MotionBenchMaker: A Tool to Generate and Benchmark Motion Planning Datasets

Recently, there has been a wealth of development in motion planning for robotic manipulation-new motion planners are continuously proposed, each with their own unique strengths and weaknesses. However, evaluating new planners is challenging and researchers often create their own ad-hoc problems for...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 7; no. 2; pp. 882 - 889
Main Authors: Chamzas, Constantinos, Quintero-Pena, Carlos, Kingston, Zachary, Orthey, Andreas, Rakita, Daniel, Gleicher, Michael, Toussaint, Marc, Kavraki, Lydia E.
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, there has been a wealth of development in motion planning for robotic manipulation-new motion planners are continuously proposed, each with their own unique strengths and weaknesses. However, evaluating new planners is challenging and researchers often create their own ad-hoc problems for benchmarking, which is time-consuming, prone to bias, and does not directly compare against other state-of-the-art planners. We present MotionBenchMaker , an open-source tool to generate benchmarking datasets for realistic robot manipulation problems. MotionBenchMaker is designed to be an extensible, easy-to-use tool that allows users to both generate datasets and benchmark them by comparing motion planning algorithms. Empirically, we show the benefit of using MotionBenchMaker as a tool to procedurally generate datasets which helps in the fair evaluation of planners. We also present a suite of 40 prefabricated datasets, with 5 different commonly used robots in 8 environments, to serve as a common ground to accelerate motion planning research.
AbstractList Recently, there has been a wealth of development in motion planning for robotic manipulation—new motion planners are continuously proposed, each with their own unique strengths and weaknesses. However, evaluating new planners is challenging and researchers often create their own ad-hoc problems for benchmarking, which is time-consuming, prone to bias, and does not directly compare against other state-of-the-art planners. We present MotionBenchMaker , an open-source tool to generate benchmarking datasets for realistic robot manipulation problems. MotionBenchMaker is designed to be an extensible, easy-to-use tool that allows users to both generate datasets and benchmark them by comparing motion planning algorithms. Empirically, we show the benefit of using MotionBenchMaker as a tool to procedurally generate datasets which helps in the fair evaluation of planners. We also present a suite of 40 prefabricated datasets, with 5 different commonly used robots in 8 environments, to serve as a common ground to accelerate motion planning research.
Author Chamzas, Constantinos
Kingston, Zachary
Orthey, Andreas
Gleicher, Michael
Toussaint, Marc
Rakita, Daniel
Quintero-Pena, Carlos
Kavraki, Lydia E.
Author_xml – sequence: 1
  givenname: Constantinos
  orcidid: 0000-0001-5830-5542
  surname: Chamzas
  fullname: Chamzas, Constantinos
  email: chamzas@rice.edu
  organization: Department of Computer Science, Rice University, Houston, TX, USA
– sequence: 2
  givenname: Carlos
  orcidid: 0000-0003-0915-8691
  surname: Quintero-Pena
  fullname: Quintero-Pena, Carlos
  email: carlosq@rice.edu
  organization: Department of Computer Science, Rice University, Houston, TX, USA
– sequence: 3
  givenname: Zachary
  orcidid: 0000-0002-3896-5110
  surname: Kingston
  fullname: Kingston, Zachary
  email: zak@rice.edu
  organization: Department of Computer Science, Rice University, Houston, TX, USA
– sequence: 4
  givenname: Andreas
  orcidid: 0000-0002-1478-1405
  surname: Orthey
  fullname: Orthey, Andreas
  email: aorthey@is.mpg.de
  organization: Learning and Intelligent Systems Lab, TU, Berlin, Germany
– sequence: 5
  givenname: Daniel
  orcidid: 0000-0001-6292-8515
  surname: Rakita
  fullname: Rakita, Daniel
  email: rakita@cs.wisc.edu
  organization: Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 6
  givenname: Michael
  orcidid: 0000-0003-3295-4071
  surname: Gleicher
  fullname: Gleicher, Michael
  email: gleicher@cs.wisc.edu
  organization: Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 7
  givenname: Marc
  orcidid: 0000-0002-5487-6767
  surname: Toussaint
  fullname: Toussaint, Marc
  email: toussaint@tu-berlin.de
  organization: Learning and Intelligent Systems Lab, TU, Berlin, Germany
– sequence: 8
  givenname: Lydia E.
  orcidid: 0000-0003-0699-8038
  surname: Kavraki
  fullname: Kavraki, Lydia E.
  email: kavraki@rice.edu
  organization: Department of Computer Science, Rice University, Houston, TX, USA
BookMark eNp9kM9PwyAYQImZiXPubuKFxHMn8BUo3uavadyiMfPcYEu1W4UJ7OB_b2sXYzx44ju8xwfvEA2sswahY0omlBJ1Nn-aThhhdAIUQBDYQ0MGUiYghRj8mg_QOIQVIYRyJkHxIbpfuFg7e2Fs8bbQa-PP8RQvnWtwdHhmrPE6Gqxtib-Rd-3XuFfwY6Otre0rvtJRBxPDEdqvdBPMeHeO0PPN9fLyNpk_zO4up_OkAC5jQktCGVUcdJmWTGYiFTQridEV1yAKInhaVlyyLFNatxQlIEBVaQoFJy8qgxE67e_dePexNSHmK7f1tl2ZM9EFUKkQLSV6qvAuBG-qvKij7l4eva6bnJK8a5e37fKuXb5r14rkj7jxdfvxz_-Uk16pjTE_uBIpB6ngC_0meKw
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_LRA_2022_3191803
crossref_primary_10_1109_LRA_2025_3560885
crossref_primary_10_1016_j_actaastro_2024_12_048
crossref_primary_10_1109_LRA_2024_3469809
crossref_primary_10_1109_LRA_2022_3202633
crossref_primary_10_1108_IR_02_2024_0049
crossref_primary_10_1109_LRA_2025_3544491
crossref_primary_10_1109_LRA_2025_3575307
crossref_primary_10_1109_LRA_2024_3504316
crossref_primary_10_3390_s24092794
crossref_primary_10_1109_ACCESS_2023_3299178
crossref_primary_10_1109_LRA_2023_3286815
crossref_primary_10_1146_annurev_control_061623_094742
crossref_primary_10_1016_j_engappai_2025_111846
crossref_primary_10_1109_LRA_2025_3575013
crossref_primary_10_3390_s25175282
crossref_primary_10_1109_LRA_2023_3296930
Cites_doi 10.1109/LRA.2020.2972837
10.1109/LRA.2020.2964160
10.1109/ICRA48506.2021.9561104
10.1109/IROS45743.2020.9341431
10.1109/ICRA.2015.7139620
10.1109/ICRA48506.2021.9560917
10.1177/0278364911406761
10.1109/ROBOT.1997.619371
10.1109/ICRA40945.2020.9197338
10.1146/annurev-control-091420-084139
10.1109/LRA.2020.2974707
10.3389/frobt.2015.00013
10.1109/ACCESS.2019.2956775
10.1109/IROS47612.2022.9981698
10.1109/MRA.2015.2448951
10.1609/socs.v10i1.18510
10.1109/ICRA.2017.7989545
10.1201/9781439864135-43
10.1109/LRA.2021.3063063
10.1146/annurev-control-060117-104848
10.1109/LRA.2021.3068913
10.1177/02783649231209337
10.1109/IROS45743.2020.9341677
10.1109/ICRA.2018.8460730
10.1109/MRA.2012.2205651
10.1177/0278364917695640
10.1109/LRA.2020.2972870
10.1109/IROS51168.2021.9636651
10.1109/SSRR50563.2020.9292572
10.1007/s10514-012-9321-0
10.1146/annurev-control-060117-105226
10.1109/CVPR42600.2020.01146
10.1109/IVS.2017.7995802
10.1109/LRA.2021.3129136
10.1109/CVPR.2009.5206848
10.1109/TRO.2021.3070975
10.1109/ROBOT.2004.1308891
10.1109/LRA.2020.2965891
10.1109/LRA.2020.2969912
10.1109/MRA.2015.2448276
10.1109/ICRA48506.2021.9562038
10.1109/CRV52889.2021.00019
10.1109/ICRA.2015.7140073
10.1109/ICRA.2016.7487514
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2021.3133603
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 889
ExternalDocumentID 10_1109_LRA_2021_3133603
9645379
Genre orig-research
GrantInformation_xml – fundername: Rice University
  grantid: NSF 1718478; NSF 2008720; NSF-GRFP 1842494
  funderid: 10.13039/100007863
– fundername: NSF
  grantid: 1830242
– fundername: Deutsche Forschungsgemeinschaft; German Research Foundation
  grantid: EXC 2002/1-390523135
  funderid: 10.13039/501100001659
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c357t-1d0121953ad4d27864618d0eaf5a36c0654df572889aa53a103639f443c50b983
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733943800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 12:33:56 EDT 2025
Tue Nov 18 21:44:32 EST 2025
Sat Nov 29 06:03:14 EST 2025
Wed Aug 27 05:06:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-1d0121953ad4d27864618d0eaf5a36c0654df572889aa53a103639f443c50b983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1478-1405
0000-0003-0915-8691
0000-0003-3295-4071
0000-0001-5830-5542
0000-0003-0699-8038
0000-0001-6292-8515
0000-0002-5487-6767
0000-0002-3896-5110
PQID 2613369466
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2021_3133603
ieee_primary_9645379
proquest_journals_2613369466
crossref_citationtrail_10_1109_LRA_2021_3133603
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
Dasari (ref27) 2020
ref52
ref11
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref42
ref41
ref44
ref43
ucan (ref53) 2008
Chen (ref10) 2020
Mandlekar (ref24) 2018
ref49
ref8
ref7
ref9
ref4
ref3
ref5
Quintero-Pea (ref45) 2021
ref40
ref35
ref34
ref37
ref36
ref31
ref30
Quigley (ref12) 2009
ref33
ref32
ref2
ref1
ref39
ref38
Chitta (ref13) 2012; 19
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
Hsu (ref47) 1998
Canny (ref6) 1988
References_xml – ident: ref31
  doi: 10.1109/LRA.2020.2972837
– ident: ref32
  doi: 10.1109/LRA.2020.2964160
– ident: ref8
  doi: 10.1109/ICRA48506.2021.9561104
– ident: ref29
  doi: 10.1109/IROS45743.2020.9341431
– ident: ref50
  doi: 10.1109/ICRA.2015.7139620
– ident: ref44
  doi: 10.1109/ICRA48506.2021.9560917
– ident: ref49
  doi: 10.1177/0278364911406761
– volume-title: Proc. Int. Conf. Learn. Representation
  year: 2020
  ident: ref10
  article-title: Learning to plan in high dimensions via neural exploration-exploitation trees
– volume: 19
  start-page: 18
  issue: 1
  year: 2012
  ident: ref13
  publication-title: MoveIt!
– start-page: 1--6
  volume-title: Proc. IEEE Int. Conf. Robot. Automat. Workshop Open Source Softw.
  year: 2009
  ident: ref12
  article-title: ROS: An open-source robot operating system
– ident: ref52
  doi: 10.1109/ROBOT.1997.619371
– ident: ref51
  doi: 10.1109/ICRA40945.2020.9197338
– ident: ref4
  doi: 10.1146/annurev-control-091420-084139
– ident: ref25
  doi: 10.1109/LRA.2020.2974707
– ident: ref7
  doi: 10.3389/frobt.2015.00013
– ident: ref35
  doi: 10.1109/ACCESS.2019.2956775
– ident: ref14
  doi: 10.1109/IROS47612.2022.9981698
– ident: ref36
  doi: 10.1109/MRA.2015.2448951
– ident: ref17
  doi: 10.1609/socs.v10i1.18510
– ident: ref2
  doi: 10.1109/ICRA.2017.7989545
– start-page: 879
  volume-title: Proc. Conf. Robot. Learn.
  year: 2018
  ident: ref24
  article-title: Roboturk: A crowdsourcing platform for robotic skill learning through imitation
– start-page: 449
  volume-title: Proc. Int. Workshop Algorithmic Foundations Robot
  year: 2008
  ident: ref53
  article-title: Kinodynamic motion planning by interior-exterior cell exploration
– ident: ref48
  doi: 10.1201/9781439864135-43
– ident: ref42
  doi: 10.1109/LRA.2021.3063063
– ident: ref1
  doi: 10.1146/annurev-control-060117-104848
– ident: ref20
  doi: 10.1109/LRA.2021.3068913
– ident: ref46
  doi: 10.1177/02783649231209337
– ident: ref18
  doi: 10.1109/IROS45743.2020.9341677
– ident: ref9
  doi: 10.1109/ICRA.2018.8460730
– ident: ref37
  doi: 10.1109/MRA.2012.2205651
– ident: ref16
  doi: 10.1177/0278364917695640
– ident: ref30
  doi: 10.1109/LRA.2020.2972870
– ident: ref43
  doi: 10.1109/IROS51168.2021.9636651
– ident: ref19
  doi: 10.1109/SSRR50563.2020.9292572
– ident: ref11
  doi: 10.1007/s10514-012-9321-0
– ident: ref3
  doi: 10.1146/annurev-control-060117-105226
– ident: ref28
  doi: 10.1109/CVPR42600.2020.01146
– ident: ref15
  doi: 10.1109/IVS.2017.7995802
– ident: ref26
  doi: 10.1109/LRA.2021.3129136
– ident: ref34
  doi: 10.1109/CVPR.2009.5206848
– ident: ref5
  doi: 10.1109/TRO.2021.3070975
– start-page: 885
  volume-title: Proc. Conf. Robot. Learn.
  year: 2020
  ident: ref27
  article-title: Robonet: Large-scale multi-robot learning
– volume-title: The Complexity of Robot Motion Planning
  year: 1988
  ident: ref6
– ident: ref40
  doi: 10.1109/ROBOT.2004.1308891
– ident: ref38
  doi: 10.1109/LRA.2020.2965891
– volume-title: Proc. IEEE Int. Conf. Robot. Automat. Workshop Mach. Learn. Motion Plan.
  year: 2021
  ident: ref45
  article-title: Motion planning via bayesian learning in the dark
– start-page: 141
  volume-title: Proc. Int. Workshop Algorithmic Foundations Robot
  year: 1998
  ident: ref47
  article-title: On finding narrow passages with probabilistic roadmap planners
– ident: ref39
  doi: 10.1109/LRA.2020.2969912
– ident: ref22
  doi: 10.1109/MRA.2015.2448276
– ident: ref33
  doi: 10.1109/ICRA48506.2021.9562038
– ident: ref21
  doi: 10.1109/CRV52889.2021.00019
– ident: ref41
  doi: 10.1109/ICRA.2015.7140073
– ident: ref23
  doi: 10.1109/ICRA.2016.7487514
SSID ssj0001527395
Score 2.4661996
Snippet Recently, there has been a wealth of development in motion planning for robotic manipulation-new motion planners are continuously proposed, each with their own...
Recently, there has been a wealth of development in motion planning for robotic manipulation—new motion planners are continuously proposed, each with their own...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 882
SubjectTerms Algorithms
Benchmark testing
Benchmarks
Data sets for robot learning
Datasets
Feasibility
Generators
manipulation planning
motion and path planning
Motion planning
Planning
Prefabrication
Robot sensing systems
Robots
Task analysis
Title MotionBenchMaker: A Tool to Generate and Benchmark Motion Planning Datasets
URI https://ieeexplore.ieee.org/document/9645379
https://www.proquest.com/docview/2613369466
Volume 7
WOSCitedRecordID wos000733943800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Me_DXF6Rw5eBGs6680jbepG4LbEJmwW8mSFGWzla7z6N9ukrZTUARvhb4H5UvyXl-S930AZ7aUKm8SYgnXkZaPuYqDDhOWioShZDanhJlG4SEZj8PplD7U4GLdCyOlNJfP5KV-NGf5IuUrvVXWpYGPPULrUCeEFL1aX_spmkmM4uok0qbd4WNP1X-uo8pSzwsqVawy8xgplR_x1ySVwc7_PmcXtsufR9QrRnsPajLZh61vlIJNuB8ZWZ5rNfmeR2wusyvUQ5M0XaA8RQXHdC4RSwQyJq8sm6PCBVX6ReiW5Sq35csDeBr0Jzd3VimYYHEPk9xyhGZoo9hjwhcuCQM_cEJhSxZj5gVc95GKGBM3DCljysrRp7g09n2PY3tGQ-8QGkmayCNA1GYqFlCVQfFMvZ-FMVfBAfu-AtmJsdOCbgVmxEs2cS1qsYhMVWHTSMEfafijEv4WnK893gomjT9smxrutV2JdAva1XhF5VJbRqoEVD6aJv_4d68T2HR1z4K5btOGRp6t5Cls8Pf8ZZl1oD766HfMXPoEL4PEVQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WB6gH3-Lqqjl4EazbtE3beFtfrOwDkRW8lWySoqxuZbf6-52k7SoogrdCZ6B8SWY6Seb7AI5drTFvRpGjPKqdgEmMg1QoByNhrIUreSRso3A36vfjx0d-V4PTWS-M1tpePtNn5tGe5atMvputsiYPA-ZHfA4WWBB4tOjW-tpRMVxinFVnkS5vdu9bWAF6FAtT3w8rXawy91gxlR8R2KaVm7X_fdA6rJa_j6RVjPcG1PR4E1a-kQpuQadnhXkucPo99cRIT85Jiwyy7IXkGSlYpnNNxFgRa_IqJiNSuJBKwYhciRyzWz7dhoeb68Fl2yklExzpsyh3qDIcbZz5QgXKi-IwCGmsXC1SJvxQmk5SlbLIi2MuBFpRc47L0yDwJXOHPPZ3YH6cjfUuEO4KjAYccygb4vthnEoMDwg8gkxTRuvQrMBMZMknbmQtXhJbV7g8QfgTA39Swl-Hk5nHW8Gl8YftloF7ZlciXYdGNV5JudimCRaB6GOI8vd-9zqCpfag1026t_3OPix7poPBXr5pwHw-edcHsCg_8ufp5NDOqE_sfsZr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MotionBenchMaker+%3A+A+Tool+to+Generate+and+Benchmark+Motion+Planning+Datasets&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Chamzas%2C+Constantinos&rft.au=Quintero-Pena%2C+Carlos&rft.au=Kingston%2C+Zachary&rft.au=Orthey%2C+Andreas&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=7&rft.issue=2&rft.spage=882&rft_id=info:doi/10.1109%2FLRA.2021.3133603&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon