Prediction of Multiple Molten Iron Quality Indices in the Blast Furnace Ironmaking Process Based on Attention-wise Deep Transfer Network

Molten iron quality (MIQ) indices prediction based on data-driven models is an important way to monitor product quality and smelting status in the blast furnace ironmaking process. However, some challenges still place in the MIQ prediction: 1) limited nonlinear and dynamic description capabilities a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 71; S. 1
Hauptverfasser: Jiang, Ke, Jiang, Zhaohui, Xie, Yongfang, Pan, Dong, Gui, Weihua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!