Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Conditional Variational Autoencoders-Particle Filter
Accurate prediction of remaining useful life (RUL) is of great significance to the safety and reliability of lithium-ion batteries, which is able to provide useful reference information for maintenance. Particle filter (PF)-based prognostic methods have been widely used in the RUL prediction of batt...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on instrumentation and measurement Jg. 69; H. 11; S. 8831 - 8843 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9456, 1557-9662 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate prediction of remaining useful life (RUL) is of great significance to the safety and reliability of lithium-ion batteries, which is able to provide useful reference information for maintenance. Particle filter (PF)-based prognostic methods have been widely used in the RUL prediction of batteries. However, due to the degeneracy of particles, the prediction accuracy of the traditional PF is not high. In this article, a novel PF framework based on conditional variational autoencoder (CVAE) and a reweighting strategy is proposed to predict the RUL of batteries. First, the CVAE algorithm is described in detail and embedded into the PF framework to substitute the traditional prior distribution so as to alleviate particle degradation. Furthermore, a reweighting strategy is introduced during particle resampling to prevent the loss of particle diversity. Afterward, the state-space model of battery capacity is established on the basis of data analysis. In the end, the proposed CVAE-PF is employed to predict the degradation of the battery capacity, and the RUL can be obtained when the capacity drops to a predefined failure threshold. From the experimental results it can be concluded that the new method is able to achieve better prediction performance compared with some traditional methods. |
|---|---|
| AbstractList | Accurate prediction of remaining useful life (RUL) is of great significance to the safety and reliability of lithium-ion batteries, which is able to provide useful reference information for maintenance. Particle filter (PF)-based prognostic methods have been widely used in the RUL prediction of batteries. However, due to the degeneracy of particles, the prediction accuracy of the traditional PF is not high. In this article, a novel PF framework based on conditional variational autoencoder (CVAE) and a reweighting strategy is proposed to predict the RUL of batteries. First, the CVAE algorithm is described in detail and embedded into the PF framework to substitute the traditional prior distribution so as to alleviate particle degradation. Furthermore, a reweighting strategy is introduced during particle resampling to prevent the loss of particle diversity. Afterward, the state-space model of battery capacity is established on the basis of data analysis. In the end, the proposed CVAE-PF is employed to predict the degradation of the battery capacity, and the RUL can be obtained when the capacity drops to a predefined failure threshold. From the experimental results it can be concluded that the new method is able to achieve better prediction performance compared with some traditional methods. |
| Author | Peng, Kaixiang Dong, Jie Jiao, Ruihua |
| Author_xml | – sequence: 1 givenname: Ruihua orcidid: 0000-0002-5143-6061 surname: Jiao fullname: Jiao, Ruihua email: jorry0123@163.com organization: Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Kaixiang orcidid: 0000-0001-8314-3047 surname: Peng fullname: Peng, Kaixiang email: kaixiang@ustb.edu.cn organization: Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Jie orcidid: 0000-0001-7585-6637 surname: Dong fullname: Dong, Jie email: dongjie@ies.ustb.edu.cn organization: Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China |
| BookMark | eNp9kEtLxDAUhYMoOKPuBTcF1x2TNEnbpQ4-BkYUUbchJjca6TRjkiL-e1NncOHC1X1wzn18U7Tb-x4QOiZ4Rghuzx4XtzOKKZ7RthUYsx00IZzXZSsE3UUTjElTtoyLfTSN8R1jXAtWT9DnA6yU613_WjxFsENXLJ2F4j6AcTo53xfe5lZ6c8OqXOTyQqUEwUHMWQRT5Nbc98aNWtUVzyo4tc3Ph-Sh195AiOW9CsnpDoor1-UBh2jPqi7C0TYeoKery8f5Tbm8u17Mz5elrnidSkq1BsOgYZZTzhqlta4pVw2hhFWMaa2EIERhW4HBxFDLiCUvFQetzItpqgN0upm7Dv5jgJjkux9Cvi5KylhGxTgdVXij0sHHGMDKdXArFb4kwXLEKzNeOeKVW7zZIv5YtEs_n6egXPef8WRjdADwu6fFbf5LVN_JDYso |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TIM_2021_3126804 crossref_primary_10_1016_j_est_2021_103245 crossref_primary_10_1109_ACCESS_2021_3079301 crossref_primary_10_1088_1757_899X_1207_1_012009 crossref_primary_10_1149_1945_7111_adf2e1 crossref_primary_10_3390_batteries10120452 crossref_primary_10_1016_j_est_2024_110575 crossref_primary_10_1109_TIM_2022_3222478 crossref_primary_10_3390_vehicles4010001 crossref_primary_10_1016_j_jpowsour_2023_233760 crossref_primary_10_1039_D2SE01209J crossref_primary_10_1109_TIM_2023_3317473 crossref_primary_10_1016_j_est_2024_114294 crossref_primary_10_1016_j_egyr_2022_09_043 crossref_primary_10_1016_j_energy_2025_135233 crossref_primary_10_1109_TIM_2022_3216594 crossref_primary_10_1016_j_measurement_2022_112093 crossref_primary_10_1016_j_energy_2022_124725 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_3390_electronics11071125 crossref_primary_10_1038_s41598_025_86511_z crossref_primary_10_1002_aisy_202400626 crossref_primary_10_1016_j_apenergy_2023_120808 crossref_primary_10_1016_j_est_2022_105752 crossref_primary_10_1109_TIM_2021_3125108 crossref_primary_10_1155_etep_2242749 crossref_primary_10_1109_TIE_2021_3127035 crossref_primary_10_1109_ACCESS_2021_3136131 crossref_primary_10_1149_1945_7111_ad6d94 crossref_primary_10_1109_TIM_2021_3130287 crossref_primary_10_1109_TIM_2023_3239629 crossref_primary_10_3389_fenrg_2022_973487 crossref_primary_10_1109_JSEN_2021_3104290 crossref_primary_10_1016_j_est_2024_113172 crossref_primary_10_1109_TIM_2023_3291798 crossref_primary_10_1016_j_energy_2022_124415 crossref_primary_10_1109_TIM_2021_3137550 crossref_primary_10_1109_TIM_2022_3142757 crossref_primary_10_1109_TTE_2024_3434553 crossref_primary_10_1002_er_8712 crossref_primary_10_1016_j_est_2023_106812 crossref_primary_10_1016_j_rser_2022_112282 crossref_primary_10_1088_1361_6501_ad7a94 crossref_primary_10_1109_TIM_2022_3156180 crossref_primary_10_3390_s24113382 crossref_primary_10_1016_j_fub_2025_100075 crossref_primary_10_1016_j_inffus_2025_102972 crossref_primary_10_1088_1361_6501_ad4732 crossref_primary_10_1109_TIM_2024_3460947 crossref_primary_10_1016_j_ynexs_2024_100026 crossref_primary_10_1016_j_est_2022_106050 crossref_primary_10_1016_j_egyr_2021_08_182 crossref_primary_10_1016_j_rser_2023_113576 crossref_primary_10_3389_fmech_2021_719718 crossref_primary_10_1016_j_est_2024_113588 crossref_primary_10_1109_ACCESS_2022_3174860 crossref_primary_10_1016_j_energy_2022_123890 crossref_primary_10_1088_1361_6501_ad197c crossref_primary_10_1002_ese3_1823 crossref_primary_10_1016_j_measurement_2021_110276 crossref_primary_10_1109_TPEL_2022_3182135 crossref_primary_10_1109_TIM_2023_3303498 crossref_primary_10_1109_TIM_2021_3058365 crossref_primary_10_1007_s10489_024_05885_1 crossref_primary_10_1016_j_est_2025_116152 crossref_primary_10_3390_su132313333 crossref_primary_10_1002_qre_3563 crossref_primary_10_1016_j_measurement_2022_111046 crossref_primary_10_3390_s25072275 crossref_primary_10_3390_s23146603 crossref_primary_10_1016_j_est_2024_112107 crossref_primary_10_1016_j_egyr_2025_01_046 crossref_primary_10_3390_su15065014 crossref_primary_10_1002_ese3_1952 crossref_primary_10_3390_batteries11080288 crossref_primary_10_1109_ACCESS_2021_3089032 crossref_primary_10_3390_batteries10030089 crossref_primary_10_1016_j_est_2023_109198 crossref_primary_10_1002_sstr_202300196 crossref_primary_10_1007_s40684_025_00751_y crossref_primary_10_1016_j_jpowsour_2022_231750 crossref_primary_10_1186_s10033_024_01055_z crossref_primary_10_1016_j_iot_2022_100643 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1016_j_eswa_2024_125163 crossref_primary_10_1007_s10489_025_06449_7 crossref_primary_10_1149_1945_7111_ad4421 crossref_primary_10_1016_j_eswa_2023_123123 crossref_primary_10_1016_j_est_2023_106645 crossref_primary_10_1109_TIM_2022_3181307 |
| Cites_doi | 10.1016/j.ress.2017.11.021 10.1016/j.microrel.2013.01.006 10.1109/TNNLS.2016.2582798 10.1109/TIE.2016.2586442 10.1016/j.jpowsour.2004.10.028 10.1016/j.apenergy.2016.04.057 10.1016/j.apenergy.2015.08.119 10.1023/A:1008935410038 10.1016/j.neucom.2015.12.041 10.1109/TVT.2018.2805189 10.1016/j.rser.2019.109405 10.1016/j.microrel.2012.12.004 10.1016/j.jpowsour.2011.08.040 10.1109/TIM.2016.2622838 10.1109/VPPC.2015.7352977 10.1016/j.apenergy.2013.12.020 10.1109/MPE.2017.2708812 10.1049/ip-rsn:19990255 10.1016/j.eswa.2013.12.031 10.1109/FG.2017.117 10.1016/j.microrel.2013.03.010 10.1111/j.1467-9868.2009.00736.x 10.1109/MIM.2008.4579269 10.1016/j.jpowsour.2004.02.032 10.1177/0142331208092030 10.1016/j.microrel.2017.02.012 10.1109/TIE.2017.2782224 10.1109/TEVC.2008.2011729 10.3390/s100605774 10.1016/j.jpowsour.2009.11.048 10.1016/j.eswa.2010.05.086 10.1109/TIM.2015.2427891 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2020.2996004 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1557-9662 |
| EndPage | 8843 |
| ExternalDocumentID | 10_1109_TIM_2020_2996004 9097256 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFB0306403 – fundername: Natural Science Foundation of China (NSFC) grantid: 61873024; 61773053 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the China Central Universities of USTB grantid: FRF-TP-19-049A1Z funderid: 10.13039/501100012226 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c357t-22cced4e84f52548accc725a81214344cca6611a0f3ed01d2f41f1b35ecadbd83 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000577673200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:18:32 EDT 2025 Sat Nov 29 04:37:59 EST 2025 Tue Nov 18 22:24:00 EST 2025 Wed Aug 27 02:30:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c357t-22cced4e84f52548accc725a81214344cca6611a0f3ed01d2f41f1b35ecadbd83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5143-6061 0000-0001-8314-3047 0000-0001-7585-6637 |
| PQID | 2449964528 |
| PQPubID | 85462 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_9097256 crossref_citationtrail_10_1109_TIM_2020_2996004 proquest_journals_2449964528 crossref_primary_10_1109_TIM_2020_2996004 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref15 ref14 ref31 ref33 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 kingma (ref30) 2013 ref24 ref23 ref26 ref25 ref20 doersch (ref32) 2016 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref29 doi: 10.1016/j.ress.2017.11.021 – ident: ref12 doi: 10.1016/j.microrel.2013.01.006 – ident: ref27 doi: 10.1109/TNNLS.2016.2582798 – ident: ref26 doi: 10.1109/TIE.2016.2586442 – ident: ref8 doi: 10.1016/j.jpowsour.2004.10.028 – ident: ref16 doi: 10.1016/j.apenergy.2016.04.057 – ident: ref15 doi: 10.1016/j.apenergy.2015.08.119 – ident: ref23 doi: 10.1023/A:1008935410038 – ident: ref14 doi: 10.1016/j.neucom.2015.12.041 – year: 2016 ident: ref32 article-title: Tutorial on variational autoencoders publication-title: arXiv 1606 05908 – ident: ref28 doi: 10.1109/TVT.2018.2805189 – ident: ref7 doi: 10.1016/j.rser.2019.109405 – ident: ref24 doi: 10.1016/j.microrel.2012.12.004 – ident: ref3 doi: 10.1016/j.jpowsour.2011.08.040 – ident: ref11 doi: 10.1109/TIM.2016.2622838 – ident: ref9 doi: 10.1109/VPPC.2015.7352977 – ident: ref4 doi: 10.1016/j.apenergy.2013.12.020 – ident: ref2 doi: 10.1109/MPE.2017.2708812 – ident: ref33 doi: 10.1049/ip-rsn:19990255 – year: 2013 ident: ref30 article-title: Auto-encoding variational bayes publication-title: arXiv 1312 6114 – ident: ref25 doi: 10.1016/j.eswa.2013.12.031 – ident: ref31 doi: 10.1109/FG.2017.117 – ident: ref13 doi: 10.1016/j.microrel.2013.03.010 – ident: ref20 doi: 10.1111/j.1467-9868.2009.00736.x – ident: ref34 doi: 10.1109/MIM.2008.4579269 – ident: ref10 doi: 10.1016/j.jpowsour.2004.02.032 – ident: ref19 doi: 10.1177/0142331208092030 – ident: ref5 doi: 10.1016/j.microrel.2017.02.012 – ident: ref17 doi: 10.1109/TIE.2017.2782224 – ident: ref22 doi: 10.1109/TEVC.2008.2011729 – ident: ref6 doi: 10.3390/s100605774 – ident: ref1 doi: 10.1016/j.jpowsour.2009.11.048 – ident: ref21 doi: 10.1016/j.eswa.2010.05.086 – ident: ref18 doi: 10.1109/TIM.2015.2427891 |
| SSID | ssj0007647 |
| Score | 2.589851 |
| Snippet | Accurate prediction of remaining useful life (RUL) is of great significance to the safety and reliability of lithium-ion batteries, which is able to provide... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8831 |
| SubjectTerms | Algorithms Batteries Conditional variational autoencoder (CVAE) Data analysis Data models Degradation Estimation Life prediction Lithium Lithium-ion batteries lithium-ion batteries (LIBs) Mathematical model particle filter (PF) Predictive models Rechargeable batteries Reliability remaining useful life (RUL) Resampling resampling method Useful life |
| Title | Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Conditional Variational Autoencoders-Particle Filter |
| URI | https://ieeexplore.ieee.org/document/9097256 https://www.proquest.com/docview/2449964528 |
| Volume | 69 |
| WOSCitedRecordID | wos000577673200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB5UTtCHO88fuKcnefBFuLptkzTto4jLCZ6IqPhWsukEF9atbFv9952k2eXAQ7i3NExKy5dkZjKZbwCOM1TCaGkiS7Z9JFBm0VgKESFXpH45kpfhE4Wv1PV1_vhY3KzAr2UuDCL6y2d46po-ll_VpnNHZcPCcc3IbBVWlVJ9rtZy11WZ6PkxE1rAZBUsQpJxMby7_EOOYBqfpo6KJJRkW6ggX1Plw0bstcvo2_991xZ8DVYkO-th_w4rONuGzb-4Bbdh3d_tNM0OvN3ic18Hgt03aLspu5pYZDdzF6NxuLDaUlf7NOmeo0t67Dk3yYWmVoMVo67z2oW2_bEheyD3OhwhsrOurR0VZuXv1YdpyEYTF4PfhfvRxd357yjUW4gMl6qN0tQYrATmwkryG3NtjKH_0mQDkFUlBIFN2jzRseVYxUmVWpHYZMwlGl2Nq5zvwdqsnuE-sMzmWJBlprOxEEpLrTnnQpMoeUQE0QCGCwhKE8jIXU2MaemdkrgoCbTSgVYG0AZwshzx0hNxfCK740BaygV8BnC4QLkMK7UpybyhQUKm-Y9_jzqADffuPv_wENbaeYc_4Yt5bSfN_MhPwnfdUNoE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_SrmXbwz7alWXrOj30pTAntiX547GUhYSmoYy09M0o8okF2njEdvfv7yQrobAy2JssJFvmJ-nudLrfAZwmmAqtpA4M6faBQJkECylEgDwl8cuRrAwXKDxNZ7Ps7i6_7sG3bSwMIrrLZziwRefLLyvd2qOyYW65ZmSyAy_odXHURWtt9900ER1DZkRLmPSCjVMyzIfzyRWZgnE4iC0ZiU_KthFCLqvKX1uxky-jt_83snfwxuuR7LwD_j30cHUAr5-wCx7AvrvdqetD-P0DH7pMEOymRtPes-nSILteWy-NRYZVhqqan8v2IZjQY8e6SUY0lWosGVVdVNa57Q4O2S0Z2P4QkZ23TWXJMEt3s95PRDZaWi_8B7gZfZ9fjAOfcSHQXKZNEMdaYykwE0aS5ZgprTX9lyItgPQqIQhukueRCg3HMozK2IjIRAsuUatyUWb8CHZX1Qo_AktMhjnpZipZCJEqqRTnXChqSjYRQdSH4QaCQns6cpsV475wZkmYFwRaYUErPGh9ONv2-NVRcfyj7aEFadvO49OH4w3KhV-rdUEKDnUSMs4-Pd_rK7wcz6-mxXQyu_wMr-x3umjEY9ht1i1-gT392Czr9YmbkH8AWmHdSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Prediction+of+Lithium-Ion+Batteries+Based+on+Conditional+Variational+Autoencoders-Particle+Filter&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiao%2C+Ruihua&rft.au=Peng%2C+Kaixiang&rft.au=Dong%2C+Jie&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=69&rft.issue=11&rft.spage=8831&rft.epage=8843&rft_id=info:doi/10.1109%2FTIM.2020.2996004&rft.externalDocID=9097256 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |