Hypoxia-induced transcriptional stress is mediated by ROS-induced R-loops
Abstract Hypoxia is a common feature of solid tumors and is associated with poor patient prognosis, therapy resistance and metastasis. Radiobiological hypoxia (<0.1% O2) is one of the few physiologically relevant stresses that activates both the replication stress/DNA damage response and the unfo...
Saved in:
| Published in: | Nucleic acids research Vol. 51; no. 21; pp. 11584 - 11599 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
27.11.2023
|
| Subjects: | |
| ISSN: | 0305-1048, 1362-4962, 1362-4962 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract
Hypoxia is a common feature of solid tumors and is associated with poor patient prognosis, therapy resistance and metastasis. Radiobiological hypoxia (<0.1% O2) is one of the few physiologically relevant stresses that activates both the replication stress/DNA damage response and the unfolded protein response. Recently, we found that hypoxia also leads to the robust accumulation of R-loops, which led us to question here both the mechanism and consequence of hypoxia-induced R-loops. Interestingly, we found that the mechanism of R-loop accumulation in hypoxia is dependent on non-DNA damaging levels of reactive oxygen species. We show that hypoxia-induced R-loops play a critical role in the transcriptional stress response, evidenced by the repression of ribosomal RNA synthesis and the translocation of nucleolin from the nucleolus into the nucleoplasm. Upon depletion of R-loops, we observed a rescue of both rRNA transcription and nucleolin translocation in hypoxia. Mechanistically, R-loops accumulate on the rDNA in hypoxia and promote the deposition of heterochromatic H3K9me2 which leads to the inhibition of Pol I-mediated transcription of rRNA. These data highlight a novel mechanistic insight into the hypoxia-induced transcriptional stress response through the ROS–R-loop–H3K9me2 axis. Overall, this study highlights the contribution of transcriptional stress to hypoxia-mediated tumorigenesis.
Graphical Abstract
Graphical Abstract |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0305-1048 1362-4962 1362-4962 |
| DOI: | 10.1093/nar/gkad858 |