Smart manufacturing under limited and heterogeneous data: a sim-to-real transfer learning with convolutional variational autoencoder in thermoforming
Data in advanced manufacturing are often sparse and collected from various sensory devices in a heterogeneous and multi-modal fashion. Thus, for such intricate input spaces, learning robust and reliable predictive models for product quality assessments entails implementing complex nonlinear models s...
Uloženo v:
| Vydáno v: | International journal of computer integrated manufacturing Ročník 37; číslo 1-2; s. 18 - 36 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
01.02.2024
|
| Témata: | |
| ISSN: | 0951-192X, 1362-3052 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!