Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Conditional Variational Autoencoders-Particle Filter

Accurate prediction of remaining useful life (RUL) is of great significance to the safety and reliability of lithium-ion batteries, which is able to provide useful reference information for maintenance. Particle filter (PF)-based prognostic methods have been widely used in the RUL prediction of batt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 69; H. 11; S. 8831 - 8843
Hauptverfasser: Jiao, Ruihua, Peng, Kaixiang, Dong, Jie
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate prediction of remaining useful life (RUL) is of great significance to the safety and reliability of lithium-ion batteries, which is able to provide useful reference information for maintenance. Particle filter (PF)-based prognostic methods have been widely used in the RUL prediction of batteries. However, due to the degeneracy of particles, the prediction accuracy of the traditional PF is not high. In this article, a novel PF framework based on conditional variational autoencoder (CVAE) and a reweighting strategy is proposed to predict the RUL of batteries. First, the CVAE algorithm is described in detail and embedded into the PF framework to substitute the traditional prior distribution so as to alleviate particle degradation. Furthermore, a reweighting strategy is introduced during particle resampling to prevent the loss of particle diversity. Afterward, the state-space model of battery capacity is established on the basis of data analysis. In the end, the proposed CVAE-PF is employed to predict the degradation of the battery capacity, and the RUL can be obtained when the capacity drops to a predefined failure threshold. From the experimental results it can be concluded that the new method is able to achieve better prediction performance compared with some traditional methods.
AbstractList Accurate prediction of remaining useful life (RUL) is of great significance to the safety and reliability of lithium-ion batteries, which is able to provide useful reference information for maintenance. Particle filter (PF)-based prognostic methods have been widely used in the RUL prediction of batteries. However, due to the degeneracy of particles, the prediction accuracy of the traditional PF is not high. In this article, a novel PF framework based on conditional variational autoencoder (CVAE) and a reweighting strategy is proposed to predict the RUL of batteries. First, the CVAE algorithm is described in detail and embedded into the PF framework to substitute the traditional prior distribution so as to alleviate particle degradation. Furthermore, a reweighting strategy is introduced during particle resampling to prevent the loss of particle diversity. Afterward, the state-space model of battery capacity is established on the basis of data analysis. In the end, the proposed CVAE-PF is employed to predict the degradation of the battery capacity, and the RUL can be obtained when the capacity drops to a predefined failure threshold. From the experimental results it can be concluded that the new method is able to achieve better prediction performance compared with some traditional methods.
Author Peng, Kaixiang
Dong, Jie
Jiao, Ruihua
Author_xml – sequence: 1
  givenname: Ruihua
  orcidid: 0000-0002-5143-6061
  surname: Jiao
  fullname: Jiao, Ruihua
  email: jorry0123@163.com
  organization: Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Kaixiang
  orcidid: 0000-0001-8314-3047
  surname: Peng
  fullname: Peng, Kaixiang
  email: kaixiang@ustb.edu.cn
  organization: Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0001-7585-6637
  surname: Dong
  fullname: Dong, Jie
  email: dongjie@ies.ustb.edu.cn
  organization: Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
BookMark eNp9kEtLxDAUhYMoOKPuBTcF1x2TNEnbpQ4-BkYUUbchJjca6TRjkiL-e1NncOHC1X1wzn18U7Tb-x4QOiZ4Rghuzx4XtzOKKZ7RthUYsx00IZzXZSsE3UUTjElTtoyLfTSN8R1jXAtWT9DnA6yU613_WjxFsENXLJ2F4j6AcTo53xfe5lZ6c8OqXOTyQqUEwUHMWQRT5Nbc98aNWtUVzyo4tc3Ph-Sh195AiOW9CsnpDoor1-UBh2jPqi7C0TYeoKery8f5Tbm8u17Mz5elrnidSkq1BsOgYZZTzhqlta4pVw2hhFWMaa2EIERhW4HBxFDLiCUvFQetzItpqgN0upm7Dv5jgJjkux9Cvi5KylhGxTgdVXij0sHHGMDKdXArFb4kwXLEKzNeOeKVW7zZIv5YtEs_n6egXPef8WRjdADwu6fFbf5LVN_JDYso
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIM_2021_3126804
crossref_primary_10_1016_j_est_2021_103245
crossref_primary_10_1109_ACCESS_2021_3079301
crossref_primary_10_1088_1757_899X_1207_1_012009
crossref_primary_10_1149_1945_7111_adf2e1
crossref_primary_10_3390_batteries10120452
crossref_primary_10_1016_j_est_2024_110575
crossref_primary_10_1109_TIM_2022_3222478
crossref_primary_10_3390_vehicles4010001
crossref_primary_10_1016_j_jpowsour_2023_233760
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_1109_TIM_2023_3317473
crossref_primary_10_1016_j_est_2024_114294
crossref_primary_10_1016_j_egyr_2022_09_043
crossref_primary_10_1016_j_energy_2025_135233
crossref_primary_10_1109_TIM_2022_3216594
crossref_primary_10_1016_j_measurement_2022_112093
crossref_primary_10_1016_j_energy_2022_124725
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_3390_electronics11071125
crossref_primary_10_1038_s41598_025_86511_z
crossref_primary_10_1002_aisy_202400626
crossref_primary_10_1016_j_apenergy_2023_120808
crossref_primary_10_1016_j_est_2022_105752
crossref_primary_10_1109_TIM_2021_3125108
crossref_primary_10_1155_etep_2242749
crossref_primary_10_1109_TIE_2021_3127035
crossref_primary_10_1109_ACCESS_2021_3136131
crossref_primary_10_1149_1945_7111_ad6d94
crossref_primary_10_1109_TIM_2021_3130287
crossref_primary_10_1109_TIM_2023_3239629
crossref_primary_10_3389_fenrg_2022_973487
crossref_primary_10_1109_JSEN_2021_3104290
crossref_primary_10_1016_j_est_2024_113172
crossref_primary_10_1109_TIM_2023_3291798
crossref_primary_10_1016_j_energy_2022_124415
crossref_primary_10_1109_TIM_2021_3137550
crossref_primary_10_1109_TIM_2022_3142757
crossref_primary_10_1109_TTE_2024_3434553
crossref_primary_10_1002_er_8712
crossref_primary_10_1016_j_est_2023_106812
crossref_primary_10_1016_j_rser_2022_112282
crossref_primary_10_1088_1361_6501_ad7a94
crossref_primary_10_1109_TIM_2022_3156180
crossref_primary_10_3390_s24113382
crossref_primary_10_1016_j_fub_2025_100075
crossref_primary_10_1016_j_inffus_2025_102972
crossref_primary_10_1088_1361_6501_ad4732
crossref_primary_10_1109_TIM_2024_3460947
crossref_primary_10_1016_j_ynexs_2024_100026
crossref_primary_10_1016_j_est_2022_106050
crossref_primary_10_1016_j_egyr_2021_08_182
crossref_primary_10_1016_j_rser_2023_113576
crossref_primary_10_3389_fmech_2021_719718
crossref_primary_10_1016_j_est_2024_113588
crossref_primary_10_1109_ACCESS_2022_3174860
crossref_primary_10_1016_j_energy_2022_123890
crossref_primary_10_1088_1361_6501_ad197c
crossref_primary_10_1002_ese3_1823
crossref_primary_10_1016_j_measurement_2021_110276
crossref_primary_10_1109_TPEL_2022_3182135
crossref_primary_10_1109_TIM_2023_3303498
crossref_primary_10_1109_TIM_2021_3058365
crossref_primary_10_1007_s10489_024_05885_1
crossref_primary_10_1016_j_est_2025_116152
crossref_primary_10_3390_su132313333
crossref_primary_10_1002_qre_3563
crossref_primary_10_1016_j_measurement_2022_111046
crossref_primary_10_3390_s25072275
crossref_primary_10_3390_s23146603
crossref_primary_10_1016_j_est_2024_112107
crossref_primary_10_1016_j_egyr_2025_01_046
crossref_primary_10_3390_su15065014
crossref_primary_10_1002_ese3_1952
crossref_primary_10_3390_batteries11080288
crossref_primary_10_1109_ACCESS_2021_3089032
crossref_primary_10_3390_batteries10030089
crossref_primary_10_1016_j_est_2023_109198
crossref_primary_10_1002_sstr_202300196
crossref_primary_10_1007_s40684_025_00751_y
crossref_primary_10_1016_j_jpowsour_2022_231750
crossref_primary_10_1186_s10033_024_01055_z
crossref_primary_10_1016_j_iot_2022_100643
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1016_j_eswa_2024_125163
crossref_primary_10_1007_s10489_025_06449_7
crossref_primary_10_1149_1945_7111_ad4421
crossref_primary_10_1016_j_eswa_2023_123123
crossref_primary_10_1016_j_est_2023_106645
crossref_primary_10_1109_TIM_2022_3181307
Cites_doi 10.1016/j.ress.2017.11.021
10.1016/j.microrel.2013.01.006
10.1109/TNNLS.2016.2582798
10.1109/TIE.2016.2586442
10.1016/j.jpowsour.2004.10.028
10.1016/j.apenergy.2016.04.057
10.1016/j.apenergy.2015.08.119
10.1023/A:1008935410038
10.1016/j.neucom.2015.12.041
10.1109/TVT.2018.2805189
10.1016/j.rser.2019.109405
10.1016/j.microrel.2012.12.004
10.1016/j.jpowsour.2011.08.040
10.1109/TIM.2016.2622838
10.1109/VPPC.2015.7352977
10.1016/j.apenergy.2013.12.020
10.1109/MPE.2017.2708812
10.1049/ip-rsn:19990255
10.1016/j.eswa.2013.12.031
10.1109/FG.2017.117
10.1016/j.microrel.2013.03.010
10.1111/j.1467-9868.2009.00736.x
10.1109/MIM.2008.4579269
10.1016/j.jpowsour.2004.02.032
10.1177/0142331208092030
10.1016/j.microrel.2017.02.012
10.1109/TIE.2017.2782224
10.1109/TEVC.2008.2011729
10.3390/s100605774
10.1016/j.jpowsour.2009.11.048
10.1016/j.eswa.2010.05.086
10.1109/TIM.2015.2427891
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2020.2996004
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 8843
ExternalDocumentID 10_1109_TIM_2020_2996004
9097256
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFB0306403
– fundername: Natural Science Foundation of China (NSFC)
  grantid: 61873024; 61773053
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the China Central Universities of USTB
  grantid: FRF-TP-19-049A1Z
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c357t-22cced4e84f52548accc725a81214344cca6611a0f3ed01d2f41f1b35ecadbd83
IEDL.DBID RIE
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000577673200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:18:32 EDT 2025
Sat Nov 29 04:37:59 EST 2025
Tue Nov 18 22:24:00 EST 2025
Wed Aug 27 02:30:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-22cced4e84f52548accc725a81214344cca6611a0f3ed01d2f41f1b35ecadbd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5143-6061
0000-0001-8314-3047
0000-0001-7585-6637
PQID 2449964528
PQPubID 85462
PageCount 13
ParticipantIDs ieee_primary_9097256
crossref_citationtrail_10_1109_TIM_2020_2996004
proquest_journals_2449964528
crossref_primary_10_1109_TIM_2020_2996004
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref33
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
kingma (ref30) 2013
ref24
ref23
ref26
ref25
ref20
doersch (ref32) 2016
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref29
  doi: 10.1016/j.ress.2017.11.021
– ident: ref12
  doi: 10.1016/j.microrel.2013.01.006
– ident: ref27
  doi: 10.1109/TNNLS.2016.2582798
– ident: ref26
  doi: 10.1109/TIE.2016.2586442
– ident: ref8
  doi: 10.1016/j.jpowsour.2004.10.028
– ident: ref16
  doi: 10.1016/j.apenergy.2016.04.057
– ident: ref15
  doi: 10.1016/j.apenergy.2015.08.119
– ident: ref23
  doi: 10.1023/A:1008935410038
– ident: ref14
  doi: 10.1016/j.neucom.2015.12.041
– year: 2016
  ident: ref32
  article-title: Tutorial on variational autoencoders
  publication-title: arXiv 1606 05908
– ident: ref28
  doi: 10.1109/TVT.2018.2805189
– ident: ref7
  doi: 10.1016/j.rser.2019.109405
– ident: ref24
  doi: 10.1016/j.microrel.2012.12.004
– ident: ref3
  doi: 10.1016/j.jpowsour.2011.08.040
– ident: ref11
  doi: 10.1109/TIM.2016.2622838
– ident: ref9
  doi: 10.1109/VPPC.2015.7352977
– ident: ref4
  doi: 10.1016/j.apenergy.2013.12.020
– ident: ref2
  doi: 10.1109/MPE.2017.2708812
– ident: ref33
  doi: 10.1049/ip-rsn:19990255
– year: 2013
  ident: ref30
  article-title: Auto-encoding variational bayes
  publication-title: arXiv 1312 6114
– ident: ref25
  doi: 10.1016/j.eswa.2013.12.031
– ident: ref31
  doi: 10.1109/FG.2017.117
– ident: ref13
  doi: 10.1016/j.microrel.2013.03.010
– ident: ref20
  doi: 10.1111/j.1467-9868.2009.00736.x
– ident: ref34
  doi: 10.1109/MIM.2008.4579269
– ident: ref10
  doi: 10.1016/j.jpowsour.2004.02.032
– ident: ref19
  doi: 10.1177/0142331208092030
– ident: ref5
  doi: 10.1016/j.microrel.2017.02.012
– ident: ref17
  doi: 10.1109/TIE.2017.2782224
– ident: ref22
  doi: 10.1109/TEVC.2008.2011729
– ident: ref6
  doi: 10.3390/s100605774
– ident: ref1
  doi: 10.1016/j.jpowsour.2009.11.048
– ident: ref21
  doi: 10.1016/j.eswa.2010.05.086
– ident: ref18
  doi: 10.1109/TIM.2015.2427891
SSID ssj0007647
Score 2.589851
Snippet Accurate prediction of remaining useful life (RUL) is of great significance to the safety and reliability of lithium-ion batteries, which is able to provide...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8831
SubjectTerms Algorithms
Batteries
Conditional variational autoencoder (CVAE)
Data analysis
Data models
Degradation
Estimation
Life prediction
Lithium
Lithium-ion batteries
lithium-ion batteries (LIBs)
Mathematical model
particle filter (PF)
Predictive models
Rechargeable batteries
Reliability
remaining useful life (RUL)
Resampling
resampling method
Useful life
Title Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Conditional Variational Autoencoders-Particle Filter
URI https://ieeexplore.ieee.org/document/9097256
https://www.proquest.com/docview/2449964528
Volume 69
WOSCitedRecordID wos000577673200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS-QwEB5UTtCHO88fuKcnefBFuLptkzTto4jLCZ6IqPhWsukEF9atbFv9952k2eXAQ7i3NExKy5dkZjKZbwCOM1TCaGkiS7Z9JFBm0VgKESFXpH45kpfhE4Wv1PV1_vhY3KzAr2UuDCL6y2d46po-ll_VpnNHZcPCcc3IbBVWlVJ9rtZy11WZ6PkxE1rAZBUsQpJxMby7_EOOYBqfpo6KJJRkW6ggX1Plw0bstcvo2_991xZ8DVYkO-th_w4rONuGzb-4Bbdh3d_tNM0OvN3ic18Hgt03aLspu5pYZDdzF6NxuLDaUlf7NOmeo0t67Dk3yYWmVoMVo67z2oW2_bEheyD3OhwhsrOurR0VZuXv1YdpyEYTF4PfhfvRxd357yjUW4gMl6qN0tQYrATmwkryG3NtjKH_0mQDkFUlBIFN2jzRseVYxUmVWpHYZMwlGl2Nq5zvwdqsnuE-sMzmWJBlprOxEEpLrTnnQpMoeUQE0QCGCwhKE8jIXU2MaemdkrgoCbTSgVYG0AZwshzx0hNxfCK740BaygV8BnC4QLkMK7UpybyhQUKm-Y9_jzqADffuPv_wENbaeYc_4Yt5bSfN_MhPwnfdUNoE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_SrmXbwz7alWXrOj30pTAntiX547GUhYSmoYy09M0o8okF2njEdvfv7yQrobAy2JssJFvmJ-nudLrfAZwmmAqtpA4M6faBQJkECylEgDwl8cuRrAwXKDxNZ7Ps7i6_7sG3bSwMIrrLZziwRefLLyvd2qOyYW65ZmSyAy_odXHURWtt9900ER1DZkRLmPSCjVMyzIfzyRWZgnE4iC0ZiU_KthFCLqvKX1uxky-jt_83snfwxuuR7LwD_j30cHUAr5-wCx7AvrvdqetD-P0DH7pMEOymRtPes-nSILteWy-NRYZVhqqan8v2IZjQY8e6SUY0lWosGVVdVNa57Q4O2S0Z2P4QkZ23TWXJMEt3s95PRDZaWi_8B7gZfZ9fjAOfcSHQXKZNEMdaYykwE0aS5ZgprTX9lyItgPQqIQhukueRCg3HMozK2IjIRAsuUatyUWb8CHZX1Qo_AktMhjnpZipZCJEqqRTnXChqSjYRQdSH4QaCQns6cpsV475wZkmYFwRaYUErPGh9ONv2-NVRcfyj7aEFadvO49OH4w3KhV-rdUEKDnUSMs4-Pd_rK7wcz6-mxXQyu_wMr-x3umjEY9ht1i1-gT392Czr9YmbkH8AWmHdSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+Useful+Life+Prediction+of+Lithium-Ion+Batteries+Based+on+Conditional+Variational+Autoencoders-Particle+Filter&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jiao%2C+Ruihua&rft.au=Peng%2C+Kaixiang&rft.au=Dong%2C+Jie&rft.date=2020-11-01&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=69&rft.issue=11&rft.spage=8831&rft.epage=8843&rft_id=info:doi/10.1109%2FTIM.2020.2996004&rft.externalDocID=9097256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon