crossref_primary_10_1109_ACCESS_2020_2995586 crossref_primary_10_1007_s11760_025_04617_3 crossref_primary_10_1109_ACCESS_2020_3010872 crossref_primary_10_1109_TIE_2018_2856193 crossref_primary_10_1016_j_knosys_2024_111623 crossref_primary_10_1109_ACCESS_2020_2980002 crossref_primary_10_1109_TASE_2022_3160420 crossref_primary_10_1109_TIM_2023_3301888 crossref_primary_10_1016_j_dsp_2021_103355 crossref_primary_10_1016_j_neunet_2021_04_003 crossref_primary_10_1016_j_datak_2025_102417 crossref_primary_10_1016_j_jmsy_2020_07_008 crossref_primary_10_1109_ACCESS_2019_2934233 crossref_primary_10_1007_s10845_021_01817_9 crossref_primary_10_1088_1361_6501_adf246 crossref_primary_10_1177_1748006X18822447 crossref_primary_10_1520_SSMS20180018 crossref_primary_10_1109_JSEN_2021_3099877 crossref_primary_10_3390_diagnostics13122071 crossref_primary_10_1007_s00158_023_03629_2 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_1109_ACCESS_2020_3035653 crossref_primary_10_1016_j_jmsy_2025_02_021 crossref_primary_10_3390_en11081958 crossref_primary_10_1109_TDSC_2023_3307445 crossref_primary_10_1007_s10845_020_01657_z crossref_primary_10_1016_j_aei_2023_102106 crossref_primary_10_1109_ACCESS_2019_2958330 crossref_primary_10_1016_j_measurement_2025_118323 crossref_primary_10_1109_ACCESS_2020_3020296 crossref_primary_10_1080_01691864_2022_2160274 crossref_primary_10_1016_j_jpowsour_2020_228894 crossref_primary_10_1177_09544062241305515 crossref_primary_10_3390_app10010308 crossref_primary_10_1016_j_future_2019_08_030 crossref_primary_10_3390_s19040771 crossref_primary_10_1093_jcde_qwac051 crossref_primary_10_1109_ACCESS_2021_3117004 crossref_primary_10_1140_epjp_s13360_024_05730_x crossref_primary_10_1109_JSEN_2021_3060395 crossref_primary_10_1007_s42979_024_02946_7 crossref_primary_10_1109_TIM_2023_3322488 crossref_primary_10_1016_j_measurement_2023_113436 crossref_primary_10_1109_ACCESS_2025_3557331 crossref_primary_10_1088_1361_6501_aced5f crossref_primary_10_1016_j_aei_2024_102976 crossref_primary_10_3390_s22062206 crossref_primary_10_1093_jigpal_jzae034 crossref_primary_10_1007_s11668_025_02162_2 crossref_primary_10_1016_j_jobe_2025_112021 crossref_primary_10_1016_j_measurement_2020_108554 crossref_primary_10_1049_gtd2_12409 crossref_primary_10_1016_j_cosrev_2020_100341 crossref_primary_10_3390_machines10121226 crossref_primary_10_1088_1361_6501_aca3c3 crossref_primary_10_1016_j_physa_2023_129010 crossref_primary_10_1016_j_scitotenv_2024_173958 crossref_primary_10_1109_TIE_2018_2873546 crossref_primary_10_1016_j_isatra_2019_07_004 crossref_primary_10_1007_s11036_024_02304_0 crossref_primary_10_1016_j_tbench_2025_100213 crossref_primary_10_1109_JSEN_2023_3273279 crossref_primary_10_1109_TII_2022_3165027 crossref_primary_10_1109_TIM_2019_2903699 crossref_primary_10_1016_j_ssci_2023_106363 crossref_primary_10_1088_2631_8695_ad5f1a crossref_primary_10_1002_qre_2756 crossref_primary_10_1016_j_ymssp_2020_107322 crossref_primary_10_3390_math13010025 crossref_primary_10_1007_s11227_021_03903_4 crossref_primary_10_1016_j_neunet_2024_106527 crossref_primary_10_1177_1687814020911475 crossref_primary_10_1109_TIE_2019_2927197 crossref_primary_10_3390_en12173246 crossref_primary_10_3390_pr11020595 crossref_primary_10_1177_1475921720933155 crossref_primary_10_1109_TIE_2020_3038069 crossref_primary_10_1016_j_ymssp_2023_110310 crossref_primary_10_1049_smt2_12017 crossref_primary_10_1016_j_apenergy_2023_120716 crossref_primary_10_1109_TBDATA_2025_3534625 crossref_primary_10_1142_S0218194025500159 crossref_primary_10_1016_j_jmse_2020_08_003 crossref_primary_10_1007_s00170_022_10470_2 crossref_primary_10_1109_TIE_2021_3102443 crossref_primary_10_3390_app10113965 crossref_primary_10_1109_TII_2020_3022019 crossref_primary_10_1007_s00521_022_08130_3 crossref_primary_10_1007_s40684_021_00353_4 crossref_primary_10_1007_s40032_024_01046_y crossref_primary_10_1088_1361_6501_ad1652 crossref_primary_10_3390_s22010192 crossref_primary_10_1016_j_isatra_2024_02_001 crossref_primary_10_3390_electronics10030255 crossref_primary_10_1177_2321022220980537 crossref_primary_10_1016_j_measen_2023_100782 crossref_primary_10_1080_00224065_2021_1960934 crossref_primary_10_1016_j_envsoft_2023_105766 crossref_primary_10_1155_2022_4632540 crossref_primary_10_1088_1361_6501_ad1e20 crossref_primary_10_1016_j_neucom_2025_130488 crossref_primary_10_1038_s41598_025_93063_9 crossref_primary_10_1109_JSEN_2023_3279882 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1109_TNSE_2022_3224028 crossref_primary_10_1109_TSM_2021_3059025 crossref_primary_10_1007_s00170_020_06354_y crossref_primary_10_1007_s00704_023_04775_9 crossref_primary_10_1155_2018_6972481 crossref_primary_10_1016_j_ymssp_2020_106683 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_TII_2021_3092361 crossref_primary_10_1109_TMECH_2023_3244282 crossref_primary_10_1016_j_anucene_2024_111029 crossref_primary_10_1007_s00170_020_05303_z crossref_primary_10_1109_TIE_2020_2988229 crossref_primary_10_1016_j_heliyon_2023_e20468 crossref_primary_10_1016_j_renene_2024_120073 crossref_primary_10_3390_electronics9020323 crossref_primary_10_32604_csse_2023_039215 crossref_primary_10_3390_math11153397 crossref_primary_10_1109_ACCESS_2020_2982433 crossref_primary_10_1016_j_ress_2022_108966 crossref_primary_10_1016_j_ymssp_2020_106681 crossref_primary_10_1016_j_measurement_2021_110500 crossref_primary_10_1177_0959651820936969 crossref_primary_10_1016_j_compeleceng_2024_109520 crossref_primary_10_1016_j_measurement_2020_108489 crossref_primary_10_1109_JSEN_2023_3264252 crossref_primary_10_1109_ACCESS_2020_3036726 crossref_primary_10_1007_s10489_021_02555_4 crossref_primary_10_1080_10589759_2025_2466078 crossref_primary_10_1016_j_jmsy_2018_01_003 crossref_primary_10_1177_09544089211064464 crossref_primary_10_1016_j_eswa_2023_123124 crossref_primary_10_1016_j_measurement_2021_109639 crossref_primary_10_1051_meca_2020053 crossref_primary_10_1016_j_neucom_2020_08_087 crossref_primary_10_1016_j_neucom_2020_06_116 crossref_primary_10_1016_j_compind_2019_06_001 crossref_primary_10_1016_j_measurement_2022_111594 crossref_primary_10_1007_s00170_024_14273_5 crossref_primary_10_1016_j_engappai_2022_104749 crossref_primary_10_1016_j_conengprac_2024_106127 crossref_primary_10_1109_ACCESS_2021_3051808 crossref_primary_10_1016_j_jprocont_2021_06_003 crossref_primary_10_1109_TII_2024_3353823 crossref_primary_10_1109_TIM_2025_3529070 crossref_primary_10_1109_JSEN_2022_3186505 crossref_primary_10_1109_TII_2020_3046278 crossref_primary_10_3233_WEB_230063 crossref_primary_10_4018_JGIM_321115 crossref_primary_10_1016_j_jmsy_2024_05_014 crossref_primary_10_3390_s22239148 crossref_primary_10_3390_w16101407 crossref_primary_10_3390_machines11010094 crossref_primary_10_1109_ACCESS_2019_2963193 crossref_primary_10_1177_1475921719884019 crossref_primary_10_1016_j_isci_2024_111574 crossref_primary_10_1088_1757_899X_624_1_012032 crossref_primary_10_1109_TIE_2020_3009593 crossref_primary_10_3390_electronics13050976 crossref_primary_10_1016_j_compind_2024_104229 crossref_primary_10_1016_j_bspc_2024_106860 crossref_primary_10_1016_j_dsp_2024_104796 crossref_primary_10_1007_s11227_025_07650_8 crossref_primary_10_1007_s12559_023_10218_4 crossref_primary_10_1007_s40997_024_00783_w crossref_primary_10_1038_s41598_025_08515_z crossref_primary_10_1088_1361_6501_abfb1f crossref_primary_10_1088_1361_6501_ac84f6 crossref_primary_10_1007_s10845_020_01663_1 crossref_primary_10_1016_j_cie_2023_109286 crossref_primary_10_1109_TAI_2021_3097311 crossref_primary_10_1007_s11227_020_03603_5 crossref_primary_10_1109_MITS_2020_3014131 crossref_primary_10_1007_s11740_021_01086_8 crossref_primary_10_1007_s00170_023_12020_w crossref_primary_10_1016_j_measurement_2022_112346 crossref_primary_10_3233_JIFS_213586 crossref_primary_10_3390_rs13010092 crossref_primary_10_1016_j_aei_2022_101725 crossref_primary_10_1007_s40747_024_01451_x crossref_primary_10_1016_j_compind_2018_12_016 crossref_primary_10_1088_1361_6501_ac81a0 crossref_primary_10_1155_2022_3672905 crossref_primary_10_3390_s23031267 crossref_primary_10_1109_JSEN_2020_3007262 crossref_primary_10_1007_s00170_025_15919_8 crossref_primary_10_1109_JSEN_2023_3321725 crossref_primary_10_1007_s10346_023_02104_9 crossref_primary_10_3390_atmos16040398 crossref_primary_10_1155_2022_3847415 crossref_primary_10_1016_j_aei_2021_101318 crossref_primary_10_1109_ACCESS_2019_2933676 crossref_primary_10_1007_s00202_024_02356_1 crossref_primary_10_1016_j_compind_2025_104302 crossref_primary_10_1016_j_smhl_2023_100433 crossref_primary_10_1007_s12559_024_10284_2 crossref_primary_10_1016_j_measurement_2020_108603 crossref_primary_10_1088_1361_6501_ad6f37 crossref_primary_10_1016_j_ymssp_2020_107293 crossref_primary_10_1109_TII_2019_2900295 crossref_primary_10_1109_JSYST_2019_2905565 crossref_primary_10_1016_j_isatra_2021_04_024 crossref_primary_10_1016_j_jmsy_2024_04_001 crossref_primary_10_1016_j_ymssp_2021_107996 crossref_primary_10_3390_app9071364 crossref_primary_10_1038_s41598_024_59095_3 crossref_primary_10_1016_j_dsp_2023_104368 crossref_primary_10_1016_j_jmsy_2020_06_009 crossref_primary_10_1016_j_jprocont_2019_02_006 crossref_primary_10_1016_j_measurement_2020_108778 crossref_primary_10_1109_TSE_2021_3087402 crossref_primary_10_1016_j_neucom_2020_07_088 crossref_primary_10_3390_electronics12010013 crossref_primary_10_1016_j_measurement_2020_108774 crossref_primary_10_3390_e24121733 crossref_primary_10_1016_j_ins_2024_121659 crossref_primary_10_1109_ACCESS_2021_3067070 crossref_primary_10_1016_j_patcog_2025_112349 crossref_primary_10_1016_j_energy_2021_121808 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_1109_TIA_2024_3351959 crossref_primary_10_1109_TII_2022_3232842 crossref_primary_10_1109_TIM_2021_3054025 crossref_primary_10_1109_TIM_2021_3089250 crossref_primary_10_3390_machines10060438 crossref_primary_10_1109_JSEN_2019_2899396 crossref_primary_10_1016_j_ress_2023_109854 crossref_primary_10_1109_ACCESS_2020_2989371 crossref_primary_10_1109_JBHI_2022_3221211 crossref_primary_10_3233_JIFS_241801 crossref_primary_10_1109_TIE_2019_2891463 crossref_primary_10_1177_10775463251336975 crossref_primary_10_32604_sdhm_2023_041522 crossref_primary_10_1109_ACCESS_2024_3444828 crossref_primary_10_3390_s21124043 crossref_primary_10_1016_j_knosys_2022_109846 crossref_primary_10_1109_TII_2018_2864759 crossref_primary_10_3390_en15062273 crossref_primary_10_21595_jve_2025_25060 crossref_primary_10_1109_TII_2023_3254668 crossref_primary_10_1016_j_tre_2020_102106 crossref_primary_10_1155_2019_8325218 crossref_primary_10_1002_widm_1471 crossref_primary_10_1109_JSEN_2024_3402314 crossref_primary_10_1088_1361_6501_ad05a1 crossref_primary_10_3390_s24113454 crossref_primary_10_1016_j_ifacol_2022_07_132 crossref_primary_10_1007_s12008_023_01217_8 crossref_primary_10_1007_s00170_022_09452_1 crossref_primary_10_3390_app10051802 crossref_primary_10_1016_j_simpat_2019_102063 crossref_primary_10_1109_ACCESS_2019_2943381 crossref_primary_10_1109_TSG_2023_3261979 crossref_primary_10_1109_TIE_2019_2907440 crossref_primary_10_1016_j_engappai_2020_103587 crossref_primary_10_1109_ACCESS_2023_3320042 crossref_primary_10_1016_j_ymssp_2021_107785 crossref_primary_10_1109_TII_2019_2895054 crossref_primary_10_1002_stc_3113 crossref_primary_10_1049_iet_gtd_2018_6081 crossref_primary_10_1109_TII_2022_3148993 crossref_primary_10_1080_15376494_2022_2102274 crossref_primary_10_1016_j_measurement_2020_108522 crossref_primary_10_3390_s18092932 crossref_primary_10_3390_s20113271 crossref_primary_10_1016_j_ijmecsci_2023_108244 |
| Cites_doi | 10.1016/j.rcim.2016.05.010 10.1109/ISFA.2016.7790193 10.1109/I2MTC.2016.7520470 10.3390/s17020273 10.1109/MED.2008.4602082 10.1109/TIE.2012.2192894 10.1109/TIE.2012.2219838 10.1162/neco.1997.9.8.1735 10.1162/neco.2008.04-07-510 10.1109/TIM.2004.834070 10.1109/TIE.2016.2519325 10.1109/TPAMI.2013.50 10.3115/v1/D14-1179 10.1109/TIE.2014.2308133 10.1109/TIE.2016.2535109 10.1016/j.neunet.2014.09.003 10.1016/j.ymssp.2015.10.025 10.1016/j.measurement.2016.04.007 10.1016/j.ymssp.2006.12.007 10.1016/j.ymssp.2007.07.013 10.1155/2016/4632562 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TIE.2017.2733438 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1557-9948 |
| EndPage | 1548 |
| ExternalDocumentID | 10_1109_TIE_2017_2733438 7997605 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51575102 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION 7SP 8FD L7M RIG |
| ID | FETCH-LOGICAL-c357t-2334176d6f2ccce17bfec847b7b2caf02c61b29fbf63f751500e5286dcc72f323 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 659 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418415200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0046 |
| IngestDate | Mon Jun 30 10:12:10 EDT 2025 Tue Nov 18 22:35:26 EST 2025 Sat Nov 29 01:31:36 EST 2025 Tue Aug 26 17:00:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-2334176d6f2ccce17bfec847b7b2caf02c61b29fbf63f751500e5286dcc72f323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4341-6535 0000-0002-9699-9984 |
| PQID | 2174515385 |
| PQPubID | 85464 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2174515385 crossref_primary_10_1109_TIE_2017_2733438 crossref_citationtrail_10_1109_TIE_2017_2733438 ieee_primary_7997605 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on industrial electronics (1982) |
| PublicationTitleAbbrev | TIE |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 (ref29) 2010 ref12 babu (ref33) 0 ref14 ref11 ref10 ref2 ref19 ref18 vincent (ref17) 2010; 11 ref26 ref25 tieleman (ref31) 2012; 4 ref20 chung (ref24) 0 ref22 wei (ref30) 2011; 10 ref21 van der maaten (ref32) 2008; 9 ref28 goodfellow (ref15) 2016 ref8 ref7 ref9 ref4 ref3 jaeger (ref27) 2002 ref6 lund (ref1) 2014 ref5 zhao (ref16) 2016 chen (ref23) 2015; 17 |
| References_xml | – volume: 9 start-page: 2579 year: 2008 ident: ref32 article-title: Visualizing data using T-SNE publication-title: J Mach Learn Res – ident: ref6 doi: 10.1016/j.rcim.2016.05.010 – ident: ref22 doi: 10.1109/ISFA.2016.7790193 – ident: ref11 doi: 10.1109/I2MTC.2016.7520470 – year: 0 ident: ref24 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: NIPS Deep Learning Workshop – year: 2014 ident: ref1 article-title: Worldwide and regional internet of things (IoT) 2014-2020 forecast: A virtuous circle of proven value and demand – ident: ref26 doi: 10.3390/s17020273 – volume: 10 start-page: 81 year: 2011 ident: ref30 article-title: Incipient fault diagnosis of rolling element bearing based on wavelet packet transform and energy operator publication-title: WSEAS Trans Syst – ident: ref7 doi: 10.1109/MED.2008.4602082 – ident: ref12 doi: 10.1109/TIE.2012.2192894 – ident: ref10 doi: 10.1109/TIE.2012.2219838 – ident: ref25 doi: 10.1162/neco.1997.9.8.1735 – ident: ref18 doi: 10.1162/neco.2008.04-07-510 – ident: ref5 doi: 10.1109/TIM.2004.834070 – ident: ref2 doi: 10.1109/TIE.2016.2519325 – ident: ref13 doi: 10.1109/TPAMI.2013.50 – ident: ref28 doi: 10.3115/v1/D14-1179 – ident: ref3 doi: 10.1109/TIE.2014.2308133 – volume: 11 start-page: 3371 year: 2010 ident: ref17 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 17 start-page: 2379 year: 2015 ident: ref23 article-title: Multi-layer neural network with deep belief network for gearbox fault diagnosis publication-title: J Vibroeng – year: 2002 ident: ref27 publication-title: Tutorial on training recurrent neural networks covering BPPT RTRL EKF and the" echo state network" approach – start-page: 214 year: 0 ident: ref33 article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life publication-title: Proc 4th Int Conf Database Syst Adv Appl – ident: ref4 doi: 10.1109/TIE.2016.2535109 – volume: 4 start-page: 26 year: 2012 ident: ref31 article-title: Lecture 6.5-RmsProp: Divide the gradient by a running average of its recent magnitude publication-title: Neural Netw Mach Learning – year: 2016 ident: ref16 article-title: Deep learning and its applications to machine health monitoring: A survey – year: 2010 ident: ref29 article-title: 2010 PHM data challenge – ident: ref14 doi: 10.1016/j.neunet.2014.09.003 – year: 2016 ident: ref15 publication-title: Deep Learning – ident: ref20 doi: 10.1016/j.ymssp.2015.10.025 – ident: ref19 doi: 10.1016/j.measurement.2016.04.007 – ident: ref9 doi: 10.1016/j.ymssp.2006.12.007 – ident: ref8 doi: 10.1016/j.ymssp.2007.07.013 – ident: ref21 doi: 10.1155/2016/4632562 |
| SSID | ssj0014515 |
| Score | 2.6920521 |
| Snippet | In modern industries, machine health monitoring systems (MHMS) have been applied wildly with the goal of realizing predictive maintenance including failures... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1539 |
| SubjectTerms | Computational modeling Data mining Downtime Failure Fault detection Fault diagnosis feature engineering Feature extraction gated recurrent unit (GRU) Gearboxes Health Logic gates machine health monitoring (MHM) Machine learning Monitoring Predictive maintenance Representations Sensors Tool wear tool wear prediction Windows (intervals) |
| Title | Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks |
| URI | https://ieeexplore.ieee.org/document/7997605 https://www.proquest.com/docview/2174515385 |
| Volume | 65 |
| WOSCitedRecordID | wos000418415200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5q8aAHtyrWjTl4EUybTDLbUaVFQYtKhd5CZwNBWuni73feTBoKiuAtkJmQvJc339sfQpcql9Rroi4pssIbKHnhRSqlOjFeyKXyeCacCMMm-GAgRiP53EDXdS2MtTYkn9kOXIZYvpnqJbjKulx68ISGpRucs1irVUcMChqnFRDoGOuNvlVIMpXd4UMPcrh4x0N1XkAlyhoEhZkqPw7igC793f-91x7aqbRIfBPZvo8adnKAttd6C7bQy1NIk7Q4FhrhKLxwD4c0AfwIKIZBBVzObHLr0cxg8KUZ_Ao-eOjahEEjxYOYKT4_RG_93vDuPqnmJyQ6p3yREP-1GWeGOaK1thlXzmqPRooroscuJZplikinHMsd9_RLU0uJYEZrTlxO8iPUnEwn9hhhamQh3dhJsMCIMIql2jAO8pwpYUQbdVckLXXVXBxmXHyUwchIZemZUAITyooJbXRV7_iMjTX-WNsCotfrKnq30dmKa2UlefMSTCwKxzg9-X3XKdryzxYx8_oMNRezpT1Hm_pr8T6fXYSf6hvnF8hA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KFdSDrypWq-7Bi2DaZPPY7FGlpcU2qFToLXRfIEgrffj73dmkpaAI3gLZJclMZr95D8CNCHlsNVHjRUFkDZQwsiLlx9JTVsi5sHiWmtQNm2BZlo5G_LkCd-taGK21Sz7TTbx0sXw1lUt0lbUYt-CJDUu3cHJWWa21jhlEcTGvgGLPWGv2rYKSPm8Ne23M4mJNC9ZhhLUoGyDkpqr8OIodvnQO_vdmh7Bf6pHkvmD8EVT05Bj2NroL1uBl4BIlNSlKjUghvniPuEQB0kccI6gELmfae7B4pgh60xR5RS889m0iqJOSrMgVn5_AW6c9fOx65QQFT4YxW3jUfm3AEpUYKqXUARNGS4tHggkqx8anMgkE5UaYJDTM0s_3dUzTREnJqAlpeArVyXSiz4DEikfcjA1HG4ymSiS-VAlDiQ5EqtI6tFYkzWXZXhynXHzkzszweW6ZkCMT8pIJdbhd7_gsWmv8sbaGRF-vK-ldh8aKa3kpe_McjawYD_L4_Pdd17DTHQ76eb-XPV3Arn1OWuRhN6C6mC31JWzLr8X7fHblfrBvgarLiQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Health+Monitoring+Using+Local+Feature-Based+Gated+Recurrent+Unit+Networks&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Rui+Zhao&rft.au=Dongzhe+Wang&rft.au=Ruqiang+Yan&rft.au=Kezhi+Mao&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=65&rft.issue=2&rft.spage=1539&rft.epage=1548&rft_id=info:doi/10.1109%2FTIE.2017.2733438&rft.externalDocID=7997605 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |