Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks

In modern industries, machine health monitoring systems (MHMS) have been applied wildly with the goal of realizing predictive maintenance including failures tracking, downtime reduction, and assets preservation. In the era of big machinery data, data-driven MHMS have achieved remarkable results in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) Jg. 65; H. 2; S. 1539 - 1548
Hauptverfasser: Zhao, Rui, Wang, Dongzhe, Yan, Ruqiang, Mao, Kezhi, Shen, Fei, Wang, Jinjiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0046, 1557-9948
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In modern industries, machine health monitoring systems (MHMS) have been applied wildly with the goal of realizing predictive maintenance including failures tracking, downtime reduction, and assets preservation. In the era of big machinery data, data-driven MHMS have achieved remarkable results in the detection of faults after the occurrence of certain failures (diagnosis) and prediction of the future working conditions and the remaining useful life (prognosis). The numerical representation for raw sensory data is the key stone for various successful MHMS. Conventional methods are the labor-extensive as they usually depend on handcrafted features, which require expert knowledge. Inspired by the success of deep learning methods that redefine representation learning from raw data, we propose local feature-based gated recurrent unit (LFGRU) networks. It is a hybrid approach that combines handcrafted feature design with automatic feature learning for machine health monitoring. First, features from windows of input time series are extracted. Then, an enhanced bidirectional GRU network is designed and applied on the generated sequence of local features to learn the representation. A supervised learning layer is finally trained to predict machine condition. Experiments on three machine health monitoring tasks: tool wear prediction, gearbox fault diagnosis, and incipient bearing fault detection verify the effectiveness and generalization of the proposed LFGRU.
AbstractList In modern industries, machine health monitoring systems (MHMS) have been applied wildly with the goal of realizing predictive maintenance including failures tracking, downtime reduction, and assets preservation. In the era of big machinery data, data-driven MHMS have achieved remarkable results in the detection of faults after the occurrence of certain failures (diagnosis) and prediction of the future working conditions and the remaining useful life (prognosis). The numerical representation for raw sensory data is the key stone for various successful MHMS. Conventional methods are the labor-extensive as they usually depend on handcrafted features, which require expert knowledge. Inspired by the success of deep learning methods that redefine representation learning from raw data, we propose local feature-based gated recurrent unit (LFGRU) networks. It is a hybrid approach that combines handcrafted feature design with automatic feature learning for machine health monitoring. First, features from windows of input time series are extracted. Then, an enhanced bidirectional GRU network is designed and applied on the generated sequence of local features to learn the representation. A supervised learning layer is finally trained to predict machine condition. Experiments on three machine health monitoring tasks: tool wear prediction, gearbox fault diagnosis, and incipient bearing fault detection verify the effectiveness and generalization of the proposed LFGRU.
Author Ruqiang Yan
Fei Shen
Rui Zhao
Dongzhe Wang
Jinjiang Wang
Kezhi Mao
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0002-9699-9984
  surname: Zhao
  fullname: Zhao, Rui
– sequence: 2
  givenname: Dongzhe
  surname: Wang
  fullname: Wang, Dongzhe
– sequence: 3
  givenname: Ruqiang
  orcidid: 0000-0003-4341-6535
  surname: Yan
  fullname: Yan, Ruqiang
– sequence: 4
  givenname: Kezhi
  surname: Mao
  fullname: Mao, Kezhi
– sequence: 5
  givenname: Fei
  surname: Shen
  fullname: Shen, Fei
– sequence: 6
  givenname: Jinjiang
  surname: Wang
  fullname: Wang, Jinjiang
BookMark eNp9kL1PwzAQxS1UJNrCjsQSiTnFH3GcjFD1S2pBoHa2HPdMU0pcbEeI_x5HRQwMLO-W-9179wao19gGELomeEQILu_Wi8mIYiJGVDCWseIM9QnnIi3LrOihPqaiSDHO8gs08H6PMck44X30vFJ6VzeQzEEdwi5Z2aYO1tXNa7LxnS6tVodkCiq0DtIH5WGbzFSI-gK6dQ6akGwikzxC-LTuzV-ic6MOHq5-5hBtppP1eJ4un2aL8f0y1YyLkNKYkoh8mxuqtQYiKgO6yEQlKqqVwVTnpKKlqUzOjIhZMQZOi3yrtaCGUTZEt6e7R2c_WvBB7m3rmmgpKRHdd6zgcQuftrSz3jsw8ujqd-W-JMGyK07G4mRXnPwpLiL5H0TXQYXaNsGp-vAfeHMCawD49RFlKXLM2Tf39Hw9
CODEN ITIED6
CitedBy_id crossref_primary_10_1016_j_ins_2020_05_090
crossref_primary_10_1587_transinf_2018EDL8027
crossref_primary_10_1155_2021_9927151
crossref_primary_10_1007_s12206_024_1016_x
crossref_primary_10_1109_JSYST_2022_3153503
crossref_primary_10_1016_j_measurement_2024_115433
crossref_primary_10_1109_JSEN_2019_2912934
crossref_primary_10_1109_JSEN_2022_3173156
crossref_primary_10_1016_j_neucom_2022_04_111
crossref_primary_10_1109_TIM_2021_3103572
crossref_primary_10_1109_TNNLS_2021_3072885
crossref_primary_10_1007_s00500_023_08496_z
crossref_primary_10_1016_j_eswa_2023_120745
crossref_primary_10_1088_1361_6501_ab8df9
crossref_primary_10_1016_j_procs_2023_10_122
crossref_primary_10_1007_s00366_021_01362_2
crossref_primary_10_1109_ACCESS_2024_3426909
crossref_primary_10_1109_TII_2018_2881543
crossref_primary_10_1016_j_jmsy_2022_07_004
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_3390_s23229259
crossref_primary_10_1016_j_scs_2021_103009
crossref_primary_10_1016_j_asoc_2022_108507
crossref_primary_10_1109_ACCESS_2019_2914181
crossref_primary_10_1109_JSEN_2019_2926095
crossref_primary_10_1016_j_ymssp_2019_106344
crossref_primary_10_1007_s00170_021_08275_w
crossref_primary_10_1016_j_measen_2021_100220
crossref_primary_10_1007_s10845_024_02536_7
crossref_primary_10_1016_j_neucom_2021_04_066
crossref_primary_10_1109_JSEN_2022_3219253
crossref_primary_10_1186_s10033_023_00966_7
crossref_primary_10_1109_TIM_2021_3104414
crossref_primary_10_1007_s00170_019_04090_6
crossref_primary_10_3390_a16020061
crossref_primary_10_1007_s10489_024_06002_y
crossref_primary_10_1155_2024_3376733
crossref_primary_10_1007_s00170_023_12259_3
crossref_primary_10_1109_JSEN_2023_3248323
crossref_primary_10_1109_TIE_2021_3053882
crossref_primary_10_3390_app9040768
crossref_primary_10_1016_j_measurement_2022_111893
crossref_primary_10_1109_TIM_2025_3563003
crossref_primary_10_1016_j_aei_2024_103038
crossref_primary_10_3390_su15118731
crossref_primary_10_1016_j_knosys_2019_105022
crossref_primary_10_1007_s00170_022_08861_6
crossref_primary_10_1109_TNSM_2025_3570450
crossref_primary_10_1016_j_compind_2022_103638
crossref_primary_10_3390_math10173188
crossref_primary_10_1109_JSEN_2024_3398364
crossref_primary_10_1007_s41810_025_00333_0
crossref_primary_10_1016_j_dajour_2023_100331
crossref_primary_10_1109_ACCESS_2021_3058993
crossref_primary_10_1016_j_procir_2021_11_260
crossref_primary_10_1007_s00170_020_06173_1
crossref_primary_10_3390_electronics9101711
crossref_primary_10_3390_s22020671
crossref_primary_10_3390_app12094221
crossref_primary_10_1016_j_isatra_2022_03_013
crossref_primary_10_1016_j_ress_2023_109753
crossref_primary_10_1002_eng2_12598
crossref_primary_10_3390_s21165654
crossref_primary_10_1109_TSMC_2022_3151185
crossref_primary_10_1109_JSEN_2023_3307729
crossref_primary_10_1155_2020_8863388
crossref_primary_10_1109_TEM_2021_3076603
crossref_primary_10_3390_a16010009
crossref_primary_10_1016_j_asoc_2022_109889
crossref_primary_10_1109_JSEN_2020_3017686
crossref_primary_10_1007_s11063_019_10094_w
crossref_primary_10_3390_a16060304
crossref_primary_10_1155_vib_8680245
crossref_primary_10_1109_TR_2022_3215757
crossref_primary_10_3390_app122110723
crossref_primary_10_1016_j_energy_2023_128569
crossref_primary_10_3390_s22228678
crossref_primary_10_1016_j_bspc_2024_106923
crossref_primary_10_1007_s42417_023_01014_3
crossref_primary_10_1109_TIM_2021_3051717
crossref_primary_10_1088_1742_6596_2369_1_012098
crossref_primary_10_1109_TII_2023_3268407
crossref_primary_10_1007_s00170_023_12322_z
crossref_primary_10_1088_1361_6501_ac793f
crossref_primary_10_1016_j_jmsy_2021_12_002
crossref_primary_10_1016_j_firesaf_2021_103310
crossref_primary_10_1007_s13369_020_05109_x
crossref_primary_10_1109_ACCESS_2020_3013165
crossref_primary_10_1038_s41598_022_18235_3
crossref_primary_10_1109_ACCESS_2019_2910860
crossref_primary_10_3390_s23136163
crossref_primary_10_1016_j_rineng_2024_102935
crossref_primary_10_1108_IMDS_02_2025_0133
crossref_primary_10_1080_10589759_2025_2472292
crossref_primary_10_1109_ACCESS_2021_3112666
crossref_primary_10_1109_TII_2019_2955540
crossref_primary_10_1109_TR_2023_3322860
crossref_primary_10_1109_TTE_2024_3497319
crossref_primary_10_1016_j_engappai_2022_105193
crossref_primary_10_1016_j_jii_2023_100444
crossref_primary_10_1007_s42417_022_00768_6
crossref_primary_10_1109_TII_2020_3029551
crossref_primary_10_1016_j_procir_2024_08_376
crossref_primary_10_1002_eng2_12305
crossref_primary_10_1080_10589759_2025_2465409
crossref_primary_10_1109_TIM_2022_3181933
crossref_primary_10_1016_j_jclepro_2022_133968
crossref_primary_10_1109_ACCESS_2019_2950061
crossref_primary_10_1155_2021_3083190
crossref_primary_10_3390_machines12100681
crossref_primary_10_3390_s18113866
crossref_primary_10_1016_j_ijmecsci_2025_110526
crossref_primary_10_1109_TNNLS_2021_3083401
crossref_primary_10_1016_j_mechmachtheory_2018_11_005
crossref_primary_10_1016_j_aei_2025_103360
crossref_primary_10_1016_j_isatra_2025_01_044
crossref_primary_10_1016_j_procir_2025_02_161
crossref_primary_10_1016_j_jmsy_2020_04_009
crossref_primary_10_1016_j_jmsy_2023_09_011
crossref_primary_10_1016_j_isatra_2022_10_008
crossref_primary_10_1109_TIE_2020_2972443
crossref_primary_10_3390_electronics11152364
crossref_primary_10_1016_j_cja_2018_12_006
crossref_primary_10_1007_s00521_018_3728_2
crossref_primary_10_1109_TMECH_2021_3058061
crossref_primary_10_1016_j_ifacol_2022_11_145
crossref_primary_10_1080_08982112_2020_1754427
crossref_primary_10_1007_s00170_023_11832_0
crossref_primary_10_1016_j_cie_2023_109840
crossref_primary_10_1007_s11063_024_11690_1
crossref_primary_10_1109_TIE_2018_2844805
crossref_primary_10_1016_j_measurement_2020_108064
crossref_primary_10_1007_s11269_024_04016_2
crossref_primary_10_1016_j_measurement_2020_108186
crossref_primary_10_1007_s42417_023_01144_8
crossref_primary_10_3390_s20205734
crossref_primary_10_1016_j_cie_2023_109605
crossref_primary_10_1080_08982112_2023_2257762
crossref_primary_10_1109_ACCESS_2019_2914236
crossref_primary_10_1088_1361_6501_ad8472
crossref_primary_10_1109_TIM_2021_3135328
crossref_primary_10_1016_j_measurement_2019_06_038
crossref_primary_10_1038_s41746_021_00455_y
crossref_primary_10_1016_j_jmapro_2022_10_072
crossref_primary_10_1016_j_rcim_2022_102368
crossref_primary_10_3390_s20102972
crossref_primary_10_1109_JSEN_2023_3300123
crossref_primary_10_1109_TII_2019_2910416
crossref_primary_10_1016_j_knosys_2021_107914
crossref_primary_10_1038_s41598_023_33666_2
crossref_primary_10_1016_j_ymssp_2024_112188
crossref_primary_10_1007_s00158_022_03437_0
crossref_primary_10_3390_pr8091066
crossref_primary_10_1109_ACCESS_2020_2981289
crossref_primary_10_1016_j_oceaneng_2023_113693
crossref_primary_10_3390_e25081194
crossref_primary_10_1109_TIM_2021_3073436
crossref_primary_10_1111_coin_70071
crossref_primary_10_1016_j_conengprac_2024_105938
crossref_primary_10_1016_j_jcsr_2025_109791
crossref_primary_10_1007_s11440_022_01495_8
crossref_primary_10_1109_TNSE_2025_3558193
crossref_primary_10_1109_TIE_2019_2898619
crossref_primary_10_1177_09544062231157189
crossref_primary_10_1016_j_jmsy_2021_03_012
crossref_primary_10_1016_j_ress_2022_109074
crossref_primary_10_1109_TIM_2021_3087834
crossref_primary_10_1007_s13201_024_02298_w
crossref_primary_10_1007_s40430_023_04461_x
crossref_primary_10_1088_1742_6596_1633_1_012159
crossref_primary_10_1049_iet_gtd_2019_0832
crossref_primary_10_3390_app132312865
crossref_primary_10_3390_en16083429
crossref_primary_10_1088_1361_6501_ab1da0
crossref_primary_10_1016_j_ces_2024_121164
crossref_primary_10_1109_TIM_2023_3244822
crossref_primary_10_3390_s25154617
crossref_primary_10_3389_fenrg_2021_696785
crossref_primary_10_1109_TR_2019_2948705
crossref_primary_10_1109_TIE_2022_3227274
crossref_primary_10_1016_j_measurement_2020_108277
crossref_primary_10_1038_s41598_025_92900_1
crossref_primary_10_1007_s12206_019_0504_x
crossref_primary_10_1016_j_jmsy_2022_10_014
crossref_primary_10_3390_math10101733
crossref_primary_10_1016_j_ins_2022_05_042
crossref_primary_10_1109_TIM_2021_3084310
crossref_primary_10_1007_s00170_021_08520_2
crossref_primary_10_1109_ACCESS_2020_2997969
crossref_primary_10_3390_s22155681
crossref_primary_10_1016_j_measurement_2021_109201
crossref_primary_10_1016_j_oceaneng_2025_121766
crossref_primary_10_1088_1361_6501_ada6e9
crossref_primary_10_1109_TII_2021_3102017
crossref_primary_10_1016_j_jsv_2018_06_015
crossref_primary_10_1016_j_measurement_2025_116881
crossref_primary_10_1007_s10845_021_01777_0
crossref_primary_10_1007_s12206_021_1109_8
crossref_primary_10_1109_TNNLS_2022_3219896
crossref_primary_10_1109_TIA_2021_3065194
crossref_primary_10_1186_s10033_024_01173_8
crossref_primary_10_1109_ACCESS_2023_3268534
crossref_primary_10_3390_en17163897
crossref_primary_10_3390_s25164883
crossref_primary_10_1109_JLT_2024_3403694
crossref_primary_10_1109_TCCN_2023_3254524
crossref_primary_10_1002_rcs_2247
crossref_primary_10_1016_j_neucom_2023_126322
crossref_primary_10_1016_j_measurement_2022_110748
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_3390_e26030215
crossref_primary_10_1016_j_mtcomm_2021_102032
crossref_primary_10_3390_en17153723
crossref_primary_10_1016_j_jmapro_2024_07_002
crossref_primary_10_1016_j_solener_2021_09_043
crossref_primary_10_1016_j_ymssp_2018_05_050
crossref_primary_10_1080_21693277_2025_2469037
crossref_primary_10_1088_1755_1315_626_1_012017
crossref_primary_10_1016_j_engappai_2023_105885
crossref_primary_10_1109_JSYST_2020_2986162
crossref_primary_10_1007_s10489_020_01871_5
crossref_primary_10_1007_s42417_025_01973_9
crossref_primary_10_1109_JBHI_2021_3082548
crossref_primary_10_1002_qre_3308
crossref_primary_10_1007_s00202_022_01533_4
crossref_primary_10_1155_2022_8956850
crossref_primary_10_1016_j_asoc_2019_105564
crossref_primary_10_1109_TMECH_2019_2928967
crossref_primary_10_1109_TIM_2025_3600717
crossref_primary_10_1109_TIM_2021_3117082
crossref_primary_10_1007_s00521_024_10727_9
crossref_primary_10_1049_iet_rsn_2019_0240
crossref_primary_10_1007_s10845_023_02176_3
crossref_primary_10_1016_j_apm_2023_05_042
crossref_primary_10_1016_j_energy_2024_131720
crossref_primary_10_1109_JSEN_2020_3015884
crossref_primary_10_1021_acsami_4c22067
crossref_primary_10_1016_j_aei_2025_103198
crossref_primary_10_1109_TIM_2021_3125973
crossref_primary_10_1016_j_measurement_2021_109254
crossref_primary_10_1109_LCOMM_2020_2995842
crossref_primary_10_1109_TMECH_2021_3076775
crossref_primary_10_1109_TSG_2019_2896493
crossref_primary_10_3390_ai2040030
crossref_primary_10_1109_ACCESS_2020_2992083
crossref_primary_10_3390_s22062407
crossref_primary_10_1080_10543406_2025_2469884
crossref_primary_10_1007_s10291_025_01936_3
crossref_primary_10_1016_j_inffus_2023_01_002
crossref_primary_10_1109_TWC_2024_3495812
crossref_primary_10_1109_ACCESS_2019_2927488
crossref_primary_10_1109_ACCESS_2021_3087022
crossref_primary_10_1109_TAES_2018_2876586
crossref_primary_10_1016_j_jmsy_2021_10_013
crossref_primary_10_1177_09544062241284465
crossref_primary_10_3390_en12040726
crossref_primary_10_1088_2631_8695_add6f3
crossref_primary_10_1016_j_cie_2022_108300
crossref_primary_10_1016_j_jmsy_2022_05_016
crossref_primary_10_1109_TVT_2024_3391614
crossref_primary_10_3390_e21111061
crossref_primary_10_1016_j_renene_2019_07_033
crossref_primary_10_1109_JSEN_2020_2979797
crossref_primary_10_1088_1361_6501_ad2bcb
crossref_primary_10_3390_w13010086
crossref_primary_10_1088_1361_6501_ad8e78
crossref_primary_10_1049_gtd2_12056
crossref_primary_10_1109_ACCESS_2020_2995586
crossref_primary_10_1007_s11760_025_04617_3
crossref_primary_10_1109_ACCESS_2020_3010872
crossref_primary_10_1109_TIE_2018_2856193
crossref_primary_10_1016_j_knosys_2024_111623
crossref_primary_10_1109_ACCESS_2020_2980002
crossref_primary_10_1109_TASE_2022_3160420
crossref_primary_10_1109_TIM_2023_3301888
crossref_primary_10_1016_j_dsp_2021_103355
crossref_primary_10_1016_j_neunet_2021_04_003
crossref_primary_10_1016_j_datak_2025_102417
crossref_primary_10_1016_j_jmsy_2020_07_008
crossref_primary_10_1109_ACCESS_2019_2934233
crossref_primary_10_1007_s10845_021_01817_9
crossref_primary_10_1088_1361_6501_adf246
crossref_primary_10_1177_1748006X18822447
crossref_primary_10_1520_SSMS20180018
crossref_primary_10_1109_JSEN_2021_3099877
crossref_primary_10_3390_diagnostics13122071
crossref_primary_10_1007_s00158_023_03629_2
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1109_ACCESS_2020_3035653
crossref_primary_10_1016_j_jmsy_2025_02_021
crossref_primary_10_3390_en11081958
crossref_primary_10_1109_TDSC_2023_3307445
crossref_primary_10_1007_s10845_020_01657_z
crossref_primary_10_1016_j_aei_2023_102106
crossref_primary_10_1109_ACCESS_2019_2958330
crossref_primary_10_1016_j_measurement_2025_118323
crossref_primary_10_1109_ACCESS_2020_3020296
crossref_primary_10_1080_01691864_2022_2160274
crossref_primary_10_1016_j_jpowsour_2020_228894
crossref_primary_10_1177_09544062241305515
crossref_primary_10_3390_app10010308
crossref_primary_10_1016_j_future_2019_08_030
crossref_primary_10_3390_s19040771
crossref_primary_10_1093_jcde_qwac051
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_1140_epjp_s13360_024_05730_x
crossref_primary_10_1109_JSEN_2021_3060395
crossref_primary_10_1007_s42979_024_02946_7
crossref_primary_10_1109_TIM_2023_3322488
crossref_primary_10_1016_j_measurement_2023_113436
crossref_primary_10_1109_ACCESS_2025_3557331
crossref_primary_10_1088_1361_6501_aced5f
crossref_primary_10_1016_j_aei_2024_102976
crossref_primary_10_3390_s22062206
crossref_primary_10_1093_jigpal_jzae034
crossref_primary_10_1007_s11668_025_02162_2
crossref_primary_10_1016_j_jobe_2025_112021
crossref_primary_10_1016_j_measurement_2020_108554
crossref_primary_10_1049_gtd2_12409
crossref_primary_10_1016_j_cosrev_2020_100341
crossref_primary_10_3390_machines10121226
crossref_primary_10_1088_1361_6501_aca3c3
crossref_primary_10_1016_j_physa_2023_129010
crossref_primary_10_1016_j_scitotenv_2024_173958
crossref_primary_10_1109_TIE_2018_2873546
crossref_primary_10_1016_j_isatra_2019_07_004
crossref_primary_10_1007_s11036_024_02304_0
crossref_primary_10_1016_j_tbench_2025_100213
crossref_primary_10_1109_JSEN_2023_3273279
crossref_primary_10_1109_TII_2022_3165027
crossref_primary_10_1109_TIM_2019_2903699
crossref_primary_10_1016_j_ssci_2023_106363
crossref_primary_10_1088_2631_8695_ad5f1a
crossref_primary_10_1002_qre_2756
crossref_primary_10_1016_j_ymssp_2020_107322
crossref_primary_10_3390_math13010025
crossref_primary_10_1007_s11227_021_03903_4
crossref_primary_10_1016_j_neunet_2024_106527
crossref_primary_10_1177_1687814020911475
crossref_primary_10_1109_TIE_2019_2927197
crossref_primary_10_3390_en12173246
crossref_primary_10_3390_pr11020595
crossref_primary_10_1177_1475921720933155
crossref_primary_10_1109_TIE_2020_3038069
crossref_primary_10_1016_j_ymssp_2023_110310
crossref_primary_10_1049_smt2_12017
crossref_primary_10_1016_j_apenergy_2023_120716
crossref_primary_10_1109_TBDATA_2025_3534625
crossref_primary_10_1142_S0218194025500159
crossref_primary_10_1016_j_jmse_2020_08_003
crossref_primary_10_1007_s00170_022_10470_2
crossref_primary_10_1109_TIE_2021_3102443
crossref_primary_10_3390_app10113965
crossref_primary_10_1109_TII_2020_3022019
crossref_primary_10_1007_s00521_022_08130_3
crossref_primary_10_1007_s40684_021_00353_4
crossref_primary_10_1007_s40032_024_01046_y
crossref_primary_10_1088_1361_6501_ad1652
crossref_primary_10_3390_s22010192
crossref_primary_10_1016_j_isatra_2024_02_001
crossref_primary_10_3390_electronics10030255
crossref_primary_10_1177_2321022220980537
crossref_primary_10_1016_j_measen_2023_100782
crossref_primary_10_1080_00224065_2021_1960934
crossref_primary_10_1016_j_envsoft_2023_105766
crossref_primary_10_1155_2022_4632540
crossref_primary_10_1088_1361_6501_ad1e20
crossref_primary_10_1016_j_neucom_2025_130488
crossref_primary_10_1038_s41598_025_93063_9
crossref_primary_10_1109_JSEN_2023_3279882
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1109_TNSE_2022_3224028
crossref_primary_10_1109_TSM_2021_3059025
crossref_primary_10_1007_s00170_020_06354_y
crossref_primary_10_1007_s00704_023_04775_9
crossref_primary_10_1155_2018_6972481
crossref_primary_10_1016_j_ymssp_2020_106683
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_TII_2021_3092361
crossref_primary_10_1109_TMECH_2023_3244282
crossref_primary_10_1016_j_anucene_2024_111029
crossref_primary_10_1007_s00170_020_05303_z
crossref_primary_10_1109_TIE_2020_2988229
crossref_primary_10_1016_j_heliyon_2023_e20468
crossref_primary_10_1016_j_renene_2024_120073
crossref_primary_10_3390_electronics9020323
crossref_primary_10_32604_csse_2023_039215
crossref_primary_10_3390_math11153397
crossref_primary_10_1109_ACCESS_2020_2982433
crossref_primary_10_1016_j_ress_2022_108966
crossref_primary_10_1016_j_ymssp_2020_106681
crossref_primary_10_1016_j_measurement_2021_110500
crossref_primary_10_1177_0959651820936969
crossref_primary_10_1016_j_compeleceng_2024_109520
crossref_primary_10_1016_j_measurement_2020_108489
crossref_primary_10_1109_JSEN_2023_3264252
crossref_primary_10_1109_ACCESS_2020_3036726
crossref_primary_10_1007_s10489_021_02555_4
crossref_primary_10_1080_10589759_2025_2466078
crossref_primary_10_1016_j_jmsy_2018_01_003
crossref_primary_10_1177_09544089211064464
crossref_primary_10_1016_j_eswa_2023_123124
crossref_primary_10_1016_j_measurement_2021_109639
crossref_primary_10_1051_meca_2020053
crossref_primary_10_1016_j_neucom_2020_08_087
crossref_primary_10_1016_j_neucom_2020_06_116
crossref_primary_10_1016_j_compind_2019_06_001
crossref_primary_10_1016_j_measurement_2022_111594
crossref_primary_10_1007_s00170_024_14273_5
crossref_primary_10_1016_j_engappai_2022_104749
crossref_primary_10_1016_j_conengprac_2024_106127
crossref_primary_10_1109_ACCESS_2021_3051808
crossref_primary_10_1016_j_jprocont_2021_06_003
crossref_primary_10_1109_TII_2024_3353823
crossref_primary_10_1109_TIM_2025_3529070
crossref_primary_10_1109_JSEN_2022_3186505
crossref_primary_10_1109_TII_2020_3046278
crossref_primary_10_3233_WEB_230063
crossref_primary_10_4018_JGIM_321115
crossref_primary_10_1016_j_jmsy_2024_05_014
crossref_primary_10_3390_s22239148
crossref_primary_10_3390_w16101407
crossref_primary_10_3390_machines11010094
crossref_primary_10_1109_ACCESS_2019_2963193
crossref_primary_10_1177_1475921719884019
crossref_primary_10_1016_j_isci_2024_111574
crossref_primary_10_1088_1757_899X_624_1_012032
crossref_primary_10_1109_TIE_2020_3009593
crossref_primary_10_3390_electronics13050976
crossref_primary_10_1016_j_compind_2024_104229
crossref_primary_10_1016_j_bspc_2024_106860
crossref_primary_10_1016_j_dsp_2024_104796
crossref_primary_10_1007_s11227_025_07650_8
crossref_primary_10_1007_s12559_023_10218_4
crossref_primary_10_1007_s40997_024_00783_w
crossref_primary_10_1038_s41598_025_08515_z
crossref_primary_10_1088_1361_6501_abfb1f
crossref_primary_10_1088_1361_6501_ac84f6
crossref_primary_10_1007_s10845_020_01663_1
crossref_primary_10_1016_j_cie_2023_109286
crossref_primary_10_1109_TAI_2021_3097311
crossref_primary_10_1007_s11227_020_03603_5
crossref_primary_10_1109_MITS_2020_3014131
crossref_primary_10_1007_s11740_021_01086_8
crossref_primary_10_1007_s00170_023_12020_w
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_3233_JIFS_213586
crossref_primary_10_3390_rs13010092
crossref_primary_10_1016_j_aei_2022_101725
crossref_primary_10_1007_s40747_024_01451_x
crossref_primary_10_1016_j_compind_2018_12_016
crossref_primary_10_1088_1361_6501_ac81a0
crossref_primary_10_1155_2022_3672905
crossref_primary_10_3390_s23031267
crossref_primary_10_1109_JSEN_2020_3007262
crossref_primary_10_1007_s00170_025_15919_8
crossref_primary_10_1109_JSEN_2023_3321725
crossref_primary_10_1007_s10346_023_02104_9
crossref_primary_10_3390_atmos16040398
crossref_primary_10_1155_2022_3847415
crossref_primary_10_1016_j_aei_2021_101318
crossref_primary_10_1109_ACCESS_2019_2933676
crossref_primary_10_1007_s00202_024_02356_1
crossref_primary_10_1016_j_compind_2025_104302
crossref_primary_10_1016_j_smhl_2023_100433
crossref_primary_10_1007_s12559_024_10284_2
crossref_primary_10_1016_j_measurement_2020_108603
crossref_primary_10_1088_1361_6501_ad6f37
crossref_primary_10_1016_j_ymssp_2020_107293
crossref_primary_10_1109_TII_2019_2900295
crossref_primary_10_1109_JSYST_2019_2905565
crossref_primary_10_1016_j_isatra_2021_04_024
crossref_primary_10_1016_j_jmsy_2024_04_001
crossref_primary_10_1016_j_ymssp_2021_107996
crossref_primary_10_3390_app9071364
crossref_primary_10_1038_s41598_024_59095_3
crossref_primary_10_1016_j_dsp_2023_104368
crossref_primary_10_1016_j_jmsy_2020_06_009
crossref_primary_10_1016_j_jprocont_2019_02_006
crossref_primary_10_1016_j_measurement_2020_108778
crossref_primary_10_1109_TSE_2021_3087402
crossref_primary_10_1016_j_neucom_2020_07_088
crossref_primary_10_3390_electronics12010013
crossref_primary_10_1016_j_measurement_2020_108774
crossref_primary_10_3390_e24121733
crossref_primary_10_1016_j_ins_2024_121659
crossref_primary_10_1109_ACCESS_2021_3067070
crossref_primary_10_1016_j_patcog_2025_112349
crossref_primary_10_1016_j_energy_2021_121808
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1109_TIA_2024_3351959
crossref_primary_10_1109_TII_2022_3232842
crossref_primary_10_1109_TIM_2021_3054025
crossref_primary_10_1109_TIM_2021_3089250
crossref_primary_10_3390_machines10060438
crossref_primary_10_1109_JSEN_2019_2899396
crossref_primary_10_1016_j_ress_2023_109854
crossref_primary_10_1109_ACCESS_2020_2989371
crossref_primary_10_1109_JBHI_2022_3221211
crossref_primary_10_3233_JIFS_241801
crossref_primary_10_1109_TIE_2019_2891463
crossref_primary_10_1177_10775463251336975
crossref_primary_10_32604_sdhm_2023_041522
crossref_primary_10_1109_ACCESS_2024_3444828
crossref_primary_10_3390_s21124043
crossref_primary_10_1016_j_knosys_2022_109846
crossref_primary_10_1109_TII_2018_2864759
crossref_primary_10_3390_en15062273
crossref_primary_10_21595_jve_2025_25060
crossref_primary_10_1109_TII_2023_3254668
crossref_primary_10_1016_j_tre_2020_102106
crossref_primary_10_1155_2019_8325218
crossref_primary_10_1002_widm_1471
crossref_primary_10_1109_JSEN_2024_3402314
crossref_primary_10_1088_1361_6501_ad05a1
crossref_primary_10_3390_s24113454
crossref_primary_10_1016_j_ifacol_2022_07_132
crossref_primary_10_1007_s12008_023_01217_8
crossref_primary_10_1007_s00170_022_09452_1
crossref_primary_10_3390_app10051802
crossref_primary_10_1016_j_simpat_2019_102063
crossref_primary_10_1109_ACCESS_2019_2943381
crossref_primary_10_1109_TSG_2023_3261979
crossref_primary_10_1109_TIE_2019_2907440
crossref_primary_10_1016_j_engappai_2020_103587
crossref_primary_10_1109_ACCESS_2023_3320042
crossref_primary_10_1016_j_ymssp_2021_107785
crossref_primary_10_1109_TII_2019_2895054
crossref_primary_10_1002_stc_3113
crossref_primary_10_1049_iet_gtd_2018_6081
crossref_primary_10_1109_TII_2022_3148993
crossref_primary_10_1080_15376494_2022_2102274
crossref_primary_10_1016_j_measurement_2020_108522
crossref_primary_10_3390_s18092932
crossref_primary_10_3390_s20113271
crossref_primary_10_1016_j_ijmecsci_2023_108244
Cites_doi 10.1016/j.rcim.2016.05.010
10.1109/ISFA.2016.7790193
10.1109/I2MTC.2016.7520470
10.3390/s17020273
10.1109/MED.2008.4602082
10.1109/TIE.2012.2192894
10.1109/TIE.2012.2219838
10.1162/neco.1997.9.8.1735
10.1162/neco.2008.04-07-510
10.1109/TIM.2004.834070
10.1109/TIE.2016.2519325
10.1109/TPAMI.2013.50
10.3115/v1/D14-1179
10.1109/TIE.2014.2308133
10.1109/TIE.2016.2535109
10.1016/j.neunet.2014.09.003
10.1016/j.ymssp.2015.10.025
10.1016/j.measurement.2016.04.007
10.1016/j.ymssp.2006.12.007
10.1016/j.ymssp.2007.07.013
10.1155/2016/4632562
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2017.2733438
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 1548
ExternalDocumentID 10_1109_TIE_2017_2733438
7997605
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51575102
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c357t-2334176d6f2ccce17bfec847b7b2caf02c61b29fbf63f751500e5286dcc72f323
IEDL.DBID RIE
ISICitedReferencesCount 659
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418415200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:12:10 EDT 2025
Tue Nov 18 22:35:26 EST 2025
Sat Nov 29 01:31:36 EST 2025
Tue Aug 26 17:00:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-2334176d6f2ccce17bfec847b7b2caf02c61b29fbf63f751500e5286dcc72f323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4341-6535
0000-0002-9699-9984
PQID 2174515385
PQPubID 85464
PageCount 10
ParticipantIDs proquest_journals_2174515385
crossref_primary_10_1109_TIE_2017_2733438
crossref_citationtrail_10_1109_TIE_2017_2733438
ieee_primary_7997605
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref29) 2010
ref12
babu (ref33) 0
ref14
ref11
ref10
ref2
ref19
ref18
vincent (ref17) 2010; 11
ref26
ref25
tieleman (ref31) 2012; 4
ref20
chung (ref24) 0
ref22
wei (ref30) 2011; 10
ref21
van der maaten (ref32) 2008; 9
ref28
goodfellow (ref15) 2016
ref8
ref7
ref9
ref4
ref3
jaeger (ref27) 2002
ref6
lund (ref1) 2014
ref5
zhao (ref16) 2016
chen (ref23) 2015; 17
References_xml – volume: 9
  start-page: 2579
  year: 2008
  ident: ref32
  article-title: Visualizing data using T-SNE
  publication-title: J Mach Learn Res
– ident: ref6
  doi: 10.1016/j.rcim.2016.05.010
– ident: ref22
  doi: 10.1109/ISFA.2016.7790193
– ident: ref11
  doi: 10.1109/I2MTC.2016.7520470
– year: 0
  ident: ref24
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: NIPS Deep Learning Workshop
– year: 2014
  ident: ref1
  article-title: Worldwide and regional internet of things (IoT) 2014-2020 forecast: A virtuous circle of proven value and demand
– ident: ref26
  doi: 10.3390/s17020273
– volume: 10
  start-page: 81
  year: 2011
  ident: ref30
  article-title: Incipient fault diagnosis of rolling element bearing based on wavelet packet transform and energy operator
  publication-title: WSEAS Trans Syst
– ident: ref7
  doi: 10.1109/MED.2008.4602082
– ident: ref12
  doi: 10.1109/TIE.2012.2192894
– ident: ref10
  doi: 10.1109/TIE.2012.2219838
– ident: ref25
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref18
  doi: 10.1162/neco.2008.04-07-510
– ident: ref5
  doi: 10.1109/TIM.2004.834070
– ident: ref2
  doi: 10.1109/TIE.2016.2519325
– ident: ref13
  doi: 10.1109/TPAMI.2013.50
– ident: ref28
  doi: 10.3115/v1/D14-1179
– ident: ref3
  doi: 10.1109/TIE.2014.2308133
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref17
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 17
  start-page: 2379
  year: 2015
  ident: ref23
  article-title: Multi-layer neural network with deep belief network for gearbox fault diagnosis
  publication-title: J Vibroeng
– year: 2002
  ident: ref27
  publication-title: Tutorial on training recurrent neural networks covering BPPT RTRL EKF and the" echo state network" approach
– start-page: 214
  year: 0
  ident: ref33
  article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life
  publication-title: Proc 4th Int Conf Database Syst Adv Appl
– ident: ref4
  doi: 10.1109/TIE.2016.2535109
– volume: 4
  start-page: 26
  year: 2012
  ident: ref31
  article-title: Lecture 6.5-RmsProp: Divide the gradient by a running average of its recent magnitude
  publication-title: Neural Netw Mach Learning
– year: 2016
  ident: ref16
  article-title: Deep learning and its applications to machine health monitoring: A survey
– year: 2010
  ident: ref29
  article-title: 2010 PHM data challenge
– ident: ref14
  doi: 10.1016/j.neunet.2014.09.003
– year: 2016
  ident: ref15
  publication-title: Deep Learning
– ident: ref20
  doi: 10.1016/j.ymssp.2015.10.025
– ident: ref19
  doi: 10.1016/j.measurement.2016.04.007
– ident: ref9
  doi: 10.1016/j.ymssp.2006.12.007
– ident: ref8
  doi: 10.1016/j.ymssp.2007.07.013
– ident: ref21
  doi: 10.1155/2016/4632562
SSID ssj0014515
Score 2.6920521
Snippet In modern industries, machine health monitoring systems (MHMS) have been applied wildly with the goal of realizing predictive maintenance including failures...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1539
SubjectTerms Computational modeling
Data mining
Downtime
Failure
Fault detection
Fault diagnosis
feature engineering
Feature extraction
gated recurrent unit (GRU)
Gearboxes
Health
Logic gates
machine health monitoring (MHM)
Machine learning
Monitoring
Predictive maintenance
Representations
Sensors
Tool wear
tool wear prediction
Windows (intervals)
Title Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit Networks
URI https://ieeexplore.ieee.org/document/7997605
https://www.proquest.com/docview/2174515385
Volume 65
WOSCitedRecordID wos000418415200059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5q8aAHtyrWjTl4EUybTDLbUaVFQYtKhd5CZwNBWuni73feTBoKiuAtkJmQvJc339sfQpcql9Rroi4pssIbKHnhRSqlOjFeyKXyeCacCMMm-GAgRiP53EDXdS2MtTYkn9kOXIZYvpnqJbjKulx68ISGpRucs1irVUcMChqnFRDoGOuNvlVIMpXd4UMPcrh4x0N1XkAlyhoEhZkqPw7igC793f-91x7aqbRIfBPZvo8adnKAttd6C7bQy1NIk7Q4FhrhKLxwD4c0AfwIKIZBBVzObHLr0cxg8KUZ_Ao-eOjahEEjxYOYKT4_RG_93vDuPqnmJyQ6p3yREP-1GWeGOaK1thlXzmqPRooroscuJZplikinHMsd9_RLU0uJYEZrTlxO8iPUnEwn9hhhamQh3dhJsMCIMIql2jAO8pwpYUQbdVckLXXVXBxmXHyUwchIZemZUAITyooJbXRV7_iMjTX-WNsCotfrKnq30dmKa2UlefMSTCwKxzg9-X3XKdryzxYx8_oMNRezpT1Hm_pr8T6fXYSf6hvnF8hA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KFdSDrypWq-7Bi2DaZPPY7FGlpcU2qFToLXRfIEgrffj73dmkpaAI3gLZJclMZr95D8CNCHlsNVHjRUFkDZQwsiLlx9JTVsi5sHiWmtQNm2BZlo5G_LkCd-taGK21Sz7TTbx0sXw1lUt0lbUYt-CJDUu3cHJWWa21jhlEcTGvgGLPWGv2rYKSPm8Ne23M4mJNC9ZhhLUoGyDkpqr8OIodvnQO_vdmh7Bf6pHkvmD8EVT05Bj2NroL1uBl4BIlNSlKjUghvniPuEQB0kccI6gELmfae7B4pgh60xR5RS889m0iqJOSrMgVn5_AW6c9fOx65QQFT4YxW3jUfm3AEpUYKqXUARNGS4tHggkqx8anMgkE5UaYJDTM0s_3dUzTREnJqAlpeArVyXSiz4DEikfcjA1HG4ymSiS-VAlDiQ5EqtI6tFYkzWXZXhynXHzkzszweW6ZkCMT8pIJdbhd7_gsWmv8sbaGRF-vK-ldh8aKa3kpe_McjawYD_L4_Pdd17DTHQ76eb-XPV3Arn1OWuRhN6C6mC31JWzLr8X7fHblfrBvgarLiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Health+Monitoring+Using+Local+Feature-Based+Gated+Recurrent+Unit+Networks&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Rui+Zhao&rft.au=Dongzhe+Wang&rft.au=Ruqiang+Yan&rft.au=Kezhi+Mao&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=65&rft.issue=2&rft.spage=1539&rft.epage=1548&rft_id=info:doi/10.1109%2FTIE.2017.2733438&rft.externalDocID=7997605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon